Beispiel #1
0
void c_typecheck_baset::typecheck_symbol_type(typet &type)
{
  const irep_idt &identifier=
    to_symbol_type(type).get_identifier();

  symbol_tablet::symbolst::const_iterator s_it=
    symbol_table.symbols.find(identifier);

  if(s_it==symbol_table.symbols.end())
  {
    error().source_location=type.source_location();
    error() << "type symbol `" << identifier << "' not found"
            << eom;
    throw 0;
  }

  const symbolt &symbol=s_it->second;

  if(!symbol.is_type)
  {
    error().source_location=type.source_location();
    error() << "expected type symbol" << eom;
    throw 0;
  }

  if(symbol.is_macro)
  {
    // overwrite, but preserve (add) any qualifiers and other flags

    c_qualifierst c_qualifiers(type);
    bool is_packed=type.get_bool(ID_C_packed);
    irept alignment=type.find(ID_C_alignment);

    c_qualifiers+=c_qualifierst(symbol.type);
    type=symbol.type;
    c_qualifiers.write(type);

    if(is_packed)
      type.set(ID_C_packed, true);
    if(alignment.is_not_nil())
      type.set(ID_C_alignment, alignment);
  }

  // CPROVER extensions
  if(symbol.base_name=="__CPROVER_rational")
  {
    type=rational_typet();
  }
  else if(symbol.base_name=="__CPROVER_integer")
  {
    type=integer_typet();
  }
}
Beispiel #2
0
void boolbvt::convert_with(
  const typet &type,
  const exprt &op1,
  const exprt &op2,
  const bvt &prev_bv,
  bvt &next_bv)
{
  // we only do that on arrays, bitvectors, structs, and unions

  next_bv.resize(prev_bv.size());

  if(type.id()==ID_array)
    return convert_with_array(to_array_type(type), op1, op2, prev_bv, next_bv);
  else if(type.id()==ID_bv ||
          type.id()==ID_unsignedbv ||
          type.id()==ID_signedbv)
    return convert_with_bv(type, op1, op2, prev_bv, next_bv);
  else if(type.id()==ID_struct)
    return convert_with_struct(to_struct_type(type), op1, op2, prev_bv, next_bv);
  else if(type.id()==ID_union)
    return convert_with_union(to_union_type(type), op1, op2, prev_bv, next_bv);
  else if(type.id()==ID_symbol)
    return convert_with(ns.follow(type), op1, op2, prev_bv, next_bv);

  error().source_location=type.source_location();
  error() << "unexpected with type: " << type.id();
  throw 0;
}
void cpp_typecheckt::find_constructor(
  const typet &start_dest_type,
  exprt &constructor_expr)
{
  constructor_expr.make_nil();

  source_locationt source_location=start_dest_type.source_location();
  typet dest_type(start_dest_type);
  follow_symbol(dest_type);

  if(dest_type.id()!=ID_struct)
    return;

  const struct_typet::componentst &components=
    to_struct_type(dest_type).components();

  for(struct_typet::componentst::const_iterator
      it=components.begin();
      it!=components.end();
      it++)
  {
    const struct_typet::componentt &component=*it;
    const typet &type=component.type();

    if(type.find(ID_return_type).id()==ID_constructor)
    {
      const irept::subt &parameters=
        type.find(ID_parameters).get_sub();

      namespacet ns(symbol_table);

      if(parameters.size()==1)
      {
        const exprt &parameter=(exprt &)parameters.front();
        const typet &arg_type=parameter.type();

        if(arg_type.id()==ID_pointer &&
           type_eq(arg_type.subtype(), dest_type, ns))
        {
          // found!
          const irep_idt &identifier=
            component.get(ID_name);

          if(identifier=="")
            throw "constructor without identifier";

          constructor_expr=exprt(ID_symbol, type);
          constructor_expr.set(ID_identifier, identifier);
          constructor_expr.add_source_location()=source_location;
          return;
        }
      }
    }
  }
}
Beispiel #4
0
void ansi_c_convert_typet::read(const typet &type)
{
  clear();
  source_location=type.source_location();
  read_rec(type);

  if(!aligned &&
     type.find(ID_C_alignment).is_not_nil())
  {
    aligned=true;

    alignment=static_cast<const exprt &>(type.find(ID_C_alignment));
  }
}
Beispiel #5
0
void c_typecheck_baset::typecheck_typeof_type(typet &type)
{
  // save location
  source_locationt source_location=type.source_location();

  // retain the qualifiers as is
  c_qualifierst c_qualifiers;
  c_qualifiers.read(type);

  if(!((const exprt &)type).has_operands())
  {
    typet t=static_cast<const typet &>(type.find(ID_type_arg));
    typecheck_type(t);
    type.swap(t);
  }
  else
  {
    exprt expr=((const exprt &)type).op0();
    typecheck_expr(expr);

    // undo an implicit address-of
    if(expr.id()==ID_address_of &&
       expr.get_bool(ID_C_implicit))
    {
      assert(expr.operands().size()==1);
      exprt tmp;
      tmp.swap(expr.op0());
      expr.swap(tmp);
    }

    type.swap(expr.type());
  }

  type.add_source_location()=source_location;
  c_qualifiers.write(type);
}
void cpp_typecheckt::typecheck_enum_type(typet &type)
{
  // first save qualifiers
  c_qualifierst qualifiers;
  qualifiers.read(type);
  
  cpp_enum_typet &enum_type=to_cpp_enum_type(type);
  bool anonymous=!enum_type.has_tag();
  irep_idt base_name;
  
  if(anonymous)
  {
    // we fabricate a tag based on the enum constants contained
    base_name=enum_type.generate_anon_tag();
  }
  else
  {
    const cpp_namet &tag=enum_type.tag();
    
    if(tag.is_simple_name())
      base_name=tag.get_base_name();
    else
    {
      err_location(type);
      throw "enum tag is expected to be a simple name";
    }
  }

  bool has_body=enum_type.has_body();
  bool tag_only_declaration=enum_type.get_tag_only_declaration();

  cpp_scopet &dest_scope=
    tag_scope(base_name, has_body, tag_only_declaration);

  const irep_idt symbol_name=
    dest_scope.prefix+"tag-"+id2string(base_name);

  // check if we have it
  
  symbol_tablet::symbolst::iterator previous_symbol=
    symbol_table.symbols.find(symbol_name);
    
  if(previous_symbol!=symbol_table.symbols.end())
  {
    // we do!

    symbolt &symbol=previous_symbol->second;

    if(has_body)
    {
      err_location(type);
      str << "error: enum symbol `" << base_name
          << "' declared previously\n";
      str << "location of previous definition: "
          << symbol.location;
      throw 0;
    }
  }
  else if(has_body)
  {
    std::string pretty_name=
      cpp_scopes.current_scope().prefix+id2string(base_name);
      
    // C++11 enumerations have an underlying type,
    // which defaults to int.
    // enums without underlying type may be 'packed'.
    if(type.subtype().is_nil())
      type.subtype()=signed_int_type();
    else
    {
      typecheck_type(type.subtype());
      if(type.subtype().id()==ID_signedbv ||
         type.subtype().id()==ID_unsignedbv)
      {
      }
      else
      {
        err_location(type);
        str << "underlying type must be integral";
        throw 0;
      }
    }

    symbolt symbol;

    symbol.name=symbol_name;
    symbol.base_name=base_name;
    symbol.value.make_nil();
    symbol.location=type.source_location();
    symbol.mode=ID_cpp;
    symbol.module=module;
    symbol.type.swap(type);
    symbol.is_type=true;
    symbol.is_macro=false;
    symbol.pretty_name=pretty_name;
    
    // move early, must be visible before doing body
    symbolt *new_symbol;
    if(symbol_table.move(symbol, new_symbol))
      throw "cpp_typecheckt::typecheck_enum_type: symbol_table.move() failed";    

    // put into scope
    cpp_idt &scope_identifier=
      cpp_scopes.put_into_scope(*new_symbol, dest_scope);
    
    scope_identifier.id_class=cpp_idt::CLASS;

    typecheck_enum_body(*new_symbol);
  }
  else
  {
    err_location(type);
    str << "use of enum `" << base_name
        << "' without previous declaration";
    throw 0;
  }

  // create enum tag expression, and add the qualifiers
  type=c_enum_tag_typet(symbol_name);
  qualifiers.write(type);
}
void cpp_typecheckt::typecheck_type(typet &type)
{
  assert(!type.id().empty());
  assert(type.is_not_nil());

  try
  {
    cpp_convert_plain_type(type);
  }

  catch(const char *err)
  {
    error().source_location=type.source_location();
    error() << err << eom;
    throw 0;
  }

  catch(const std::string &err)
  {
    error().source_location=type.source_location();
    error() << err << eom;
    throw 0;
  }

  if(type.id()==ID_cpp_name)
  {
    c_qualifierst qualifiers(type);

    cpp_namet cpp_name;
    cpp_name.swap(type);

    exprt symbol_expr=resolve(
      cpp_name,
      cpp_typecheck_resolvet::wantt::TYPE,
      cpp_typecheck_fargst());

    if(symbol_expr.id()!=ID_type)
    {
      error().source_location=type.source_location();
      error() << "error: expected type" << eom;
      throw 0;
    }

    type=symbol_expr.type();
    assert(type.is_not_nil());

    if(type.get_bool(ID_C_constant))
      qualifiers.is_constant = true;

    qualifiers.write(type);
  }
  else if(type.id()==ID_struct ||
          type.id()==ID_union)
  {
    typecheck_compound_type(to_struct_union_type(type));
  }
  else if(type.id()==ID_pointer)
  {
    // the pointer might have a qualifier, but do subtype first
    typecheck_type(type.subtype());

    // Check if it is a pointer-to-member
    if(type.find("to-member").is_not_nil())
    {
      // these can point either to data members or member functions
      // of a class

      typet &class_object=static_cast<typet &>(type.add("to-member"));

      if(class_object.id()==ID_cpp_name)
      {
        assert(class_object.get_sub().back().id()=="::");
        class_object.get_sub().pop_back();
      }

      typecheck_type(class_object);

      // there may be parameters if this is a pointer to member function
      if(type.subtype().id()==ID_code)
      {
        irept::subt &parameters=type.subtype().add(ID_parameters).get_sub();

        if(parameters.empty() ||
           parameters.front().get(ID_C_base_name)!=ID_this)
        {
          // Add 'this' to the parameters
          exprt a0(ID_parameter);
          a0.set(ID_C_base_name, ID_this);
          a0.type().id(ID_pointer);
          a0.type().subtype() = class_object;
          parameters.insert(parameters.begin(), a0);
        }
      }
    }
  }
  else if(type.id()==ID_array)
  {
    exprt &size_expr=to_array_type(type).size();

    if(size_expr.is_not_nil())
    {
      typecheck_expr(size_expr);
      simplify(size_expr, *this);
    }

    typecheck_type(type.subtype());

    if(type.subtype().get_bool(ID_C_constant))
      type.set(ID_C_constant, true);

    if(type.subtype().get_bool(ID_C_volatile))
      type.set(ID_C_volatile, true);
  }
  else if(type.id()==ID_code)
  {
    code_typet &code_type=to_code_type(type);
    typecheck_type(code_type.return_type());

    code_typet::parameterst &parameters=code_type.parameters();

    for(auto &param : parameters)
    {
      typecheck_type(param.type());

      // see if there is a default value
      if(param.has_default_value())
      {
        typecheck_expr(param.default_value());
        implicit_typecast(param.default_value(), param.type());
      }
    }
  }
  else if(type.id()==ID_template)
  {
    typecheck_type(type.subtype());
  }
  else if(type.id()==ID_c_enum)
  {
    typecheck_enum_type(type);
  }
  else if(type.id()==ID_c_enum_tag)
  {
  }
  else if(type.id()==ID_c_bit_field)
  {
    typecheck_c_bit_field_type(to_c_bit_field_type(type));
  }
  else if(type.id()==ID_unsignedbv ||
          type.id()==ID_signedbv ||
          type.id()==ID_bool ||
          type.id()==ID_floatbv ||
          type.id()==ID_fixedbv ||
          type.id()==ID_empty)
  {
  }
  else if(type.id()==ID_symbol)
  {
  }
  else if(type.id()==ID_constructor ||
          type.id()==ID_destructor)
  {
  }
  else if(type.id()=="cpp-cast-operator")
  {
  }
  else if(type.id()=="cpp-template-type")
  {
  }
  else if(type.id()==ID_typeof)
  {
    exprt e=static_cast<const exprt &>(type.find(ID_expr_arg));

    if(e.is_nil())
    {
      typet tmp_type=
        static_cast<const typet &>(type.find(ID_type_arg));

      if(tmp_type.id()==ID_cpp_name)
      {
        // this may be ambiguous -- it can be either a type or
        // an expression

        cpp_typecheck_fargst fargs;

        exprt symbol_expr=resolve(
          to_cpp_name(static_cast<const irept &>(tmp_type)),
          cpp_typecheck_resolvet::wantt::BOTH,
          fargs);

        type=symbol_expr.type();
      }
      else
      {
        typecheck_type(tmp_type);
        type=tmp_type;
      }
    }
    else
    {
      typecheck_expr(e);
      type=e.type();
    }
  }
  else if(type.id()==ID_decltype)
  {
    exprt e=static_cast<const exprt &>(type.find(ID_expr_arg));
    typecheck_expr(e);
    type=e.type();
  }
  else if(type.id()==ID_unassigned)
  {
    // ignore, for template parameter guessing
  }
  else if(type.id()==ID_template_class_instance)
  {
    // ok (internally generated)
  }
  else if(type.id()==ID_block_pointer)
  {
    // This is an Apple extension for lambda-like constructs.
    // http://thirdcog.eu/pwcblocks/
  }
  else if(type.id()==ID_nullptr)
  {
  }
  else
  {
    error().source_location=type.source_location();
    error() << "unexpected cpp type: " << type.pretty() << eom;
    throw 0;
  }

  assert(type.is_not_nil());
}
void ansi_c_convert_typet::read(const typet &type)
{
  clear();
  source_location=type.source_location();
  read_rec(type);
}
Beispiel #9
0
void c_typecheck_baset::typecheck_type(typet &type)
{
  // we first convert, and then check
  {
    ansi_c_convert_typet ansi_c_convert_type(get_message_handler());

    ansi_c_convert_type.read(type);
    ansi_c_convert_type.write(type);
  }

  if(type.id()==ID_already_typechecked)
  {
    // need to preserve any qualifiers
    c_qualifierst c_qualifiers(type);
    c_qualifiers+=c_qualifierst(type.subtype());
    bool packed=type.get_bool(ID_C_packed);
    exprt alignment=static_cast<const exprt &>(type.find(ID_C_alignment));
    irept _typedef=type.find(ID_C_typedef);

    type=type.subtype();

    c_qualifiers.write(type);
    if(packed)
      type.set(ID_C_packed, true);
    if(alignment.is_not_nil())
      type.add(ID_C_alignment, alignment);
    if(_typedef.is_not_nil())
      type.add(ID_C_typedef, _typedef);

    return; // done
  }

  // do we have alignment?
  if(type.find(ID_C_alignment).is_not_nil())
  {
    exprt &alignment=static_cast<exprt &>(type.add(ID_C_alignment));
    if(alignment.id()!=ID_default)
    {
      typecheck_expr(alignment);
      make_constant(alignment);
    }
  }

  if(type.id()==ID_code)
    typecheck_code_type(to_code_type(type));
  else if(type.id()==ID_array)
    typecheck_array_type(to_array_type(type));
  else if(type.id()==ID_pointer)
    typecheck_type(type.subtype());
  else if(type.id()==ID_struct ||
          type.id()==ID_union)
    typecheck_compound_type(to_struct_union_type(type));
  else if(type.id()==ID_c_enum)
    typecheck_c_enum_type(type);
  else if(type.id()==ID_c_enum_tag)
    typecheck_c_enum_tag_type(to_c_enum_tag_type(type));
  else if(type.id()==ID_c_bit_field)
    typecheck_c_bit_field_type(to_c_bit_field_type(type));
  else if(type.id()==ID_typeof)
    typecheck_typeof_type(type);
  else if(type.id()==ID_symbol)
    typecheck_symbol_type(type);
  else if(type.id()==ID_vector)
    typecheck_vector_type(to_vector_type(type));
  else if(type.id()==ID_custom_unsignedbv ||
          type.id()==ID_custom_signedbv ||
          type.id()==ID_custom_floatbv ||
          type.id()==ID_custom_fixedbv)
    typecheck_custom_type(type);
  else if(type.id()==ID_gcc_attribute_mode)
  {
    // get that mode
    irep_idt mode=type.get(ID_size);

    // A list of all modes ist at
    // http://www.delorie.com/gnu/docs/gcc/gccint_53.html
    typecheck_type(type.subtype());

    typet underlying_type=type.subtype();

    // gcc allows this, but clang doesn't; it's a compiler hint only,
    // but we'll try to interpret it the GCC way
    if(underlying_type.id()==ID_c_enum_tag)
    {
      underlying_type=
        follow_tag(to_c_enum_tag_type(underlying_type)).subtype();

      assert(underlying_type.id()==ID_signedbv ||
             underlying_type.id()==ID_unsignedbv);
    }

    if(underlying_type.id()==ID_signedbv ||
       underlying_type.id()==ID_unsignedbv)
    {
      bool is_signed=underlying_type.id()==ID_signedbv;

      typet result;

      if(mode=="__QI__") // 8 bits
        result=is_signed?signed_char_type():unsigned_char_type();
      else if(mode=="__byte__") // 8 bits
        result=is_signed?signed_char_type():unsigned_char_type();
      else if(mode=="__HI__") // 16 bits
        result=is_signed?signed_short_int_type():unsigned_short_int_type();
      else if(mode=="__SI__") // 32 bits
        result=is_signed?signed_int_type():unsigned_int_type();
      else if(mode=="__word__") // long int, we think
        result=is_signed?signed_long_int_type():unsigned_long_int_type();
      else if(mode=="__pointer__") // we think this is size_t/ssize_t
        result=is_signed?signed_size_type():size_type();
      else if(mode=="__DI__") // 64 bits
      {
        if(config.ansi_c.long_int_width==64)
          result=is_signed?signed_long_int_type():unsigned_long_int_type();
        else
        {
          assert(config.ansi_c.long_long_int_width==64);
          result=
            is_signed?signed_long_long_int_type():unsigned_long_long_int_type();
        }
      }
      else if(mode=="__TI__") // 128 bits
        result=is_signed?gcc_signed_int128_type():gcc_unsigned_int128_type();
      else if(mode=="__V2SI__") // vector of 2 ints, deprecated by gcc
        result=
          vector_typet(
            is_signed?signed_int_type():unsigned_int_type(),
            from_integer(2, size_type()));
      else if(mode=="__V4SI__") // vector of 4 ints, deprecated by gcc
        result=
          vector_typet(
            is_signed?signed_int_type():unsigned_int_type(),
            from_integer(4, size_type()));
      else // give up, just use subtype
        result=type.subtype();

      // save the location
      result.add_source_location()=type.source_location();

      if(type.subtype().id()==ID_c_enum_tag)
      {
        const irep_idt &tag_name=
          to_c_enum_tag_type(type.subtype()).get_identifier();

        symbol_tablet::symbolst::iterator entry=
          symbol_table.symbols.find(tag_name);
        assert(entry!=symbol_table.symbols.end());

        entry->second.type.subtype()=result;
      }

      type=result;
    }
    else if(underlying_type.id()==ID_floatbv)
    {
      typet result;

      if(mode=="__SF__") // 32 bits
        result=float_type();
      else if(mode=="__DF__") // 64 bits
        result=double_type();
      else if(mode=="__TF__") // 128 bits
        result=gcc_float128_type();
      else if(mode=="__V2SF__") // vector of 2 floats, deprecated by gcc
        result=vector_typet(float_type(), from_integer(2, size_type()));
      else if(mode=="__V2DF__") // vector of 2 doubles, deprecated by gcc
        result=vector_typet(double_type(), from_integer(2, size_type()));
      else if(mode=="__V4SF__") // vector of 4 floats, deprecated by gcc
        result=vector_typet(float_type(), from_integer(4, size_type()));
      else if(mode=="__V4DF__") // vector of 4 doubles, deprecated by gcc
        result=vector_typet(double_type(), from_integer(4, size_type()));
      else // give up, just use subtype
        result=type.subtype();

      // save the location
      result.add_source_location()=type.source_location();

      type=result;
    }
    else if(underlying_type.id()==ID_complex)
    {
      // gcc allows this, but clang doesn't -- see enums above
      typet result;

      if(mode=="__SC__") // 32 bits
        result=float_type();
      else if(mode=="__DC__") // 64 bits
        result=double_type();
      else if(mode=="__TC__") // 128 bits
        result=gcc_float128_type();
      else // give up, just use subtype
        result=type.subtype();

      // save the location
      result.add_source_location()=type.source_location();

      type=complex_typet(result);
    }
    else
    {
      error().source_location=type.source_location();
      error() << "attribute mode `" << mode
              << "' applied to inappropriate type `"
              << to_string(type) << "'" << eom;
      throw 0;
    }
  }

  // do a mild bit of rule checking

  if(type.get_bool(ID_C_restricted) &&
     type.id()!=ID_pointer &&
     type.id()!=ID_array)
  {
    error().source_location=type.source_location();
    error() << "only a pointer can be 'restrict'" << eom;
    throw 0;
  }
}
Beispiel #10
0
void c_typecheck_baset::typecheck_c_enum_type(typet &type)
{
  // These come with the declarations
  // of the enum constants as operands.

  exprt &as_expr=static_cast<exprt &>(static_cast<irept &>(type));
  source_locationt source_location=type.source_location();

  // We allow empty enums in the grammar to get better
  // error messages.
  if(as_expr.operands().empty())
  {
    error().source_location=source_location;
    error() << "empty enum" << eom;
    throw 0;
  }

  // enums start at zero;
  // we also track min and max to find a nice base type
  mp_integer value=0, min_value=0, max_value=0;

  std::list<c_enum_typet::c_enum_membert> enum_members;

  // We need to determine a width, and a signedness
  // to obtain an 'underlying type'.
  // We just do int, but gcc might pick smaller widths
  // if the type is marked as 'packed'.
  // gcc/clang may also pick a larger width. Visual Studio doesn't.

  for(auto &op : as_expr.operands())
  {
    ansi_c_declarationt &declaration=to_ansi_c_declaration(op);
    exprt &v=declaration.declarator().value();

    if(v.is_not_nil()) // value given?
    {
      exprt tmp_v=v;
      typecheck_expr(tmp_v);
      add_rounding_mode(tmp_v);
      simplify(tmp_v, *this);
      if(tmp_v.is_true())
        value=1;
      else if(tmp_v.is_false())
        value=0;
      else if(!to_integer(tmp_v, value))
      {
      }
      else
      {
        error().source_location=v.source_location();
        error() << "enum is not a constant";
        throw 0;
      }
    }

    if(value<min_value)
      min_value=value;
    if(value>max_value)
      max_value=value;

    typet constant_type=
      enum_constant_type(min_value, max_value);

    v=from_integer(value, constant_type);

    declaration.type()=constant_type;
    typecheck_declaration(declaration);

    irep_idt base_name=
      declaration.declarator().get_base_name();

    irep_idt identifier=
      declaration.declarator().get_name();

    // store
    c_enum_typet::c_enum_membert member;
    member.set_identifier(identifier);
    member.set_base_name(base_name);
    member.set_value(integer2string(value));
    enum_members.push_back(member);

    // produce value for next constant
    ++value;
  }

  // Remove these now; we add them to the
  // c_enum symbol later.
  as_expr.operands().clear();

  bool is_packed=type.get_bool(ID_C_packed);

  // tag?
  if(type.find(ID_tag).is_nil())
  {
    // None, it's anonymous. We generate a tag.
    std::string anon_identifier="#anon_enum";

    for(const auto &member : enum_members)
    {
      anon_identifier+='$';
      anon_identifier+=id2string(member.get_base_name());
      anon_identifier+='=';
      anon_identifier+=id2string(member.get_value());
    }

    if(is_packed)
      anon_identifier+="#packed";

    type.add(ID_tag).set(ID_identifier, anon_identifier);
  }

  irept &tag=type.add(ID_tag);
  irep_idt base_name=tag.get(ID_C_base_name);
  irep_idt identifier=tag.get(ID_identifier);

  // Put into symbol table
  symbolt enum_tag_symbol;

  enum_tag_symbol.is_type=true;
  enum_tag_symbol.type=type;
  enum_tag_symbol.location=source_location;
  enum_tag_symbol.is_file_local=true;
  enum_tag_symbol.base_name=base_name;
  enum_tag_symbol.name=identifier;

  // throw in the enum members as 'body'
  irept::subt &body=enum_tag_symbol.type.add(ID_body).get_sub();

  for(const auto &member : enum_members)
    body.push_back(member);

  // We use a subtype to store the underlying type.
  typet underlying_type=
    enum_underlying_type(min_value, max_value, is_packed);

  enum_tag_symbol.type.subtype()=underlying_type;

  // is it in the symbol table already?
  symbol_tablet::symbolst::iterator s_it=
    symbol_table.symbols.find(identifier);

  if(s_it!=symbol_table.symbols.end())
  {
    // Yes.
    symbolt &symbol=s_it->second;

    if(symbol.type.id()==ID_incomplete_c_enum)
    {
      // Ok, overwrite the type in the symbol table.
      // This gives us the members and the subtype.
      symbol.type=enum_tag_symbol.type;
    }
    else if(symbol.type.id()==ID_c_enum)
    {
      // We might already have the same anonymous enum, and this is
      // simply ok. Note that the C standard treats these as
      // different types.
      if(!base_name.empty())
      {
        error().source_location=type.source_location();
        error() << "redeclaration of enum tag" << eom;
        throw 0;
      }
    }
    else
    {
      error().source_location=source_location;
      error() << "use of tag that does not match previous declaration" << eom;
      throw 0;
    }
  }
  else
  {
    symbolt *new_symbol;
    move_symbol(enum_tag_symbol, new_symbol);
  }

  // We produce a c_enum_tag as the resulting type.
  type.id(ID_c_enum_tag);
  type.remove(ID_tag);
  type.set(ID_identifier, identifier);
}