Beispiel #1
0
 void fill(size_t num)
 {
     for (size_t i = 0; i < m_max_priority; ++i)
         for (size_t j = 0; j < num; ++j)
             m_queue.push(i, j);
 }
Beispiel #2
0
		std::size_t size(unsigned int timeout = 5) {
			boost::shared_lock<boost::shared_mutex> lock(mutex_, boost::get_system_time() + boost::posix_time::seconds(timeout));
			if (!lock || queue_.empty())
				return 0;
			return queue_.size();
		}
Beispiel #3
0
 void dequeue_( msg_type & msg)
 {
   msg = queue_.front();
   queue_.pop();
 }
Beispiel #4
0
 bool empty_() const
 { return queue_.empty(); }
	//! Returns the current number of nodes in the queue.
	size_type size() const { return m_queue.size(); }
Beispiel #6
0
 std::size_t size() const{
   return queue_.size();
 }
Beispiel #7
0
 bool dequeue(T& value) {
     return m_queue.pop(value);
 }
 //! Returns true if the queue is empty
 inline bool empty() { 
   m_mutex.lock();
   bool res = m_queue.empty();
   m_mutex.unlock();
   return res;
 }
  static inline void
  finish (bool output_fired,
	  bd_t bda,
	  bd_t bdb)
  {
    if (action_.automaton.get () != 0) {
      // We were executing an action of this automaton.

      switch (action_.action->type) {
      case INPUT:
	// We were executing an input.  Move to the next input.
	++input_action_pos_;
	proceed_to_input ();
	// -EEE
	input_action_list_.front ()->output_action.automaton->unlock_execution ();
	finish_output ();
	break;
      case OUTPUT:
	// We were executing an output ...
	if (output_fired) {
	  // ... and the output output did something.
	  output_buffer_a_ = action_.automaton->lookup_buffer (bda);
	  // Synchronize the buffers.
	  if (output_buffer_a_.get () != 0) {
	    output_buffer_a_->sync (0, output_buffer_a_->size ());
	  }
	  output_buffer_b_ = action_.automaton->lookup_buffer (bdb);
	  if (output_buffer_b_.get () != 0) {
	    output_buffer_b_->sync (0, output_buffer_b_->size ());
	  }
	  // Proceed to execute the inputs.
	  input_action_pos_ = input_action_list_.begin ();
	  // This does not return if there are inputs.
	  proceed_to_input ();
	}
	// No input actions to execute.
	// -EEE
	action_.automaton->unlock_execution ();
	finish_output ();
	break;
      case INTERNAL:
      case SYSTEM:
	// -EEE
	action_.automaton->unlock_execution ();
	break;
      }
    }

    // We are done with the current action.
    action_.automaton = shared_ptr<automaton> ();

    for (;;) {

      irq_handler::process_interrupts ();

      while (!ready_queue_.empty ()) {
	// Get the automaton context and remove it from the ready queue.
	automaton_context* c = ready_queue_.front ();
	ready_queue_.pop_front ();

	// Load the action.
	action_ = c->front ();
	c->pop_front ();

	// The automaton exists.  Continue loading and execute.
	switch (action_.action->type) {
	case INPUT:
	  // Error.  Not a local action.
	  kpanic ("Non-local action on execution queue");
	  break;
	case OUTPUT:
	  {
	    kassert (input_action_list_.empty ());
	    // Copy the bindings.
	    action_.automaton->copy_bound_inputs (action_, back_inserter (input_action_list_));
	    
	    // Sort the bindings by input automaton.
	    sort (input_action_list_.begin (), input_action_list_.end (), sort_bindings_by_input ());
	    
	    // We lock the automata in order.  This is called Havender's Principle.
	    bool output_locked = false;
	    for (input_action_list_type::const_iterator pos = input_action_list_.begin ();
		 pos != input_action_list_.end ();
		 ++pos) {
	      shared_ptr<automaton> input_automaton = (*pos)->input_action.automaton;
	      if (!output_locked && action_.automaton->aid () < input_automaton->aid ()) {
		// +EEE
		action_.automaton->lock_execution ();
		output_locked = true;
	      }
	      // +FFF
	      input_automaton->lock_execution ();
	    }
	    if (!output_locked) {
	      // +EEE
	      action_.automaton->lock_execution ();
	      output_locked = true;
	    }
	    
	    input_action_pos_ = input_action_list_.begin ();
	  }
	  break;
	case INTERNAL:
	case SYSTEM:
	  // +EEE
	  action_.automaton->lock_execution ();
	  break;
	}
	
	if (!c->empty ()) {
	  // Automaton has more actions, return to ready queue.
	  ready_queue_.push_back (c);
	}

	action_.automaton->execute (*action_.action, action_.parameter, output_buffer_a_, output_buffer_b_);
      }

      // Out of actions.
      action_.automaton = shared_ptr<automaton> ();
      irq_handler::wait_for_interrupt ();
    }
  }
Beispiel #10
0
    void reset() {
        cancel();

        T value;
        while (m_queue.pop(value));
    }
Beispiel #11
0
	void dump() {
		queue_type::stored_ptr entry;
		while ((entry = queue.pop()) != nullptr)
			write_entry(std::move(entry));
	}
Beispiel #12
0
 reset_queue_entry(barrier_queue_entry& e, queue_type& q)
   : e_(e), q_(q), last_(q.last())
 {}
Beispiel #13
0
 void clear()
 {
     m_queue.clear();
 }
 bool empty_unsafe() {
   return m_queue.empty();
 }
 /// Check if there is any data in the outgoing_queue to be sent over the socket
 bool outgoing_not_empty() const { return !m_outgoing_queue.empty(); }
 void swap(queue_type &q) {
   m_mutex.lock();
   q.swap(m_queue);
   m_mutex.unlock();
 }
 /// Check if there is any space in the outgoing_queue
 bool outgoing_not_full() const { return !m_outgoing_queue.full(); }
 //! get the current size of the queue
 inline size_t size() {
   return m_queue.size();
 }
 /// Check if there is any data in the incoming_queue
 bool incoming_not_empty() const { return !m_incoming_queue.empty(); }
	//! Method for dereferencing the iterator.
	const_reference operator*() const { return m_queue.front(); }
 /// Check if there is any space in the incoming_queue for received packets
 bool incoming_not_full() const { return !m_incoming_queue.full(); }
Beispiel #22
0
 void enqueue_( msg_type const& msg)
 { queue_.push( msg); }
Beispiel #23
0
		bool empty(unsigned int timeout = 5) {
			boost::shared_lock<boost::shared_mutex> lock(mutex_, boost::get_system_time() + boost::posix_time::seconds(timeout));
			if (!lock.owns_lock())
				return false;
			return queue_.empty();
		}
Beispiel #24
0
 bool full_() const
 {
   if ( high_water_mark_ == infinity_) return false;
   return queue_.size() > high_water_mark_;
 }
Beispiel #25
0
		boost::optional<T> top(unsigned int timeout = 5) {
			boost::shared_lock<boost::shared_mutex> lock(mutex_, boost::get_system_time() + boost::posix_time::seconds(timeout));
			if (!lock || queue_.empty())
				return boost::optional<T>();
			return boost::optional<T>(queue_.front());
		}
Beispiel #26
0
 void flush_()
 { queue_.clear(); }
Beispiel #27
0
	void enqueue(queue_element_type* msg) {
		while (!m_messageQueue.push(msg))
			;
	}