void CheckDerivativeCorrect(const arma::colvec input, const arma::colvec target)
{
  // Test the calculation of the derivatives using a single value as input.
  for (size_t i = 0; i < target.n_elem; i++)
  {
    BOOST_REQUIRE_CLOSE(ActivationFunction::deriv(input.at(i)),
        target.at(i), 1e-3);
  }

  // Test the calculation of the derivatives using the entire vector as input.
  arma::colvec derivatives;
  ActivationFunction::deriv(input, derivatives);
  for (size_t i = 0; i < derivatives.n_elem; i++)
  {
    BOOST_REQUIRE_CLOSE(derivatives.at(i), target.at(i), 1e-3);
  }
}
void CheckActivationCorrect(const arma::colvec input, const arma::colvec target)
{
  // Test the activation function using a single value as input.
  for (size_t i = 0; i < target.n_elem; i++)
  {
    BOOST_REQUIRE_CLOSE(ActivationFunction::fn(input.at(i)),
        target.at(i), 1e-3);
  }

  // Test the activation function using the entire vector as input.
  arma::colvec activations;
  ActivationFunction::fn(input, activations);
  for (size_t i = 0; i < activations.n_elem; i++)
  {
    BOOST_REQUIRE_CLOSE(activations.at(i), target.at(i), 1e-3);
  }
}
void CheckInverseCorrect(const arma::colvec input)
{
    // Test the calculation of the inverse using a single value as input.
  for (size_t i = 0; i < input.n_elem; i++)
  {
    BOOST_REQUIRE_CLOSE(ActivationFunction::inv(ActivationFunction::fn(
        input.at(i))), input.at(i), 1e-3);
  }

  // Test the calculation of the inverse using the entire vector as input.
  arma::colvec activations;
  ActivationFunction::fn(input, activations);
  ActivationFunction::inv(activations, activations);

  for (size_t i = 0; i < input.n_elem; i++)
  {
    BOOST_REQUIRE_CLOSE(activations.at(i), input.at(i), 1e-3);
  }
}
/*
 * Implementation of the PReLU activation function test. The function
 * is implemented as PReLU layer in the file perametric_relu.hpp
 *
 * @param input Input data used for evaluating the PReLU activation
 *   function.
 * @param target Target data used to evaluate the PReLU activation.
 */
void CheckPReLUActivationCorrect(const arma::colvec input,
                                          const arma::colvec target)
{
  PReLU<> prelu;

  // Test the activation function using the entire vector as input.
  arma::colvec activations;
  prelu.Forward(std::move(input), std::move(activations));
  for (size_t i = 0; i < activations.n_elem; i++)
  {
    BOOST_REQUIRE_CLOSE(activations.at(i), target.at(i), 1e-3);
  }
}
/*
 * Implementation of the PReLU activation function derivative test.
 * The function is implemented as PReLU layer in the file
 * perametric_relu.hpp
 *
 * @param input Input data used for evaluating the PReLU activation
 *   function.
 * @param target Target data used to evaluate the PReLU activation.
 */
void CheckPReLUDerivativeCorrect(const arma::colvec input,
                                          const arma::colvec target)
{
  PReLU<> prelu;

  // Test the calculation of the derivatives using the entire vector as input.
  arma::colvec derivatives;

  // This error vector will be set to 1 to get the derivatives.
  arma::colvec error = arma::ones<arma::colvec>(input.n_elem);
  prelu.Backward(std::move(input), std::move(error), std::move(derivatives));
  for (size_t i = 0; i < derivatives.n_elem; i++)
  {
    BOOST_REQUIRE_CLOSE(derivatives.at(i), target.at(i), 1e-3);
  }
}
Beispiel #6
0
//' Compute ego/alter edge coordinates considering alter's size and aspect ratio
//'
//' Given a graph, vertices' positions and sizes, calculates the absolute positions
//' of the endpoints of the edges considering the plot's aspect ratio.
//'
//' @param graph A square matrix of size \eqn{n}. Adjacency matrix.
//' @param toa Integer vector of size \eqn{n}. Times of adoption.
//' @param x Numeric vector of size \eqn{n}. x-coordinta of vertices.
//' @param y Numeric vector of size \eqn{n}. y-coordinta of vertices.
//' @param vertex_cex Numeric vector of size \eqn{n}. Vertices' sizes in terms
//' of the x-axis (see \code{\link{symbols}}).
//' @param undirected Logical scalar. Whether the graph is undirected or not.
//' @param no_contemporary Logical scalar. Whether to return (compute) edges'
//' coordiantes for vertices with the same time of adoption (see details).
//' @param dev Numeric vector of size 2. Height and width of the device (see details).
//' @param ran Numeric vector of size 2. Range of the x and y axis (see details).
//' @param curved Logical vector.
//' @return A numeric matrix of size \eqn{m\times 5}{m * 5} with the following
//' columns:
//' \item{x0, y0}{Edge origin}
//' \item{x1, y1}{Edge target}
//' \item{alpha}{Relative angle between \code{(x0,y0)} and \code{(x1,y1)} in terms
//' of radians}
//' With \eqn{m} as the number of resulting edges.
//' @details
//'
//' In order to make the plot's visualization more appealing, this function provides
//' a straight forward way of computing the tips of the edges considering the
//' aspect ratio of the axes range. In particular, the following corrections are
//' made at the moment of calculating the egdes coords:
//'
//' \itemize{
//' \item{Instead of using the actual distance between ego and alter, a relative
//' one is calculated as follows
//' \deqn{d'=\left[(x_0-x_1)^2 + (y_0' - y_1')^2\right]^\frac{1}{2}}{d'=sqrt[(x0-x1)^2 + (y0'-y1')^2]}
//' where \eqn{%
//' y_i'=y_i\times\frac{\max x - \min x}{\max y - \min y} }{%
//' yi' = yi * [max(x) - min(x)]/[max(y) - min(y)]}
//' }
//' \item{Then, for the relative elevation angle, \code{alpha}, the relative distance \eqn{d'}
//' is used, \eqn{\alpha'=\arccos\left( (x_0 - x_1)/d' \right)}{\alpha' = acos[ (x0 - x1)/d' ]}}
//' \item{Finally, the edge's endpoint's (alter) coordinates are computed as follows: %
//' \deqn{%
//'   x_1' = x_1 + \cos(\alpha')\times v_1}{%
//'   x1' = x1 + cos(\alpha') * v1
//' }
//' \deqn{%
//'   y_1' = y_1 -+ \sin(\alpha')\times v_1 \times\frac{\max y - \min y}{\max x - \min x} }{%
//'   y1' = y1 -+ sin(\alpha')*[max(y) - min(y)]/[max(x) - min(x)]
//' }
//' Where \eqn{v_1}{v1} is alter's size in terms of the x-axis, and the sign of
//' the second term in \eqn{y_1'}{y1'} is negative iff \eqn{y_0 < y_1}{y0<y1}.
//' }
//' }
//'
//' The same process (with sign inverted) is applied to the edge starting piont.
//' The resulting values, \eqn{x_1',y_1'}{x1',y1'} can be used with the function
//' \code{\link{arrows}}. This is the workhorse function used in \code{\link{plot_threshold}}.
//'
//' The \code{dev} argument provides a reference to rescale the plot accordingly
//' to the device, and former, considering the size of the margins as well (this
//' can be easily fetched via \code{par("pin")}, plot area in inches).
//'
//' On the other hand, \code{ran} provides a reference for the adjustment
//' according to the range of the data, this is \code{range(x)[2] - range(x)[1]}
//' and \code{range(y)[2] - range(y)[1]} respectively.
//'
//' @keywords misc dplot
//' @examples
//' # --------------------------------------------------------------------------
//' data(medInnovationsDiffNet)
//' library(sna)
//'
//' # Computing coordinates
//' set.seed(79)
//' coords <- sna::gplot(as.matrix(medInnovationsDiffNet$graph[[1]]))
//'
//' # Getting edge coordinates
//' vcex <- rep(1.5, nnodes(medInnovationsDiffNet))
//' ecoords <- edges_coords(
//'   medInnovationsDiffNet$graph[[1]],
//'   diffnet.toa(medInnovationsDiffNet),
//'   x = coords[,1], y = coords[,2],
//'   vertex_cex = vcex,
//'   dev = par("pin")
//'   )
//'
//' ecoords <- as.data.frame(ecoords)
//'
//' # Plotting
//' symbols(coords[,1], coords[,2], circles=vcex,
//'   inches=FALSE, xaxs="i", yaxs="i")
//'
//' with(ecoords, arrows(x0,y0,x1,y1, length=.1))
//' @export
// [[Rcpp::export]]
NumericMatrix edges_coords(
    const arma::sp_mat & graph,
    const arma::colvec & toa,
    const arma::colvec & x,
    const arma::colvec & y,
    const arma::colvec & vertex_cex,
    bool undirected=true,
    bool no_contemporary=true,
    NumericVector dev = NumericVector::create(),
    NumericVector ran = NumericVector::create(),
    LogicalVector curved = LogicalVector::create()
) {

  // The output matrix has the following
  // - x0 and y0
  // - x1 and y1
  // - alpha
  std::vector< double > x0;
  std::vector< double > y0;
  std::vector< double > x1;
  std::vector< double > y1;
  std::vector< double > alpha;

  // Rescaling the vertex sizes
  arma::colvec vertex_size(vertex_cex);

  // If yexpand is too small, just throw an error
  if (ran.length() == 0) {
    ran = NumericVector::create(2);
    ran[0] = x.max() - x.min();
    ran[1] = y.max() - y.min();
  }

  // Expansion factor for y
  double yexpand = 1.0;
  if ( ran[1] > 1e-5 ) yexpand = ran[1]/ran[0];

  // Adjusting for device size
  if (dev.length() == 0)
    dev = NumericVector::create(2,1.0);

  // Curved?
  if (curved.length() == 0)
    curved = LogicalVector::create(graph.n_nonzero, true);

  yexpand = yexpand * (dev[0]/dev[1]);

  for(arma::sp_mat::const_iterator it = graph.begin(); it != graph.end(); ++it) {

    int i = it.row();
    int j = it.col();

    // Checking conditions
    if (undirected && (i < j)) continue;
    if (no_contemporary && (toa(i)==toa(j)) ) continue;

    // Computing angle
    double a = atan2((y(j) - y(i))/yexpand, x(j) - x(i));
    alpha.push_back(a);

    // Adding the xs and the ys
    x0.push_back(x.at(i) + cos(a)*vertex_size.at(i));
    x1.push_back(x.at(j) - cos(a)*vertex_size.at(j));

    // The formula needs an extra help to figure out the ys
    y0.push_back(y.at(i) + sin(a)*vertex_size.at(i)*yexpand);
    y1.push_back(y.at(j) - sin(a)*vertex_size.at(j)*yexpand);
  }

  // Building up the output
  int e = x0.size();
  NumericMatrix out(e,5);
  for(int i=0; i<e; ++i) {
    out(i,0) = x0[i];
    out(i,1) = y0[i];
    out(i,2) = x1[i];
    out(i,3) = y1[i];
    out(i,4) = alpha[i];
  }

  colnames(out) = CharacterVector::create("x0", "y0", "x1", "y1", "alpha");

  return out;

}