template <class T> void ossimTiledElevationDatabase::fillGrid(T /* dummyTemplate */,
                                                              ossimRefPtr<ossimImageData> data)
{
   if ( data.valid() )
   {
      // Copy to grid reversing the lines as the ossimDblGrid's origin is the SW corner.
      const ossim_float64 NP  = data->getNullPix(0);
      const T* buf = static_cast<T*>(data->getBuf(0));
      if ( buf )
      {
         const ossimIpt SIZE( data->getWidth(), data->getHeight() );
         ossim_int32 bufIdx = (SIZE.y-1) * data->getWidth();
         ossim_int32 grdY = 0;
         for (ossim_int32 y = SIZE.y-1; y >= 0; --y)
         {
            for (ossim_int32 x = 0; x < SIZE.x; ++ x)
            {
               ossim_float64 v = static_cast<ossim_float64>(buf[bufIdx+x]);
               m_grid->setNode(x, grdY, (v!=NP?v:ossim::nan()) );
            }
            bufIdx -= data->getWidth();
            ++grdY;
         }
      }
   }
}
Beispiel #2
0
void ossimEdgeFilter::runLocalMax8Filter(T /* dummyVariable */,
                                         ossimRefPtr<ossimImageData> inputData)
{
   ossim_uint32 bandIdx = 0;
   ossim_uint32 numberOfBands = inputData->getNumberOfBands();
  
   ossim_uint32 x = 0;
   ossim_uint32 y = 0;
   ossim_uint32 width  = theTile->getWidth();
   ossim_uint32 height = theTile->getHeight();
   ossim_int32 rowIncrement  = inputData->getWidth();
   ossim_int32 rowIncrement2 = 2*inputData->getWidth(); 
         
   for(bandIdx = 0; bandIdx < numberOfBands; ++bandIdx)
   {
      //inputBuf has a 1 pixel edge compared to outputBuf
      T* inputBuf  = static_cast<T*>(inputData->getBuf(bandIdx));
      T* outputBuf = static_cast<T*>(theTile->getBuf(bandIdx));
      T np         = static_cast<T>(inputData->getNullPix(bandIdx)); //changed to input Null            

      if(inputBuf&&outputBuf)
      {
         //one pass: maybe faster if changed to two passes
         T* outB;
         T* inB;
         
      	outB = outputBuf;         
         inB  = inputBuf;         
         for(y = 0; y < height; ++y)
         {
            for(x = 0; x < width; ++x)
            {
               if (inB[1+rowIncrement] != np)
               {
                  *outB = max<T>(
                           max<T>(
                            max<T>(inB[0],inB[1]),
                            max<T>(inB[2],inB[rowIncrement])),
                           max<T>(
                            max<T>(inB[rowIncrement+2],inB[rowIncrement2]),
                            max<T>(inB[rowIncrement2+1],inB[rowIncrement2+2])
                            ));
               }
               else
               {
                  *outB = np;
               }
               ++outB;
               ++inB;
            }
            inB+=2; //go to next line, jump due to edge
         }       
      }      
   }
   theTile->validate();
}
Beispiel #3
0
void ossimFftFilter::runFft(ossimRefPtr<ossimImageData>& input,
                            ossimRefPtr<ossimImageData>& output)
{

   NEWMAT::Matrix* realIn = new NEWMAT::Matrix(input->getHeight(),
                                               input->getWidth());
   NEWMAT::Matrix* imgIn = new NEWMAT::Matrix(input->getHeight(),
                                              input->getWidth());
   NEWMAT::Matrix* realOut = new NEWMAT::Matrix(input->getHeight(),
                                                input->getWidth());
   NEWMAT::Matrix* imgOut = new NEWMAT::Matrix(input->getHeight(),
                                               input->getWidth());
   ossim_uint32 bandIdx = 0;
   ossim_uint32 w = input->getWidth();
   ossim_uint32 h = input->getHeight();
   ossim_uint32 x = 0;
   ossim_uint32 y = 0;
   if(theDirectionType == FORWARD)
   {
      ossim_uint32 bands = input->getNumberOfBands();
      for(bandIdx = 0; bandIdx < bands; ++bandIdx)
      {
         ossim_float64* bandReal = 0;
         ossim_float64* bandImg  = 0;
         fillMatrixForward((ossim_float64*)input->getBuf(bandIdx),
                           (ossim_float64)input->getNullPix(bandIdx),
                           *realIn,
                           *imgIn);
         NEWMAT::FFT2(*realIn, *imgIn, *realOut, *imgOut);
         bandReal = (ossim_float64*)output->getBuf(2*bandIdx);
         bandImg  = (ossim_float64*)output->getBuf(2*bandIdx + 1);
         if(bandReal&&bandImg)
         {
            for(y = 0; y < h; ++y)
            {
               for(x = 0; x < w; ++x)
               {
                  *bandReal = (ossim_float64)((*realOut)[y][x]);
                  *bandImg  = (ossim_float64)((*imgOut)[y][x]);
                  ++bandReal;
                  ++bandImg;
               }
            }
         }
      }
   }
   else
   {
      ossim_float64* bandReal = 0;
      ossim_uint32 bands = input->getNumberOfBands();
      for(bandIdx = 0; bandIdx < bands; bandIdx+=2)
      {
         bandReal = (ossim_float64*)output->getBuf(bandIdx/2);
         if(input->getBuf(bandIdx)&&
            input->getBuf(bandIdx+1))
         {
            fillMatrixInverse((double*)input->getBuf(bandIdx),
                              (double*)input->getBuf(bandIdx+1),
                              *realIn,
                              *imgIn);
            NEWMAT::FFT2I(*realIn, *imgIn, *realOut, *imgOut);
            for(y = 0; y < h; ++y)
            {
               for(x = 0; x < w; ++x)
               {
                  *bandReal = (ossim_float64)((*realOut)[y][x]);
//                  if(*bandReal > 1.0)
//                  {
//                     *bandReal = 1.0;
//                  }
//                  if(*bandReal < 0.0)
//                  {
//                     *bandReal = 0.0;
//                  }
                  ++bandReal;
               }
            }
         }
      }
   }
   
   delete realIn;
   delete imgIn;
   delete realOut;
   delete imgOut;
}
ossimRefPtr<ossimImageData> ossimHistogramEqualization::runEqualizationAlgorithm(T, ossimRefPtr<ossimImageData> tile)
{
   
   if(!theAccumulationHistogram ||
      !getHistogram())
   {
      return tile;
   }

   // for now we will always pull from res 0 information
   ossimRefPtr<ossimMultiBandHistogram> histo = getHistogram()->getMultiBandHistogram(0);

   if(histo.valid())
   {
      ossim_uint32 maxBands = ( (histo->getNumberOfBands() >
                                 tile->getNumberOfBands())?
                                tile->getNumberOfBands():
                                histo->getNumberOfBands());
      
      long offsetUpperBound = tile->getHeight()*tile->getWidth();

      for(ossim_uint32 band = 0; band < maxBands; ++band)
      {
         ossimRefPtr<ossimHistogram> bandHisto = histo->getHistogram(band);
         T* buf = static_cast<T*>(tile->getBuf(band));
         double *histoLut = band<theForwardLut.size()?theForwardLut[band]:NULL;
         ossim_uint32 actualBand = theBandList[band];
         if(bandHisto.valid())
         {
            if(buf&&histoLut&&(actualBand <  histo->getNumberOfBands()))
            {
               if(theInverseFlag)
               {
                  histoLut = theInverseLut[actualBand];
               }
               if(histoLut)
               {
                  if(tile->getDataObjectStatus() == OSSIM_FULL)
                  {
                     T minPix = (T)tile->getMinPix(actualBand);
                     T maxPix = (T)tile->getMaxPix(actualBand);
                     for(long offset = 0; offset < offsetUpperBound; ++offset)
                     {
                        ossim_int32 idx = bandHisto->GetIndex(buf[offset]);
                           
                        if(idx>=0)
                        {
                           T value = (T)(histoLut[idx]);

                           //---
                           // Assign clamping to min max.
                           // 
                           // ESH 03/2009 -- Clamping to within min-max fixed
                           //--- 
                           buf[offset] = value < minPix ? minPix :
                              (value > maxPix ? maxPix : value);
                        }
                     }
                  }
                  else
                  {
                     T minPix  = (T)tile->getMinPix(actualBand);
                     T maxPix  = (T)tile->getMaxPix(actualBand);
                     T nullPix = (T)tile->getNullPix(actualBand);
                     for(long offset = 0; offset < offsetUpperBound; ++offset)
                     {
                        ossim_int32 idx = bandHisto->GetIndex(buf[offset]);
                        
                        if((buf[offset]!=nullPix)&&(idx>=0))
                        {
                           T value = (T)(histoLut[idx]);

                           //---
                           // Assign clamping to min max.
                           // 
                           // ESH 03/2009 -- Clamping to within min-max fixed
                           //--- 
                           buf[offset] = value < minPix ? minPix :
                              (value > maxPix ? maxPix : value);
                        }
                        else
                        {
                           buf[offset] = nullPix;
                        }
                     }
                  }
               }
            }
         }
      }
      
      tile->validate();
   }
   
   return tile;
}
template <class T> void ossimImageToPlaneNormalFilter::computeNormalsTemplate(
   T /* inputScalarTypeDummy */,
   ossimRefPtr<ossimImageData>& inputTile,
   ossimRefPtr<ossimImageData>& outputTile)
{
   T inputNull = (T)inputTile->getNullPix(0);
   T* inbuf = (T*)inputTile->getBuf();

   double* normX = (double*)outputTile->getBuf(0);
   double* normY = (double*)outputTile->getBuf(1);
   double* normZ = (double*)outputTile->getBuf(2);
   ossim_int32 inbuf_width = inputTile->getWidth();
   ossim_int32 normbuf_width = outputTile->getWidth();
   ossim_int32 normbuf_height = outputTile->getHeight();
   ossimColumnVector3d normal;

   for (ossim_int32 y=0; y<normbuf_height; y++)
   {
      // Establish offsets into the image and output normals buffers given row:
      ossim_uint32 n = y*normbuf_width;
      ossim_uint32 i = (y+1)*inbuf_width + 1;
      
      // Loop to compute the gradient (normal) vector [dh/dx, dh/dy, 1]:
      for (ossim_int32 x=0; x<normbuf_width; x++)
      {
         // Default in case of null inputs is a flat earth:
         normal[0] = 0;
         normal[1] = 0;
         normal[2] = 1.0;

         // Compute the x-direction differential:
         if (inbuf[i+1] != inputNull)
         {
            if (inbuf[i-1] != inputNull)
               normal[0] = theXScale*theSmoothnessFactor*(inbuf[i+1] - inbuf[i-1]) / 2.0;
            else if (inbuf[i] != inputNull)
               normal[0] = theXScale*theSmoothnessFactor*(inbuf[i+1] - inbuf[i]);
         }
         else if ((inbuf[i] != inputNull) && (inbuf[i-1] != inputNull))
         {
            normal[0] = theXScale*theSmoothnessFactor*(inbuf[i] - inbuf[i-1]);
         }

         // Compute the y-direction differential:
         if (inbuf[i+inbuf_width] != inputNull)
         {
            if (inbuf[i-inbuf_width] != inputNull)
               normal[1] = theYScale*theSmoothnessFactor*(inbuf[i+inbuf_width] - inbuf[i-inbuf_width]) / 2.0;
            else if (inbuf[i] != inputNull)
               normal[1] = theYScale*theSmoothnessFactor*(inbuf[i+inbuf_width] - inbuf[i]);
         }
         else if ((inbuf[i] != inputNull) && (inbuf[i-inbuf_width] != inputNull))
         {
            normal[1] = theYScale*theSmoothnessFactor*(inbuf[i] - inbuf[i-inbuf_width]);
         }

         // Stuff the normalized gradient vector into the output buffers:
         normal = normal.unit();
         normX[n] = normal[0];
         normY[n] = normal[1];
         normZ[n] = normal[2];
         
         ++n;
         ++i;
      }
   }
}
template<class T> void ossimCFARFilter::convolvePartial(
   T,
   ossimRefPtr<ossimImageData> inputData,
   ossimRefPtr<ossimImageData> outputData)
{
   // let's set up some temporary variables so we don't
   // have to call the functions in loops.  Iknow that compilers
   // typically optimize this out but if we are in debug mode 
   // with no optimization it will still run fast
   //
   double sum = 0.0,sqrsum = 0.0, variance = 0.0;
   ossim_int32 inputW          = (ossim_int32)inputData->getWidth();
   ossim_int32 outputW         = (ossim_int32)outputData->getWidth();
   ossim_int32 outputH         = (ossim_int32)outputData->getHeight();
   ossim_int32 numberOfBands   = (ossim_int32)inputData->getNumberOfBands();
   ossimIpt outputOrigin  = outputData->getOrigin();
   ossimIpt inputOrigin   = inputData->getOrigin();
   
   ossim_int32 startInputOffset = std::abs(outputOrigin.y - inputOrigin.y)*
      inputW + std::abs(outputOrigin.x - inputOrigin.x);
      
   ossim_int32 ulKernelStart    = -(2*inputW) - 2;
   ossim_int32 ul1KernelStart    = -inputW - 1;
   ossim_int32 leftKernelStart  = -2;
   ossim_int32 ll1KernelStart    = inputW  - 1;
   ossim_int32 llKernelStart    = (2*inputW)  - 2;
   
   //populate kernel offset indices
   
   ossim_int32 KernelStart[BOXSIZE];
   T* KernelStartBuf[BOXSIZE];
   
   for(ossim_uint16 i=0;i<BOXSIZE;i++)
   {
      int offset = i-(BOXSIZE/2);
   	KernelStart[i] = offset*inputW + offset;
   	KernelStartBuf[i] = NULL;
   }
   
   
   
   T* ulKernelStartBuf   = NULL;
   T* ul1KernelStartBuf   = NULL;
   T* leftKernelStartBuf = NULL;
   T* ll1KernelStartBuf   = NULL;   
   T* llKernelStartBuf   = NULL;
   
   for(ossim_int32 band = 0; band < numberOfBands; ++band)
   {
      T* inputBuf  = static_cast<T*>(inputData->getBuf(band))+startInputOffset;
      T* outputBuf = static_cast<T*>(outputData->getBuf(band));
      T maxPix     = static_cast<T>(getMaxPixelValue(band));
      T minPix     = static_cast<T>(getMinPixelValue(band));      
      T nullPix    = static_cast<T>(inputData->getNullPix(band));
      T oNullPix   = static_cast<T>(getNullPixelValue(band));
      
      if(inputBuf&&outputBuf)
      {
         for(ossim_int32 row = 0; row < outputW; ++row)
         {
            ossim_int32 rowOffset    = inputW*row;
            ulKernelStartBuf   = inputBuf + (rowOffset + ulKernelStart);
            ul1KernelStartBuf   = inputBuf + (rowOffset + ul1KernelStart);
            leftKernelStartBuf = inputBuf + (rowOffset + leftKernelStart);
            ll1KernelStartBuf   = inputBuf + (rowOffset + ll1KernelStart);
            llKernelStartBuf   = inputBuf + (rowOffset + llKernelStart);
            
            for(ossim_uint16 i=0;i<BOXSIZE;i++)
            {
            	KernelStartBuf[i] = inputBuf + (rowOffset + KernelStart[i]);
            }
                        
            for(ossim_int32 col = 0; col < outputH; ++col)
            {
					//TODO: Need to have an efficient means of detecting nulls
					
               if((ulKernelStartBuf[0]   != nullPix)&&
                  (ulKernelStartBuf[1]   != nullPix)&&
                  (ulKernelStartBuf[2]   != nullPix)&&
                  (leftKernelStartBuf[0] != nullPix)&&
                  (leftKernelStartBuf[1] != nullPix)&&
                  (leftKernelStartBuf[2] != nullPix)&&
                  (llKernelStartBuf[0]   != nullPix)&&
                  (llKernelStartBuf[1]   != nullPix)&&
                  (llKernelStartBuf[2]   != nullPix))
               {
               	//calculate mean
               	sum = 0.0;
               	sqrsum = 0.0;
               	
               	
            		for(ossim_uint32 r=0; r<5; ++r)
            			sum += theKernel[0][r]*(double)ulKernelStartBuf[r];
            		for(ossim_uint32 r=0; r<5; ++r)
            			sum += theKernel[1][r]*(double)ul1KernelStartBuf[r];
            		for(ossim_uint32 r=0; r<5; ++r)
            			sum += theKernel[2][r]*(double)leftKernelStartBuf[r];
            		for(ossim_uint32 r=0; r<5; ++r)
            			sum += theKernel[3][r]*(double)ll1KernelStartBuf[r];
	            	for(ossim_uint32 r=0; r<5; ++r)
   	         		sum += theKernel[4][r]*(double)llKernelStartBuf[r];
   	         	
   	         	/*
   	         	for(ossim_uint16 i=0;i<BOXSIZE;i++)
	   	         {
	   	         	for(ossim_uint32 r=0; r<5; ++r)
	   	         	{
								sum += theKernel[i][r]*(double)KernelStartBuf[i][r];
								sqrsum += theKernel[i][r]*(double)KernelStartBuf[i][r]
         	   			*(double)KernelStartBuf[i][r];
         	   		}
   	      	   }
   	      	   */  	         	
   	         	//calculate mean of squares
   	         	
   	         	for(ossim_uint32 r=0; r<5; ++r)
            			sqrsum += theKernel[0][r]*(double)ulKernelStartBuf[r]
            			*(double)ulKernelStartBuf[r];
            		for(ossim_uint32 r=0; r<5; ++r)
            			sqrsum += theKernel[1][r]*(double)ul1KernelStartBuf[r]
            			*(double)ul1KernelStartBuf[r];
            		for(ossim_uint32 r=0; r<5; ++r)
            			sqrsum += theKernel[2][r]*(double)leftKernelStartBuf[r]
            			*(double)leftKernelStartBuf[r];
            		for(ossim_uint32 r=0; r<5; ++r)
            			sqrsum += theKernel[3][r]*(double)ll1KernelStartBuf[r]
            			*(double)ll1KernelStartBuf[r];
            		for(ossim_uint32 r=0; r<5; ++r)
            			sqrsum += theKernel[4][r]*(double)llKernelStartBuf[r]
            			*(double)llKernelStartBuf[r];
            		
						//calculate variance
						variance = sqrsum - (sum*sum);
					
						
						//calculate k-value
						sum = ((double)leftKernelStartBuf[2] - sum)/sqrt(variance);;
					
						//Threshold k-value
						if(sum < theThreshold)
							sum = minPix;
						else
							sum = maxPix;
						
                  /*
                  sum = theKernel[0][0]*(double)ulKernelStartBuf[0] +
                        theKernel[0][1]*(double)ulKernelStartBuf[1] +
                        theKernel[0][2]*(double)ulKernelStartBuf[2] +
                        theKernel[1][0]*(double)leftKernelStartBuf[0] +
                        theKernel[1][1]*(double)leftKernelStartBuf[1] +
                        theKernel[1][2]*(double)leftKernelStartBuf[2] +
                        theKernel[2][0]*(double)llKernelStartBuf[0] +
                        theKernel[2][1]*(double)llKernelStartBuf[1] +
                        theKernel[2][2]*(double)llKernelStartBuf[2];
                  */
                  if(sum > maxPix)
                  {
                     *outputBuf = maxPix;
                  }
                  else if(sum < minPix)
                  {
                     *outputBuf = minPix;
                  }
                  else
                  {
                     *outputBuf = static_cast<T>(sum);
                  }
               }
               else {
                  *outputBuf = oNullPix;
               }
               //
               // Need to implement the convolution here
               //
               
               ++ulKernelStartBuf;
               ++ul1KernelStartBuf;
               ++leftKernelStartBuf;
               ++ll1KernelStartBuf;
               ++llKernelStartBuf;
               ++outputBuf;
            }
         }
      }
   }
}
//**************************************************************************************************
template <class T> void ossimScaleFilter::runVerticalFilterTemplate(
   T /* dummy */,
   const ossimRefPtr<ossimImageData>& input,
   ossimRefPtr<ossimImageData>& output)
{
   ossimIrect viewRect  = output->getImageRectangle();
   ossimIrect imageRect = input->getImageRectangle();
   ossim_int32 vw = viewRect.width();
   ossim_int32 vh = viewRect.height();
   ossim_int32 iw = imageRect.width();
   ossimIpt origin(viewRect.ul());
   ossimIpt imageOrigin(imageRect.ul());
   ossimIpt inputUl = m_InputRect.ul();
   ossimIpt inputLr = m_InputRect.lr();
   double scale = 0.0;
   double support = 0.0;
   ossim_int32 x = 0;
   ossim_int32 y = 0;
   ossim_int32 start = 0;
   ossim_int32 stop  = 0;
   ossim_int32 kernelIdx = 0;
   const ossimFilter* filter = getVerticalFilter();
   ossim_float64 center = 0.0;
   ossim_int32 bandIdx = 0;
   ossim_int32 numberOfBands = m_Tile->getNumberOfBands();
   
   scale = m_BlurFactor*ossim::max(1.0/m_ScaleFactor.y, 1.0);
   
   support=scale*filter->getSupport();
   if (support <= 0.5)
   {
      support = .5 + FLT_EPSILON;
      scale = 1.0;
   }
   scale=1.0/scale;

   for(bandIdx = 0; bandIdx < numberOfBands; ++bandIdx)
   {
      T* imageBuf = (T*)input->getBuf(bandIdx);
      T* viewBuf  = (T*)output->getBuf(bandIdx);
      T np        = (T)input->getNullPix(bandIdx);
      T outNp     = (T)output->getNullPix(bandIdx);
      T outMinPix = (T)output->getMinPix(bandIdx);
      T outMaxPix = (T)output->getMaxPix(bandIdx);
     
      for(y = 0; y < vh; ++y)
      {
         center=(double) ((y + origin.y+0.5)/m_ScaleFactor.y);
         start=ossim::max((ossim_int32)ossim::round<int>(center-support), (ossim_int32)inputUl.y);
         stop=ossim::min((ossim_int32)ossim::round<int>(center+support), (ossim_int32)inputLr.y);
         ossim_int32 delta = stop-start;
         if (delta <= 0)
         {
            break;
         }
         vector<double> kernel(delta);
         double density = 0.0;
         for(kernelIdx = 0; kernelIdx < delta; ++kernelIdx)
         {
            kernel[kernelIdx] = filter->filter(scale*(start + kernelIdx - center + .5),
                                               filter->getSupport());
            density += kernel[kernelIdx];
         }
         if ((density != 0.0) && (density != 1.0))
         {
            /*
              Normalize.
            */
            density=1.0/density;
            for (kernelIdx=0; kernelIdx < delta; kernelIdx++)
               kernel[kernelIdx]*=density;
         }

         ossim_int32 offset       = ((start  - imageOrigin.y)*iw);
         ossim_int32 offsetCenter = ((((ossim_int32)center) - imageOrigin.y)*iw);
        
         for(x = 0; x < vw; ++x)
         {
            T* yptr         = imageBuf + offset       + x;
            T* yCenterptr   = imageBuf + offsetCenter + x;
            double result = 0.0;
            density = 0.0;

            if((*yCenterptr) == np)
            {
               *viewBuf = outNp;
            }
            else
            {
               for(kernelIdx = 0; kernelIdx < delta; ++kernelIdx)
               {
                  if((*yptr != np)&&
                     (kernel[kernelIdx] != 0.0))
                  {
                     result  += ((*yptr)*kernel[kernelIdx]);
                     density += kernel[kernelIdx];
                  }
                  yptr += iw;
               }
               if(density != 0.0)
               {
                  result /= density;
                 
                  if(result < outMinPix) result = outMinPix;
                  if(result > outMaxPix) result = outMaxPix;
                 
                  *viewBuf = (T)result;
               }
               else
               {
                  *viewBuf = outNp;
               }
            }
            ++viewBuf;
         }
      }
   }
}
void ossimTileToIplFilter::CopyIplImageToTile(T dummyVariable, ossimRefPtr<ossimImageData> inputTile, IplImage *output)
{
    // Determine if tile is full or partially filled
    ossimDataObjectStatus status = inputTile->getDataObjectStatus();

    uchar *outputData = (uchar *)output->imageData;
    int outputStep = output->widthStep/sizeof(uchar);

    int pixVal;
    long outputOffset = 0;

    T maxPix = static_cast<T>(getMaxPixelValue(0));
    T minPix = static_cast<T>(getMinPixelValue(0));
    T np = static_cast<T>(inputTile->getNullPix(0));

    if (status == OSSIM_PARTIAL)
    {
        for (ossim_uint32 bandIdx = 0; bandIdx < inputTile->getNumberOfBands(); ++bandIdx)
        {
            T* outBuf = static_cast<T*>(inputTile->getBuf(bandIdx));

            if (outBuf)
            {
                outputOffset = 0;
                for (long y = 0; y < output->height; ++y)
                {
                    for (long x = 0; x < output->width; ++x)
                    {
                        if (!inputTile->isNull(outputOffset))
                        {
                            pixVal = (int)round(outputData[y * outputStep + x]);

                            if (pixVal > maxPix)
                                *outBuf = maxPix;
                            else if (pixVal < 0)
                                *outBuf = minPix;
                            else
                                *outBuf = static_cast<T>(pixVal);
                        }
                        else
                            inputTile->setNull(outputOffset);

                        ++outBuf;
                        ++outputOffset;
                    }
                }
            }
        }
    }
    else
    {
        for (ossim_uint32 bandIdx = 0; bandIdx < inputTile->getNumberOfBands(); ++bandIdx)
        {
            T* outBuf = (T*)(inputTile->getBuf(bandIdx));

            if (outBuf)
            {
                for (int y = 0; y < output->height; ++y)
                {
                    for (int x = 0; x < output->width; ++x)
                    {
                        pixVal = (int)round(outputData[y * outputStep + x]);

                        if (pixVal > maxPix)
                            *outBuf = (maxPix);
                        else if (pixVal < 0)
                            *outBuf = (minPix);
                        else
                            *outBuf = static_cast<T>(pixVal);

                        // Increment the output buffer to the next pixel value
                        ++outBuf;
                    }
                }
            }
            else
                *outBuf = np;
        }
    }
}