Beispiel #1
0
int _main_(int _argc, char** _argv)
{
	uint32_t width = 1280;
	uint32_t height = 720;
	uint32_t debug = BGFX_DEBUG_TEXT;
	uint32_t reset = BGFX_RESET_NONE;

	bgfx::init();
	bgfx::reset(width, height);

	// Enable debug text.
	bgfx::setDebug(debug);

	// Set view 0 clear state.
	bgfx::setViewClear(0
		, BGFX_CLEAR_COLOR_BIT|BGFX_CLEAR_DEPTH_BIT
		, 0x303030ff
		, 1.0f
		, 0
		);

	// Setup root path for binary shaders. Shader binaries are different 
	// for each renderer.
	switch (bgfx::getRendererType() )
	{
	default:
	case bgfx::RendererType::Direct3D9:
		s_shaderPath = "shaders/dx9/";
		break;

	case bgfx::RendererType::Direct3D11:
		s_shaderPath = "shaders/dx11/";
		break;

	case bgfx::RendererType::OpenGL:
		s_shaderPath = "shaders/glsl/";
		s_flipV = true;
		break;

	case bgfx::RendererType::OpenGLES2:
	case bgfx::RendererType::OpenGLES3:
		s_shaderPath = "shaders/gles/";
		s_flipV = true;
		break;
	}

	// Create vertex stream declaration.
	s_PosColorTexCoord0Decl.begin();
	s_PosColorTexCoord0Decl.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float);
	s_PosColorTexCoord0Decl.add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true);
	s_PosColorTexCoord0Decl.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float);
	s_PosColorTexCoord0Decl.end();  

	bgfx::UniformHandle u_time = bgfx::createUniform("u_time", bgfx::UniformType::Uniform1f);
	bgfx::UniformHandle u_mtx = bgfx::createUniform("u_mtx", bgfx::UniformType::Uniform4x4fv);
	bgfx::UniformHandle u_lightDir = bgfx::createUniform("u_lightDir", bgfx::UniformType::Uniform3fv);

	bgfx::ProgramHandle raymarching = loadProgram("vs_raymarching", "fs_raymarching");

	while (!processEvents(width, height, debug, reset) )
	{
		// Set view 0 default viewport.
		bgfx::setViewRect(0, 0, 0, width, height);

		// Set view 1 default viewport.
		bgfx::setViewRect(1, 0, 0, width, height);

		// This dummy draw call is here to make sure that view 0 is cleared
		// if no other draw calls are submitted to viewZ 0.
		bgfx::submit(0);

		int64_t now = bx::getHPCounter();
		static int64_t last = now;
		const int64_t frameTime = now - last;
		last = now;
		const double freq = double(bx::getHPFrequency() );
		const double toMs = 1000.0/freq;

		// Use debug font to print information about this example.
		bgfx::dbgTextClear();
		bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/03-raymarch");
		bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Updating shader uniforms.");
		bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs);

		float at[3] = { 0.0f, 0.0f, 0.0f };
		float eye[3] = { 0.0f, 0.0f, -15.0f };
		
		float view[16];
		float proj[16];
		mtxLookAt(view, eye, at);
		mtxProj(proj, 60.0f, 16.0f/9.0f, 0.1f, 100.0f);

		// Set view and projection matrix for view 1.
		bgfx::setViewTransform(0, view, proj);

		float ortho[16];
		mtxOrtho(ortho, 0.0f, 1280.0f, 720.0f, 0.0f, 0.0f, 100.0f);

		// Set view and projection matrix for view 0.
		bgfx::setViewTransform(1, NULL, ortho);

		float time = (float)(bx::getHPCounter()/double(bx::getHPFrequency() ) );

		float vp[16];
		mtxMul(vp, view, proj);

		float mtx[16];
		mtxRotateXY(mtx
			, time
			, time*0.37f
			); 

		float mtxInv[16];
		mtxInverse(mtxInv, mtx);
		float lightDirModel[4] = { -0.4f, -0.5f, -1.0f, 0.0f };
		float lightDirModelN[4];
		vec3Norm(lightDirModelN, lightDirModel);
		float lightDir[4];
		vec4MulMtx(lightDir, lightDirModelN, mtxInv);
		bgfx::setUniform(u_lightDir, lightDir);

		float mvp[16];
		mtxMul(mvp, mtx, vp);

		float invMvp[16];
		mtxInverse(invMvp, mvp);
		bgfx::setUniform(u_mtx, invMvp);

		bgfx::setUniform(u_time, &time);

		renderScreenSpaceQuad(1, raymarching, 0.0f, 0.0f, 1280.0f, 720.0f);

		// Advance to next frame. Rendering thread will be kicked to 
		// process submitted rendering primitives.
		bgfx::frame();
	}

	// Cleanup.
	bgfx::destroyProgram(raymarching);

	bgfx::destroyUniform(u_time);
	bgfx::destroyUniform(u_mtx);
	bgfx::destroyUniform(u_lightDir);

	// Shutdown bgfx.
	bgfx::shutdown();

	return 0;
}
Beispiel #2
0
int _main_(int _argc, char** _argv)
{
	uint32_t width = 1280;
	uint32_t height = 720;
	uint32_t debug = BGFX_DEBUG_TEXT;
	uint32_t reset = BGFX_RESET_NONE;

	bgfx::init();
	bgfx::reset(width, height);

	// Enable debug text.
	bgfx::setDebug(debug);

	// Set view 0 clear state.
	bgfx::setViewClear(0
		, BGFX_CLEAR_COLOR_BIT|BGFX_CLEAR_DEPTH_BIT
		, 0x303030ff
		, 1.0f
		, 0
		);

	// Setup root path for binary shaders. Shader binaries are different 
	// for each renderer.
	switch (bgfx::getRendererType() )
	{
	default:
	case bgfx::RendererType::Direct3D9:
		s_shaderPath = "shaders/dx9/";
		break;

	case bgfx::RendererType::Direct3D11:
		s_shaderPath = "shaders/dx11/";
		break;

	case bgfx::RendererType::OpenGL:
		s_shaderPath = "shaders/glsl/";
		break;

	case bgfx::RendererType::OpenGLES2:
	case bgfx::RendererType::OpenGLES3:
		s_shaderPath = "shaders/gles/";
		break;
	}

	// Create vertex stream declaration.
	s_PosNormalTangentTexcoordDecl.begin();
	s_PosNormalTangentTexcoordDecl.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float);
	s_PosNormalTangentTexcoordDecl.add(bgfx::Attrib::Normal, 4, bgfx::AttribType::Uint8, true, true);
	s_PosNormalTangentTexcoordDecl.add(bgfx::Attrib::Tangent, 4, bgfx::AttribType::Uint8, true, true);
	s_PosNormalTangentTexcoordDecl.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Int16, true, true);
	s_PosNormalTangentTexcoordDecl.end();

	const bgfx::Memory* mem;

	calcTangents(s_cubeVertices, countof(s_cubeVertices), s_PosNormalTangentTexcoordDecl, s_cubeIndices, countof(s_cubeIndices) );

	// Create static vertex buffer.
	mem = bgfx::makeRef(s_cubeVertices, sizeof(s_cubeVertices) );
	bgfx::VertexBufferHandle vbh = bgfx::createVertexBuffer(mem, s_PosNormalTangentTexcoordDecl);

	// Create static index buffer.
	mem = bgfx::makeRef(s_cubeIndices, sizeof(s_cubeIndices) );
	bgfx::IndexBufferHandle ibh = bgfx::createIndexBuffer(mem);

	// Create texture sampler uniforms.
	bgfx::UniformHandle u_texColor = bgfx::createUniform("u_texColor", bgfx::UniformType::Uniform1iv);
	bgfx::UniformHandle u_texNormal = bgfx::createUniform("u_texNormal", bgfx::UniformType::Uniform1iv);

	uint16_t numLights = 4;
	bgfx::UniformHandle u_lightPosRadius = bgfx::createUniform("u_lightPosRadius", bgfx::UniformType::Uniform4fv, numLights);
	bgfx::UniformHandle u_lightRgbInnerR = bgfx::createUniform("u_lightRgbInnerR", bgfx::UniformType::Uniform4fv, numLights);

	// Load vertex shader.
	mem = loadShader("vs_bump");
	bgfx::VertexShaderHandle vsh = bgfx::createVertexShader(mem);

	// Load fragment shader.
	mem = loadShader("fs_bump");
	bgfx::FragmentShaderHandle fsh = bgfx::createFragmentShader(mem);

	// Create program from shaders.
	bgfx::ProgramHandle program = bgfx::createProgram(vsh, fsh);

	// We can destroy vertex and fragment shader here since
	// their reference is kept inside bgfx after calling createProgram.
	// Vertex and fragment shader will be destroyed once program is^
	// destroyed.
	bgfx::destroyVertexShader(vsh);
	bgfx::destroyFragmentShader(fsh);

	// Load diffuse texture.
	mem = loadTexture("fieldstone-rgba.dds");
	bgfx::TextureHandle textureColor = bgfx::createTexture(mem);

	// Load normal texture.
	mem = loadTexture("fieldstone-n.dds");
	bgfx::TextureHandle textureNormal = bgfx::createTexture(mem);

	while (!processEvents(width, height, debug, reset) )
	{
		// Set view 0 default viewport.
		bgfx::setViewRect(0, 0, 0, width, height);

		// This dummy draw call is here to make sure that view 0 is cleared
		// if no other draw calls are submitted to view 0.
		bgfx::submit(0);

		int64_t now = bx::getHPCounter();
		static int64_t last = now;
		const int64_t frameTime = now - last;
		last = now;
		const double freq = double(bx::getHPFrequency() );
		const double toMs = 1000.0/freq;

		float time = (float)(now/freq);

		// Use debug font to print information about this example.
		bgfx::dbgTextClear();
		bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/06-bump");
		bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Loading textures.");
		bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs);

		float at[3] = { 0.0f, 0.0f, 0.0f };
		float eye[3] = { 0.0f, 0.0f, -7.0f };
		
		float view[16];
		float proj[16];
		mtxLookAt(view, eye, at);
		mtxProj(proj, 60.0f, 16.0f/9.0f, 0.1f, 100.0f);

		float lightPosRadius[4][4];
		for (uint32_t ii = 0; ii < numLights; ++ii)
		{
			lightPosRadius[ii][0] = sin( (time*(0.1f + ii*0.17f) + float(ii*M_PI_2)*1.37f ) )*3.0f;
			lightPosRadius[ii][1] = cos( (time*(0.2f + ii*0.29f) + float(ii*M_PI_2)*1.49f ) )*3.0f;
			lightPosRadius[ii][2] = -2.5f;
			lightPosRadius[ii][3] = 3.0f;
		}

		bgfx::setUniform(u_lightPosRadius, lightPosRadius, numLights);

		float lightRgbInnerR[4][4] =
		{
			{ 1.0f, 0.7f, 0.2f, 0.8f },
			{ 0.7f, 0.2f, 1.0f, 0.8f },
			{ 0.2f, 1.0f, 0.7f, 0.8f },
			{ 1.0f, 0.4f, 0.2f, 0.8f },
		};

		bgfx::setUniform(u_lightRgbInnerR, lightRgbInnerR, numLights);

		// Set view and projection matrix for view 0.
		bgfx::setViewTransform(0, view, proj);

		const uint16_t instanceStride = 64;
		const bgfx::InstanceDataBuffer* idb = bgfx::allocInstanceDataBuffer(9, instanceStride);
		if (NULL != idb)
		{
			uint8_t* data = idb->data;

			// Write instance data for 3x3 cubes.
			for (uint32_t yy = 0; yy < 3; ++yy)
			{
				for (uint32_t xx = 0; xx < 3; ++xx)
				{
					float* mtx = (float*)data;
					mtxRotateXY(mtx, time*0.023f + xx*0.21f, time*0.03f + yy*0.37f);
					mtx[12] = -3.0f + float(xx)*3.0f;
					mtx[13] = -3.0f + float(yy)*3.0f;
					mtx[14] = 0.0f;

					float* color = (float*)&data[64];
					color[0] = sin(time+float(xx)/11.0f)*0.5f+0.5f;
					color[1] = cos(time+float(yy)/11.0f)*0.5f+0.5f;
					color[2] = sin(time*3.0f)*0.5f+0.5f;
					color[3] = 1.0f;

					data += instanceStride;
				}
			}

			uint16_t numInstances = (uint16_t)( (data - idb->data)/instanceStride);

			// Set vertex and fragment shaders.
			bgfx::setProgram(program);

			// Set vertex and index buffer.
			bgfx::setVertexBuffer(vbh);
			bgfx::setIndexBuffer(ibh);

			// Set instance data buffer.
			bgfx::setInstanceDataBuffer(idb, numInstances);

			// Bind textures.
			bgfx::setTexture(0, u_texColor, textureColor);
			bgfx::setTexture(1, u_texNormal, textureNormal);

			// Set render states.
			bgfx::setState(0
				|BGFX_STATE_RGB_WRITE
				|BGFX_STATE_ALPHA_WRITE
				|BGFX_STATE_DEPTH_WRITE
				|BGFX_STATE_DEPTH_TEST_LESS
				|BGFX_STATE_MSAA
				);

			// Submit primitive for rendering to view 0.
			bgfx::submit(0);
		}

		// Advance to next frame. Rendering thread will be kicked to 
		// process submitted rendering primitives.
		bgfx::frame();
	}

	// Cleanup.
	bgfx::destroyIndexBuffer(ibh);
	bgfx::destroyVertexBuffer(vbh);
	bgfx::destroyProgram(program);
	bgfx::destroyTexture(textureColor);
	bgfx::destroyTexture(textureNormal);
	bgfx::destroyUniform(u_texColor);
	bgfx::destroyUniform(u_texNormal);
	bgfx::destroyUniform(u_lightPosRadius);
	bgfx::destroyUniform(u_lightRgbInnerR);

	// Shutdown bgfx.
	bgfx::shutdown();

	return 0;
}
Beispiel #3
0
int _main_(int /*_argc*/, char** /*_argv*/)
{
	uint32_t width = 1280;
	uint32_t height = 720;
	uint32_t debug = BGFX_DEBUG_TEXT;
	uint32_t reset = BGFX_RESET_VSYNC;

	bgfx::init();
	bgfx::reset(width, height, reset);

	// Enable debug text.
	bgfx::setDebug(debug);

	// Set view 0 clear state.
	bgfx::setViewClear(0
		, BGFX_CLEAR_COLOR_BIT|BGFX_CLEAR_DEPTH_BIT
		, 0x303030ff
		, 1.0f
		, 0
		);

	// Setup root path for binary shaders. Shader binaries are different 
	// for each renderer.
	switch (bgfx::getRendererType() )
	{
	default:
	case bgfx::RendererType::Direct3D9:
		s_shaderPath = "shaders/dx9/";
		break;

	case bgfx::RendererType::Direct3D11:
		s_shaderPath = "shaders/dx11/";
		break;

	case bgfx::RendererType::OpenGL:
		s_shaderPath = "shaders/glsl/";
		break;

	case bgfx::RendererType::OpenGLES2:
	case bgfx::RendererType::OpenGLES3:
		s_shaderPath = "shaders/gles/";
		break;
	}

	// Create vertex stream declaration.
	s_PosTexcoordDecl.begin();
	s_PosTexcoordDecl.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float);
	s_PosTexcoordDecl.add(bgfx::Attrib::TexCoord0, 3, bgfx::AttribType::Float);
	s_PosTexcoordDecl.end();

	const bgfx::Memory* mem;

	// Create static vertex buffer.
	mem = bgfx::makeRef(s_cubeVertices, sizeof(s_cubeVertices) );
	bgfx::VertexBufferHandle vbh = bgfx::createVertexBuffer(mem, s_PosTexcoordDecl);

	// Create static index buffer.
	mem = bgfx::makeRef(s_cubeIndices, sizeof(s_cubeIndices) );
	bgfx::IndexBufferHandle ibh = bgfx::createIndexBuffer(mem);

	// Create texture sampler uniforms.
	bgfx::UniformHandle u_texCube = bgfx::createUniform("u_texCube", bgfx::UniformType::Uniform1iv);

	// Load vertex shader.
	mem = loadShader("vs_update");
	bgfx::VertexShaderHandle vsh = bgfx::createVertexShader(mem);

	// Load fragment shader.
	mem = loadShader("fs_update");
	bgfx::FragmentShaderHandle fsh = bgfx::createFragmentShader(mem);

	// Create program from shaders.
	bgfx::ProgramHandle program = bgfx::createProgram(vsh, fsh);

	// We can destroy vertex and fragment shader here since
	// their reference is kept inside bgfx after calling createProgram.
	// Vertex and fragment shader will be destroyed once program is
	// destroyed.
	bgfx::destroyVertexShader(vsh);
	bgfx::destroyFragmentShader(fsh);

	const uint32_t textureSide = 2048;

	bgfx::TextureHandle textureCube = 
		bgfx::createTextureCube(6
			, textureSide
			, 1
			, bgfx::TextureFormat::BGRA8
			, BGFX_TEXTURE_MIN_POINT|BGFX_TEXTURE_MAG_POINT|BGFX_TEXTURE_MIP_POINT
			);

	uint8_t rr = rand()%255;
	uint8_t gg = rand()%255;
	uint8_t bb = rand()%255;

	int64_t updateTime = 0;

	RectPackCubeT<256> cube(textureSide);

	uint32_t hit = 0;
	uint32_t miss = 0;
	std::list<PackCube> quads;

	int64_t timeOffset = bx::getHPCounter();

	while (!processEvents(width, height, debug, reset) )
	{
		// Set view 0 default viewport.
		bgfx::setViewRect(0, 0, 0, width, height);

		// This dummy draw call is here to make sure that view 0 is cleared
		// if no other draw calls are submitted to view 0.
		bgfx::submit(0);

		int64_t now = bx::getHPCounter();
		static int64_t last = now;
		const int64_t frameTime = now - last;
		last = now;
		const int64_t freq = bx::getHPFrequency();
		const double toMs = 1000.0/double(freq);
		float time = (float)( (now - timeOffset)/double(bx::getHPFrequency() ) );

		// Use debug font to print information about this example.
		bgfx::dbgTextClear();
		bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/08-update");
		bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Updating textures.");
		bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs);

		if (now > updateTime)
		{
			PackCube face;

			uint32_t bw = bx::uint16_max(1, rand()%(textureSide/4) );
			uint32_t bh = bx::uint16_max(1, rand()%(textureSide/4) );

			if (cube.find(bw, bh, face) )
			{
				quads.push_back(face);

				++hit;
				bgfx::TextureInfo ti;
				const Pack2D& rect = face.m_rect;
				bgfx::calcTextureSize(ti, rect.m_width, rect.m_height, 1, 1, bgfx::TextureFormat::BGRA8);

// 				updateTime = now + freq/10;
				const bgfx::Memory* mem = bgfx::alloc(ti.storageSize);
				uint8_t* data = (uint8_t*)mem->data;
				for (uint32_t ii = 0, num = ti.storageSize*8/ti.bitsPerPixel; ii < num; ++ii)
				{
					data[0] = bb;
					data[1] = rr;
					data[2] = gg;
					data[3] = 0xff;
					data += 4;
				}

				bgfx::updateTextureCube(textureCube, face.m_side, 0, rect.m_x, rect.m_y, rect.m_width, rect.m_height, mem);

				rr = rand()%255;
				gg = rand()%255;
				bb = rand()%255;
			}
			else
			{
				++miss;

				for (uint32_t ii = 0, num = bx::uint32_min(10, (uint32_t)quads.size() ); ii < num; ++ii)
				{
					const PackCube& face = quads.front();
					cube.clear(face);
					quads.pop_front();
				}
			}
		}

		bgfx::dbgTextPrintf(0, 4, 0x0f, "hit: %d, miss %d", hit, miss);

		float at[3] = { 0.0f, 0.0f, 0.0f };
		float eye[3] = { 0.0f, 0.0f, -5.0f };
		
		float view[16];
		float proj[16];
		mtxLookAt(view, eye, at);
		mtxProj(proj, 60.0f, float(width)/float(height), 0.1f, 100.0f);

		// Set view and projection matrix for view 0.
		bgfx::setViewTransform(0, view, proj);

		float mtx[16];
		mtxRotateXY(mtx, time, time*0.37f);

		// Set model matrix for rendering.
		bgfx::setTransform(mtx);

		// Set vertex and fragment shaders.
		bgfx::setProgram(program);

		// Set vertex and index buffer.
		bgfx::setVertexBuffer(vbh);
		bgfx::setIndexBuffer(ibh);

		// Bind texture.
		bgfx::setTexture(0, u_texCube, textureCube);

		// Set render states.
		bgfx::setState(BGFX_STATE_DEFAULT);

		// Submit primitive for rendering to view 0.
		bgfx::submit(0);

		// Advance to next frame. Rendering thread will be kicked to 
		// process submitted rendering primitives.
		bgfx::frame();
	}

	// Cleanup.
	bgfx::destroyIndexBuffer(ibh);
	bgfx::destroyVertexBuffer(vbh);
	bgfx::destroyProgram(program);
	bgfx::destroyTexture(textureCube);
	bgfx::destroyUniform(u_texCube);

	// Shutdown bgfx.
	bgfx::shutdown();

	return 0;
}
Beispiel #4
0
void QuadRenderer::initializeGraphicsResources()
{
    const bgfx::Memory *mem = NULL;

    lmLogInfo(gGFXQuadRendererLogGroup, "Initializing Graphics Resources");

    // Create texture sampler uniforms.
    sUniformTexColor           = bgfx::createUniform("u_texColor", bgfx::UniformType::Uniform1iv);
    sUniformNodeMatrixRemoveMe = bgfx::createUniform("u_nodeMatrix", bgfx::UniformType::Uniform4x4fv);

    int           sz;
    const uint8_t *pshader;

    // Load vertex shader.
    bgfx::VertexShaderHandle vsh_pct;
    pshader = GetVertexShaderPosColorTex(sz);
    mem     = bgfx::makeRef(pshader, sz);
    vsh_pct = bgfx::createVertexShader(mem);

    bgfx::VertexShaderHandle vsh_pt;
    pshader = GetVertexShaderPosTex(sz);
    mem     = bgfx::makeRef(pshader, sz);
    vsh_pt  = bgfx::createVertexShader(mem);

    // Load fragment shaders.
    bgfx::FragmentShaderHandle fsh_pct;
    pshader = GetFragmentShaderPosColorTex(sz);
    mem     = bgfx::makeRef(pshader, sz);
    fsh_pct = bgfx::createFragmentShader(mem);

    bgfx::FragmentShaderHandle fsh_pt;
    pshader = GetFragmentShaderPosTex(sz);
    mem     = bgfx::makeRef(pshader, sz);
    fsh_pt  = bgfx::createFragmentShader(mem);

    // Create program from shaders.
    sProgramPosColorTex = bgfx::createProgram(vsh_pct, fsh_pct);
    sProgramPosTex = bgfx::createProgram(vsh_pt, fsh_pt);

    // We can destroy vertex and fragment shader here since
    // their reference is kept inside bgfx after calling createProgram.
    // Vertex and fragment shader will be destroyed once program is
    // destroyed.
    bgfx::destroyVertexShader(vsh_pct);
    bgfx::destroyVertexShader(vsh_pt);
    bgfx::destroyFragmentShader(fsh_pct);
    bgfx::destroyFragmentShader(fsh_pt);

    // create the vertex stream
    sVertexPosColorTexDecl.begin();
    sVertexPosColorTexDecl.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float);
    sVertexPosColorTexDecl.add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true);
    sVertexPosColorTexDecl.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float);
    sVertexPosColorTexDecl.end();

    // create the single, reused quad index buffer
    numVertexBuffers = 0;
    vertexBuffers[numVertexBuffers++] = bgfx::createDynamicVertexBuffer(MAXBATCHQUADS * 4, sVertexPosColorTexDecl);

    mem = bgfx::alloc(sizeof(uint16_t) * 6 * MAXBATCHQUADS);
    uint16_t *pindice = (uint16_t *)mem->data;

    int j = 0;
    for (int i = 0; i < 6 * MAXBATCHQUADS; i += 6, j += 4, pindice += 6)
    {
        pindice[0] = j;
        pindice[1] = j + 2;
        pindice[2] = j + 1;
        pindice[3] = j + 1;
        pindice[4] = j + 2;
        pindice[5] = j + 3;
    }

    sIndexBufferHandle = bgfx::createIndexBuffer(mem);

    size_t bufferSize = MAXVERTEXBUFFERS * sizeof(VertexPosColorTex) * MAXBATCHQUADS * 4;

    vertexDataMemory = lmAlloc(gQuadMemoryAllocator, bufferSize);

    lmAssert(vertexDataMemory, "Unable to allocate buffer for quad vertex data");

    VertexPosColorTex* p = (VertexPosColorTex*) vertexDataMemory; 

    for (int i = 0; i < MAXVERTEXBUFFERS; i++)
    {
        // setup buffer pointer
        vertexData[i] = p;

        p += MAXBATCHQUADS * 4;
    }
}
Beispiel #5
0
int _main_(int /*_argc*/, char** /*_argv*/)
{
	uint32_t width = 1280;
	uint32_t height = 720;
	uint32_t debug = BGFX_DEBUG_TEXT;
	uint32_t reset = BGFX_RESET_VSYNC;

	bgfx::init();
	bgfx::reset(width, height, reset);

	// Enable debug text.
	bgfx::setDebug(debug);

	// Set view 0 clear state.
	bgfx::setViewClear(0
		, BGFX_CLEAR_COLOR_BIT|BGFX_CLEAR_DEPTH_BIT
		, 0x303030ff
		, 1.0f
		, 0
		);

	// Setup root path for binary shaders. Shader binaries are different 
	// for each renderer.
	switch (bgfx::getRendererType() )
	{
	default:
	case bgfx::RendererType::Direct3D9:
		s_shaderPath = "shaders/dx9/";
		break;

	case bgfx::RendererType::Direct3D11:
		s_shaderPath = "shaders/dx11/";
		break;

	case bgfx::RendererType::OpenGL:
		s_shaderPath = "shaders/glsl/";
		break;

	case bgfx::RendererType::OpenGLES2:
	case bgfx::RendererType::OpenGLES3:
		s_shaderPath = "shaders/gles/";
		break;
	}

	// Create vertex stream declaration.
	s_PosColorDecl.begin();
	s_PosColorDecl.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float);
	s_PosColorDecl.add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true);
	s_PosColorDecl.end();

	const bgfx::Memory* mem;

	// Create static vertex buffer.
	mem = bgfx::makeRef(s_cubeVertices, sizeof(s_cubeVertices) );
	bgfx::VertexBufferHandle vbh = bgfx::createVertexBuffer(mem, s_PosColorDecl);

	// Create static index buffer.
	mem = bgfx::makeRef(s_cubeIndices, sizeof(s_cubeIndices) );
	bgfx::IndexBufferHandle ibh = bgfx::createIndexBuffer(mem);

	// Load vertex shader.
	mem = loadShader("vs_instancing");
	bgfx::VertexShaderHandle vsh = bgfx::createVertexShader(mem);

	// Load fragment shader.
	mem = loadShader("fs_instancing");
	bgfx::FragmentShaderHandle fsh = bgfx::createFragmentShader(mem);

	// Create program from shaders.
	bgfx::ProgramHandle program = bgfx::createProgram(vsh, fsh);

	// We can destroy vertex and fragment shader here since
	// their reference is kept inside bgfx after calling createProgram.
	// Vertex and fragment shader will be destroyed once program is
	// destroyed.
	bgfx::destroyVertexShader(vsh);
	bgfx::destroyFragmentShader(fsh);

	int64_t timeOffset = bx::getHPCounter();

	while (!entry::processEvents(width, height, debug, reset) )
	{
		// Set view 0 default viewport.
		bgfx::setViewRect(0, 0, 0, width, height);

		// This dummy draw call is here to make sure that view 0 is cleared
		// if no other draw calls are submitted to view 0.
		bgfx::submit(0);

		int64_t now = bx::getHPCounter();
		static int64_t last = now;
		const int64_t frameTime = now - last;
		last = now;
		const double freq = double(bx::getHPFrequency() );
		const double toMs = 1000.0/freq;
		float time = (float)( (now - timeOffset)/double(bx::getHPFrequency() ) );

		// Use debug font to print information about this example.
		bgfx::dbgTextClear();
		bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/05-instancing");
		bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Geometry instancing.");
		bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs);

		float at[3] = { 0.0f, 0.0f, 0.0f };
		float eye[3] = { 0.0f, 0.0f, -35.0f };
		
		float view[16];
		float proj[16];
		mtxLookAt(view, eye, at);
		mtxProj(proj, 60.0f, float(width)/float(height), 0.1f, 100.0f);

		// Set view and projection matrix for view 0.
		bgfx::setViewTransform(0, view, proj);

		const uint16_t instanceStride = 80;
		const bgfx::InstanceDataBuffer* idb = bgfx::allocInstanceDataBuffer(121, instanceStride);
		if (NULL != idb)
		{
			uint8_t* data = idb->data;

			// Write instance data for 11x11 cubes.
			for (uint32_t yy = 0; yy < 11; ++yy)
			{
				for (uint32_t xx = 0; xx < 11; ++xx)
				{
					float* mtx = (float*)data;
					mtxRotateXY(mtx, time + xx*0.21f, time + yy*0.37f);
					mtx[12] = -15.0f + float(xx)*3.0f;
					mtx[13] = -15.0f + float(yy)*3.0f;
					mtx[14] = 0.0f;

					float* color = (float*)&data[64];
					color[0] = sin(time+float(xx)/11.0f)*0.5f+0.5f;
					color[1] = cos(time+float(yy)/11.0f)*0.5f+0.5f;
					color[2] = sin(time*3.0f)*0.5f+0.5f;
					color[3] = 1.0f;

					data += instanceStride;
				}
			}

			// Set vertex and fragment shaders.
			bgfx::setProgram(program);

			// Set vertex and index buffer.
			bgfx::setVertexBuffer(vbh);
			bgfx::setIndexBuffer(ibh);

			// Set instance data buffer.
			bgfx::setInstanceDataBuffer(idb);

			// Set render states.
			bgfx::setState(BGFX_STATE_DEFAULT);

			// Submit primitive for rendering to view 0.
			bgfx::submit(0);
		}

		// Advance to next frame. Rendering thread will be kicked to 
		// process submitted rendering primitives.
		bgfx::frame();
	}

	// Cleanup.
	bgfx::destroyIndexBuffer(ibh);
	bgfx::destroyVertexBuffer(vbh);
	bgfx::destroyProgram(program);

	// Shutdown bgfx.
	bgfx::shutdown();

	return 0;
}