Beispiel #1
0
void clear(vec_GF2E& x)
{
   long n = x.length();
   long i;
   for (i = 0; i < n; i++)
      clear(x[i]);
}
Beispiel #2
0
///////////////////////////////////////////////////////////////////////////
// PURPOSE:
// Computes the syndrome of a sparse vector
// of the binary BCH code of design distance d.
// The vector is viewed as a vector of 0's and 1's
// being indexed by all nonzero elements of GF2E; because
// it is sparse, it is given as the set a of 
// elements of GF2E where the coordinates of the vector are equal to 1.
// If used to compute the secure sketch, the sketch will
// tolerate symmetric difference of up to (d-1)/2
//
//
// ALGORITHM:
// The syndrome is computed as a vector of
// f(j) = (a_0)^j + (a_2)^j + ... + (a_s)^j
// for odd i from 1 do d-1, where a_i is the i-th component
// of the input vector A.
// (only the odd j are needed, because
// f(2j) is simply the square of f(j)).
// Because in C++ we number from 0, f(j) will reside
// in location (j-1)/2.
//
//
// ASSUMPTIONS:
// Let m=GF2E::degree() (i.e., the field is GF(2^m)).
// Assumes d is odd,
// greater than 1, and less than 2^m (else BCH codes don't make sense).
// Assumes the input set has no zeros (they will be ignored)
//
// 
// RUNNING TIME:
// Takes time O(len*d) operations in GF(2^m),
// where len is the length of the input vector
//
void BCHSyndromeCompute(vec_GF2E & ss, const vec_GF2E & a, long d)
{
	GF2E a_i_to_the_j, multiplier;
	long i, j;

	ss.SetLength((d-1)/2); // half the syndrome length, 
	                       // because even power not needed

	// We will compute the fs in parallel: first add
	// all the powers of a_1, then of a_2, ..., then of a_s
	for (i = 0; i < a.length(); ++i)
	{

		a_i_to_the_j = a[i];
                sqr(multiplier, a[i]); // multiplier = a[i]*a[i];

		// special-case 0, because it doesn't need to be multiplied
		// by the multiplier
		ss[0] += a_i_to_the_j; 

		for (long j = 3; j < d; j+=2)
		{
			a_i_to_the_j *= multiplier;
			ss[(j-1)/2] += a_i_to_the_j;

		}
	}
}
static
void RecFindRoots(vec_GF2E& x, const GF2EX& f)
{
   if (deg(f) == 0) return;

   if (deg(f) == 1) {
      long k = x.length();
      x.SetLength(k+1);
      x[k] = ConstTerm(f);
      return;
   }
      
   GF2EX h;

   GF2E r;

   
   {
      GF2EXModulus F;
      build(F, f);

      do {
         random(r);
         clear(h);
         SetCoeff(h, 1, r);
         TraceMap(h, h, F);
         GCD(h, h, f);
      } while (deg(h) <= 0 || deg(h) == deg(f));
   }

   RecFindRoots(x, h);
   div(h, f, h); 
   RecFindRoots(x, h);
}
void mul(vec_GF2E& x, const vec_GF2E& a, const GF2E& b_in)
{
   GF2E b = b_in;
   long n = a.length();
   x.SetLength(n);
   long i;
   for (i = 0; i < n; i++)
      mul(x[i], a[i], b);
}
void InnerProduct(GF2E& x, const vec_GF2E& a, const vec_GF2E& b,
                  long offset)
{
   if (offset < 0) LogicError("InnerProduct: negative offset");
   if (NTL_OVERFLOW(offset, 1, 0)) ResourceError("InnerProduct: offset too big");

   long n = min(a.length(), b.length()+offset);
   long i;
   GF2X accum, t;

   clear(accum);
   for (i = offset; i < n; i++) {
      mul(t, rep(a[i]), rep(b[i-offset]));
      add(accum, accum, t);
   }

   conv(x, accum);
}
static
void FindFactors(vec_GF2EX& factors, const GF2EX& f, const GF2EX& g,
                 const vec_GF2E& roots)
{
   long r = roots.length();

   factors.SetMaxLength(r);
   factors.SetLength(0);

   RecFindFactors(factors, f, g, roots, 0, r-1);
}
long IsZero(const vec_GF2E& a)
{
   long n = a.length();
   long i;

   for (i = 0; i < n; i++)
      if (!IsZero(a[i]))
         return 0;

   return 1;
}
static
void IterFindFactors(vec_GF2EX& factors, const GF2EX& f,
                     const GF2EX& g, const vec_GF2E& roots)
{
   long r = roots.length();
   long i;
   GF2EX h;

   factors.SetLength(r);

   for (i = 0; i < r; i++) {
      add(h, g, roots[i]);
      GCD(factors[i], f, h);
   }
}
Beispiel #9
0
void applyLinPoly(GF2E& beta, const vec_GF2E& C, const GF2E& alpha, long p)
{
   long d = GF2E::degree();
   assert(d == C.length());

   GF2E gamma, res;

   gamma = to_GF2E(GF2X(1, 1));
   res = C[0]*alpha;
   for (long i = 1; i < d; i++) {
      gamma = power(gamma, p);
      res += C[i]*to_GF2E(CompMod(rep(alpha), rep(gamma), GF2E::modulus()));
   }

   beta = res;
}
void VectorCopy(vec_GF2E& x, const vec_GF2E& a, long n)
{
   if (n < 0) LogicError("VectorCopy: negative length");
   if (NTL_OVERFLOW(n, 1, 0)) ResourceError("overflow in VectorCopy");

   long m = min(n, a.length());

   x.SetLength(n);

   long i;

   for (i = 0; i < m; i++)
      x[i] = a[i];

   for (i = m; i < n; i++)
      clear(x[i]);
}
static
void mul_aux(vec_GF2E& x, const mat_GF2E& A, const vec_GF2E& b)  
{  
   long n = A.NumRows();  
   long l = A.NumCols();  
  
   if (l != b.length())  
      LogicError("matrix mul: dimension mismatch");  
  
   x.SetLength(n);  
  
   long i, k;  
   GF2X acc, tmp;  
  
   for (i = 1; i <= n; i++) {  
      clear(acc);  
      for (k = 1; k <= l; k++) {  
         mul(tmp, rep(A(i,k)), rep(b(k)));  
         add(acc, acc, tmp);  
      }  
      conv(x(i), acc);  
   }  
}  
static
void mul_aux(vec_GF2E& x, const vec_GF2E& a, const mat_GF2E& B)  
{  
   long n = B.NumRows();  
   long l = B.NumCols();  
  
   if (n != a.length())  
      LogicError("matrix mul: dimension mismatch");  
  
   x.SetLength(l);  
  
   long i, k;  
   GF2X acc, tmp;  
  
   for (i = 1; i <= l; i++) {  
      clear(acc);  
      for (k = 1; k <= n; k++) {  
         mul(tmp, rep(a(k)), rep(B(k,i)));
         add(acc, acc, tmp);  
      }  
      conv(x(i), acc);  
   }  
}  
void applyLookupTable(vec_GF2E& ltable, vec_GF2E& tgt){
	int i, n=tgt.length();
	for(i=0; i<n; i++){
		tgt[i] = ltable[getLong(tgt[i])];
	}
}
static
void solve_impl(GF2E& d, vec_GF2E& X, const mat_GF2E& A, const vec_GF2E& b, bool trans)

{
   long n = A.NumRows();
   if (A.NumCols() != n)
      LogicError("solve: nonsquare matrix");

   if (b.length() != n)
      LogicError("solve: dimension mismatch");

   if (n == 0) {
      set(d);
      X.SetLength(0);
      return;
   }

   long i, j, k, pos;
   GF2X t1, t2;
   GF2X *x, *y;

   const GF2XModulus& p = GF2E::modulus();

   vec_GF2XVec M;

   M.SetLength(n);

   for (i = 0; i < n; i++) {
      M[i].SetSize(n+1, 2*GF2E::WordLength());

      if (trans) 
         for (j = 0; j < n; j++) M[i][j] = rep(A[j][i]);
      else
         for (j = 0; j < n; j++) M[i][j] = rep(A[i][j]);

      M[i][n] = rep(b[i]);
   }

   GF2X det;
   set(det);

   for (k = 0; k < n; k++) {
      pos = -1;
      for (i = k; i < n; i++) {
         rem(t1, M[i][k], p);
         M[i][k] = t1;
         if (pos == -1 && !IsZero(t1)) {
            pos = i;
         }
      }

      if (pos != -1) {
         if (k != pos) {
            swap(M[pos], M[k]);
         }

         MulMod(det, det, M[k][k], p);

         // make M[k, k] == -1 mod p, and make row k reduced

         InvMod(t1, M[k][k], p);
         for (j = k+1; j <= n; j++) {
            rem(t2, M[k][j], p);
            MulMod(M[k][j], t2, t1, p);
         }

         for (i = k+1; i < n; i++) {
            // M[i] = M[i] + M[k]*M[i,k]

            t1 = M[i][k];   // this is already reduced

            x = M[i].elts() + (k+1);
            y = M[k].elts() + (k+1);

            for (j = k+1; j <= n; j++, x++, y++) {
               // *x = *x + (*y)*t1

               mul(t2, *y, t1);
               add(*x, *x, t2);
            }
         }
      }
      else {
         clear(d);
         return;
      }
   }

   X.SetLength(n);
   for (i = n-1; i >= 0; i--) {
      clear(t1);
      for (j = i+1; j < n; j++) {
         mul(t2, rep(X[j]), M[i][j]);
         add(t1, t1, t2);
      }
      add(t1, t1, M[i][n]);
      conv(X[i], t1);
   }

   conv(d, det);
}
Beispiel #15
0
///////////////////////////////////////////////////////////////////////////
// PURPOSE:
// Given syndrome ssWithoutEvens of BCH code with design distance d,
// finds sparse vector (with no more than
// (d-1)/2 ones) with that syndrome
// (note that syndrome as well sparse vector
// representation are defined at BCHSyndromeCompute above).
// 'answer' returns positions of ones in the resulting vector.
// These positions are elements of GF2E (i.e., we view the vector
// as a vector whose positions are indexed by elements of GF2E).
// Returns false if no such vector exists, true otherwise
// The input syndrome is assumed to not have even powers, i.e., 
// has (d-1)/2 elements, such as the syndrome computed by BCHSyndromeCompute.
// 
// ASSUMPTIONS:
// Let m=GF2E::degree() (i.e., the field is GF(2^m)).
// This algorithm assumes that d is odd, greater than 1, and less than 2^m.
// (else BCH codes don't make sense).
// Assumes input is of length (d-1)/2. 
//
// ALGORITHM USED:
// Implements BCH decoding based on Euclidean algorithm;
// For the explanation of the algorithm, see
// Syndrome Encoding and Decoding of BCH Codes in Sublinear Time
// (Excerpted from Fuzzy Extractors:
//    How to Generate Strong Keys from Biometrics and Other Noisy Data)
// by Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin and Adam Smith
// or Theorem 18.7 of Victor Shoup's "A Computational Introduction to 
// Number Theory and Algebra" (first edition, 2005), or
// pp. 170-173 of "Introduction to Coding Theory" by Jurgen Bierbrauer.
//
//
// RUNNING TIME:
// If the output has e elements (i.e., the length of the output vector
// is e; note that e <= (d-1)/2), then
// the running time is O(d^2 + e^2 + e^{\log_2 3} m) operations in GF(2^m),
// each of which takes time O(m^{\log_2 3}) in NTL.  Note that 
// \log_2 3 is approximately 1.585.
//
bool BCHSyndromeDecode(vec_GF2E &answer, const vec_GF2E & ssWithoutEvens, long d)
{
        long i;	
	vec_GF2E ss;


	// This takes O(d) operation in GF(2^m)
	InterpolateEvens(ss, ssWithoutEvens);

	GF2EX r1, r2, r3, v1, v2, v3,  q, temp;
	GF2EX *Rold, *Rcur, *Rnew, *Vold, *Vcur, *Vnew, *tempPointer;

        // Use pointers to avoid moving polynomials around
        // An assignment of polynomials requires copying the coefficient vector;
        // we will not assign polynomials, but will swap pointers instead
	Rold = &r1;
	Rcur = &r2;
	Rnew = &r3;

	Vold = &v1;
	Vcur = &v2;
	Vnew = &v3;


	SetCoeff(*Rold, d-1, 1); // Rold holds z^{d-1}

	// Rcur=S(z)/z where S is the syndrome poly, Rcur = \sum S_j z^{j-1}
        // Note that because we index arrays from 0, S_j is stored in ss[j-1]
	for (i=0; i<d-1; i++) 
	  SetCoeff (*Rcur, i, ss[i]);

	// Vold is already 0 -- no need to initialize
	// Initialize Vcur to 1
	SetCoeff(*Vcur, 0, 1); // Vcur = 1

	// Now run Euclid, but stop as soon as degree of Rcur drops below
	// (d-1)/2
	// This will take O(d^2) operations in GF(2^m)

	long t = (d-1)/2;



	while (deg(*Rcur) >=  t) {
	  // Rold = Rcur*q + Rnew
	  DivRem(q, *Rnew, *Rold, *Rcur);

	  // Vnew = Vold - qVcur)
	  mul(temp, q, *Vcur);
	  sub (*Vnew, *Vold, temp);


          // swap everything
	  tempPointer = Rold;	
	  Rold = Rcur;
	  Rcur = Rnew;
	  Rnew = tempPointer;

	  tempPointer = Vold;
	  Vold = Vcur;
	  Vcur = Vnew;
	  Vnew = tempPointer;
	}



	// At the end of the loop, sigma(z) is Vcur
	// (up to a constant factor, which doesn't matter,
	// since we care about roots of sigma).
	// The roots of sigma(z) are inverses of the points we
	// are interested in.  


	// We will check that 0 is not
        // a root of Vcur (else its inverse won't exist, and hence
	// the right polynomial doesn't exist).
	if (IsZero(ConstTerm(*Vcur)))
	  return false;

	// Need sigma to be monic for FindRoots
	MakeMonic(*Vcur);

        // check if sigma(z) has distinct roots if not, return false
	// this will take O(e^{\log_2 3} m) operations in GF(2^m),
	// where e is the degree of sigma(z)
	if (CheckIfDistinctRoots(*Vcur) == false)
	  return false;

        // find roots of sigma(z)
	// this will take O(e^2 + e^{\log_2 3} m) operations in GF(2^m),
	// where e is the degree of sigma(z)
	answer = FindRoots(*Vcur);

        // take inverses of roots of sigma(z)
	for (i = 0; i < answer.length(); ++i)
		answer[i] = inv(answer[i]);


	// It is now necessary to verify if the resulting vector
	// has the correct syndrome: it is possible that it does
	// not even though the polynomial sigma(z) factors
	// completely
	// This takes O(de) operations in GF(2^m)
	vec_GF2E test;
	BCHSyndromeCompute (test, answer, d);

	return (test==ssWithoutEvens);
}