void fn1( boost::fibers::mutex & m, boost::fibers::condition_variable_any & cv) {
    m.lock();
    BOOST_CHECK(test2 == 0);
    test1 = 1;
    cv.notify_one();
    while (test2 == 0) {
        cv.wait(m);
    }
    BOOST_CHECK(test2 != 0);
    m.unlock();
}
void wait_fn(
	boost::fibers::mutex & mtx,
	boost::fibers::condition_variable_any & cond) {
	mtx.lock();
	cond.wait( mtx);
	++value;
    mtx.unlock();
}
void thread( unsigned int i, barrier * b) {
    bind_to_processor( i);
    boost::fibers::use_scheduling_algorithm< boost::fibers::algo::shared_work >();
    b->wait();
    lock_type lk( mtx);
    cnd.wait( lk, [](){ return done; });
    BOOST_ASSERT( done);
}
Beispiel #4
0
void thread( unsigned int idx, barrier * b) {
    boost::fibers::numa::pin_thread( idx);
    boost::fibers::use_scheduling_algorithm< boost::fibers::algo::shared_work >();
    b->wait();
    lock_type lk( mtx);
    cnd.wait( lk, [](){ return done; });
    BOOST_ASSERT( done);
}
void fn5( boost::fibers::mutex & m, boost::fibers::condition_variable_any & cv) {
    m.lock();
    BOOST_CHECK(test2 == 0);
    test1 = 1;
    cv.notify_one();
    std::chrono::steady_clock::time_point t0 = std::chrono::steady_clock::now();
    int count=0;
    cv.wait_for(m, ms(250), Pred(test2));
    count++;
    std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
    if (runs == 0) {
        BOOST_CHECK(t1 - t0 < ms(250+1000));
        BOOST_CHECK(test2 != 0);
    } else {
        BOOST_CHECK(t1 - t0 - ms(250) < ms(count*250+2));
        BOOST_CHECK(test2 == 0);
    }
    ++runs;
    m.unlock();
}
void fn3( boost::fibers::mutex & m, boost::fibers::condition_variable_any & cv) {
    m.lock();
    BOOST_CHECK(test2 == 0);
    test1 = 1;
    cv.notify_one();
    std::chrono::steady_clock::time_point t0 = std::chrono::steady_clock::now();
    std::chrono::steady_clock::time_point t = t0 + ms(250);
    bool r = cv.wait_until(m, t, Pred(test2));
    std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
    if (runs == 0) {
        BOOST_CHECK(t1 - t0 < ms(250));
        BOOST_CHECK(test2 != 0);
        BOOST_CHECK(r);
    } else {
        BOOST_CHECK(t1 - t0 - ms(250) < ms(250+2));
        BOOST_CHECK(test2 == 0);
        BOOST_CHECK(!r);
    }
    ++runs;
    m.unlock();
}
void fn2( boost::fibers::mutex & m, boost::fibers::condition_variable_any & cv) {
    m.lock();
    BOOST_CHECK(test2 == 0);
    test1 = 1;
    cv.notify_one();
    std::chrono::system_clock::time_point t0 = std::chrono::system_clock::now();
    std::chrono::system_clock::time_point t = t0 + ms(250);
    int count=0;
    while (test2 == 0 && cv.wait_until(m, t) == boost::fibers::cv_status::no_timeout)
        count++;
    std::chrono::system_clock::time_point t1 = std::chrono::system_clock::now();
    if (runs == 0) {
        BOOST_CHECK(t1 - t0 < ms(250));
        BOOST_CHECK(test2 != 0);
    } else {
        BOOST_CHECK(t1 - t0 - ms(250) < ms(count*250+5+1000));
        BOOST_CHECK(test2 == 0);
    }
    ++runs;
    m.unlock();
}
Beispiel #8
0
int main() {
    try {
        boost::fibers::use_scheduling_algorithm< boost::fibers::algo::shared_work >();
        unsigned int n = std::thread::hardware_concurrency();
        barrier b( n);
        boost::fibers::numa::pin_thread( n - 1);
        std::size_t size{ 1000000 };
        std::size_t div{ 10 };
        std::vector< std::thread > threads;
        for ( unsigned int i = 1; i < n; ++i) {
            threads.emplace_back( thread, i - 1, & b);
        };
        // Windows 10 and FreeBSD require a fiber stack of 8kb
        // otherwise the stack gets exhausted
        // stack requirements must be checked for other OS too
#if BOOST_OS_WINDOWS || BOOST_OS_BSD
        allocator_type salloc{ 2*allocator_type::traits_type::page_size() };
#else
        allocator_type salloc{ allocator_type::traits_type::page_size() };
#endif
        std::uint64_t result{ 0 };
        channel_type rc{ 2 };
        b.wait();
        time_point_type start{ clock_type::now() };
        skynet( salloc, rc, 0, size, div);
        result = rc.value_pop();
        if ( 499999500000 != result) {
            throw std::runtime_error("invalid result");
        }
        auto duration = clock_type::now() - start;
        lock_type lk( mtx);
        done = true;
        lk.unlock();
        cnd.notify_all();
        for ( std::thread & t : threads) {
            t.join();
        }
        std::cout << "duration: " << duration.count() / 1000000 << " ms" << std::endl;
        return EXIT_SUCCESS;
    } catch ( std::exception const& e) {
        std::cerr << "exception: " << e.what() << std::endl;
    } catch (...) {
        std::cerr << "unhandled exception" << std::endl;
    }
	return EXIT_FAILURE;
}
int main() {
    try {
        boost::fibers::use_scheduling_algorithm< boost::fibers::algo::shared_work >();
        unsigned int n = std::thread::hardware_concurrency();
        barrier b( n);
        bind_to_processor( n - 1);
        std::size_t size{ 1000000 };
        std::size_t div{ 10 };
        std::vector< std::thread > threads;
        for ( unsigned int i = 1; i < n; ++i) {
            threads.push_back( std::thread( thread, i - 1, & b) );
        };
        allocator_type salloc{ allocator_type::traits_type::page_size() };
        std::uint64_t result{ 0 };
        duration_type duration{ duration_type::zero() };
        channel_type rc{ 2 };
        b.wait();
        time_point_type start{ clock_type::now() };
        skynet( salloc, rc, 0, size, div);
        result = rc.value_pop();
        duration = clock_type::now() - start;
        std::cout << "Result: " << result << " in " << duration.count() / 1000000 << " ms" << std::endl;
        lock_type lk( mtx);
        done = true;
        lk.unlock();
        cnd.notify_all();
        for ( std::thread & t : threads) {
            t.join();
        }
        std::cout << "done." << std::endl;
        return EXIT_SUCCESS;
    } catch ( std::exception const& e) {
        std::cerr << "exception: " << e.what() << std::endl;
    } catch (...) {
        std::cerr << "unhandled exception" << std::endl;
    }
	return EXIT_FAILURE;
}
void notify_all_fn( boost::fibers::condition_variable_any & cond) {
	cond.notify_all();
}