Beispiel #1
0
void DSPLLE::DSP_StopSoundStream()
{
	DSPInterpreter::Stop();
	m_bIsRunning = false;
	if (m_bDSPThread)
	{
		ppcEvent.Set();
		dspEvent.Set();
		m_hDSPThread.join();
	}
}
Beispiel #2
0
void DSPLLE::DSP_Update(int cycles)
{
	int dsp_cycles = cycles / 6;

	if (dsp_cycles <= 0)
		return;
// Sound stream update job has been handled by AudioDMA routine, which is more efficient
/*
	// This gets called VERY OFTEN. The soundstream update might be expensive so only do it 200 times per second or something.
	int cycles_between_ss_update;

	if (g_dspInitialize.bWii)
		cycles_between_ss_update = 121500000 / 200;
	else
		cycles_between_ss_update = 81000000 / 200;

	m_cycle_count += cycles;
	if (m_cycle_count > cycles_between_ss_update)
	{
		while (m_cycle_count > cycles_between_ss_update)
			m_cycle_count -= cycles_between_ss_update;
		soundStream->Update();
	}
*/
	if (m_bDSPThread)
	{
		if (requestDisableThread || NetPlay::IsNetPlayRunning() || Movie::IsMovieActive() || Core::g_want_determinism)
		{
			DSP_StopSoundStream();
			m_bDSPThread = false;
			requestDisableThread = false;
			SConfig::GetInstance().bDSPThread = false;
		}
	}

	// If we're not on a thread, run cycles here.
	if (!m_bDSPThread)
	{
		// ~1/6th as many cycles as the period PPC-side.
		DSPCore_RunCycles(dsp_cycles);
	}
	else
	{
		// Wait for DSP thread to complete its cycle. Note: this logic should be thought through.
		ppcEvent.Wait();
		m_cycle_count.fetch_add(dsp_cycles);
		dspEvent.Set();
	}
}
Beispiel #3
0
void Start()
{
  s_finish_read = CoreTiming::RegisterEvent("FinishReadDVDThread", FinishRead);

  s_request_queue_expanded.Reset();
  s_result_queue_expanded.Reset();
  s_request_queue.Clear();
  s_result_queue.Clear();

  // This is reset on every launch for determinism, but it doesn't matter
  // much, because this will never get exposed to the emulated game.
  s_next_id = 0;

  StartDVDThread();
}
Beispiel #4
0
JNIEXPORT void JNICALL Java_org_dolphinemu_dolphinemu_NativeLibrary_Run(JNIEnv *env, jobject obj, jobject _surf)
{
	surf = ANativeWindow_fromSurface(env, _surf);
	// Install our callbacks
	OSD::AddCallback(OSD::OSD_INIT, ButtonManager::Init);
	OSD::AddCallback(OSD::OSD_SHUTDOWN, ButtonManager::Shutdown);

	LogManager::Init();
	SConfig::Init();
	VideoBackend::PopulateList();
	VideoBackend::ActivateBackend(SConfig::GetInstance().m_LocalCoreStartupParameter.m_strVideoBackend);
	WiimoteReal::LoadSettings();

	// Load our Android specific settings
	IniFile ini;
	bool onscreencontrols = true;
	ini.Load(File::GetUserPath(D_CONFIG_IDX) + std::string("Dolphin.ini"));
	ini.Get("Android", "ScreenControls", &onscreencontrols, true);

	if (onscreencontrols)
		OSD::AddCallback(OSD::OSD_ONFRAME, ButtonManager::DrawButtons);

	// No use running the loop when booting fails
	if ( BootManager::BootCore( g_filename.c_str() ) )
		while (PowerPC::GetState() != PowerPC::CPU_POWERDOWN)
			updateMainFrameEvent.Wait();

	WiimoteReal::Shutdown();
	VideoBackend::ClearList();
	SConfig::Shutdown();
	LogManager::Shutdown();
}
Beispiel #5
0
/* This function checks the emulated CPU - GPU distance and may wake up the GPU,
 * or block the CPU if required. It should be called by the CPU thread regularly.
 * @ticks The gone emulated CPU time.
 * @return A good time to call WaitForGpuThread() next.
 */
static int WaitForGpuThread(int ticks)
{
  const SConfig& param = SConfig::GetInstance();

  int old = s_sync_ticks.fetch_add(ticks);
  int now = old + ticks;

  // GPU is idle, so stop polling.
  if (old >= 0 && s_gpu_mainloop.IsDone())
    return -1;

  // Wakeup GPU
  if (old < param.iSyncGpuMinDistance && now >= param.iSyncGpuMinDistance)
    RunGpu();

  // If the GPU is still sleeping, wait for a longer time
  if (now < param.iSyncGpuMinDistance)
    return GPU_TIME_SLOT_SIZE + param.iSyncGpuMinDistance - now;

  // Wait for GPU
  if (now >= param.iSyncGpuMaxDistance)
    s_sync_wakeup_event.Wait();

  return GPU_TIME_SLOT_SIZE;
}
Beispiel #6
0
static void FinishRead(u64 id, s64 cycles_late)
{
  // We can't simply pop s_result_queue and always get the ReadResult
  // we want, because the DVD thread may add ReadResults to the queue
  // in a different order than we want to get them. What we do instead
  // is to pop the queue until we find the ReadResult we want (the one
  // whose ID matches userdata), which means we may end up popping
  // ReadResults that we don't want. We can't add those unwanted results
  // back to the queue, because the queue can only have one writer.
  // Instead, we add them to a map that only is used by the CPU thread.
  // When this function is called again later, it will check the map for
  // the wanted ReadResult before it starts searching through the queue.
  ReadResult result;
  auto it = s_result_map.find(id);
  if (it != s_result_map.end())
  {
    result = std::move(it->second);
    s_result_map.erase(it);
  }
  else
  {
    while (true)
    {
      while (!s_result_queue.Pop(result))
        s_result_queue_expanded.Wait();

      if (result.first.id == id)
        break;
      else
        s_result_map.emplace(result.first.id, std::move(result));
    }
  }
  // We have now obtained the right ReadResult.

  const ReadRequest& request = result.first;
  const std::vector<u8>& buffer = result.second;

  DEBUG_LOG(DVDINTERFACE, "Disc has been read. Real time: %" PRIu64 " us. "
                          "Real time including delay: %" PRIu64 " us. "
                          "Emulated time including delay: %" PRIu64 " us.",
            request.realtime_done_us - request.realtime_started_us,
            Common::Timer::GetTimeUs() - request.realtime_started_us,
            (CoreTiming::GetTicks() - request.time_started_ticks) /
                (SystemTimers::GetTicksPerSecond() / 1000000));

  if (buffer.size() != request.length)
  {
    PanicAlertT("The disc could not be read (at 0x%" PRIx64 " - 0x%" PRIx64 ").",
                request.dvd_offset, request.dvd_offset + request.length);
  }
  else
  {
    if (request.copy_to_ram)
      Memory::CopyToEmu(request.output_address, buffer.data(), request.length);
  }

  // Notify the emulated software that the command has been executed
  DVDInterface::FinishExecutingCommand(request.reply_type, DVDInterface::INT_TCINT, cycles_late,
                                       buffer);
}
Beispiel #7
0
static void StartReadInternal(bool copy_to_ram, u32 output_address, u64 dvd_offset, u32 length,
                              const DiscIO::Partition& partition,
                              DVDInterface::ReplyType reply_type, s64 ticks_until_completion)
{
  ASSERT(Core::IsCPUThread());

  ReadRequest request;

  request.copy_to_ram = copy_to_ram;
  request.output_address = output_address;
  request.dvd_offset = dvd_offset;
  request.length = length;
  request.partition = partition;
  request.reply_type = reply_type;

  u64 id = s_next_id++;
  request.id = id;

  request.time_started_ticks = CoreTiming::GetTicks();
  request.realtime_started_us = Common::Timer::GetTimeUs();

  s_request_queue.Push(std::move(request));
  s_request_queue_expanded.Set();

  CoreTiming::ScheduleEvent(ticks_until_completion, s_finish_read, id);
}
Beispiel #8
0
void Host_Message(int Id)
{
  if (Id == WM_USER_STOP)
  {
    s_running.Clear();
    updateMainFrameEvent.Set();
  }
}
Beispiel #9
0
void VideoFifo_CheckEFBAccess()
{
	if (s_efbAccessRequested.IsSet())
	{
		s_AccessEFBResult = g_renderer->AccessEFB(s_accessEFBArgs.type, s_accessEFBArgs.x, s_accessEFBArgs.y, s_accessEFBArgs.Data);
		s_efbAccessRequested.Clear();
		s_efbAccessReadyEvent.Set();
	}
}
Beispiel #10
0
void DSPCore_SetState(DSPCoreState new_state)
{
	core_state = new_state;
	// kick the event, in case we are waiting
	if (new_state == DSPCORE_RUNNING)
		step_event.Set();
	// Sleep(10);
	DSPHost::UpdateDebugger();
}
Beispiel #11
0
static void VideoFifo_CheckPerfQueryRequest()
{
	if (s_perfQueryRequested.IsSet())
	{
		g_perf_query->FlushResults();
		s_perfQueryRequested.Clear();
		s_perfQueryReadyEvent.Set();
	}
}
Beispiel #12
0
void WaitUntilIdle()
{
  ASSERT(Core::IsCPUThread());

  while (!s_request_queue.Empty())
    s_result_queue_expanded.Wait();

  StopDVDThread();
  StartDVDThread();
}
Beispiel #13
0
void DSPCore_SetState(State new_state)
{
  core_state = new_state;

  // kick the event, in case we are waiting
  if (new_state == State::Running)
    step_event.Set();

  Host::UpdateDebugger();
}
Beispiel #14
0
static void StopDVDThread()
{
  ASSERT(s_dvd_thread.joinable());

  // By setting s_DVD_thread_exiting, we ask the DVD thread to cleanly exit.
  // In case the request queue is empty, we need to set s_request_queue_expanded
  // so that the DVD thread will wake up and check s_DVD_thread_exiting.
  s_dvd_thread_exiting.Set();
  s_request_queue_expanded.Set();

  s_dvd_thread.join();
}
Beispiel #15
0
void DSPLLE::DSP_Update(int cycles)
{
	int dsp_cycles = cycles / 6;

	if (dsp_cycles <= 0)
		return;
// Sound stream update job has been handled by AudioDMA routine, which is more efficient
/*
	// This gets called VERY OFTEN. The soundstream update might be expensive so only do it 200 times per second or something.
	int cycles_between_ss_update;

	if (g_dspInitialize.bWii)
		cycles_between_ss_update = 121500000 / 200;
	else
		cycles_between_ss_update = 81000000 / 200;

	m_cycle_count += cycles;
	if (m_cycle_count > cycles_between_ss_update)
	{
		while (m_cycle_count > cycles_between_ss_update)
			m_cycle_count -= cycles_between_ss_update;
		soundStream->Update();
	}
*/
	// If we're not on a thread, run cycles here.
	if (!m_bDSPThread)
	{
		// ~1/6th as many cycles as the period PPC-side.
		DSPCore_RunCycles(dsp_cycles);
	}
	else
	{
		// Wait for dsp thread to complete its cycle. Note: this logic should be thought through.
		ppcEvent.Wait();
		Common::AtomicStore(m_cycle_count, dsp_cycles);
		dspEvent.Set();

	}
}
Beispiel #16
0
// Delegate to JIT or interpreter as appropriate.
// Handle state changes and stepping.
int DSPCore_RunCycles(int cycles)
{
	if (dspjit)
	{
		if (g_dsp.external_interrupt_waiting)
		{
			DSPCore_CheckExternalInterrupt();
			DSPCore_CheckExceptions();
			DSPCore_SetExternalInterrupt(false);
		}

		cyclesLeft = cycles;
		DSPCompiledCode pExecAddr = (DSPCompiledCode)dspjit->enterDispatcher;
		pExecAddr();

		if (g_dsp.reset_dspjit_codespace)
			dspjit->ClearIRAMandDSPJITCodespaceReset();

		return cyclesLeft;
	}

	while (cycles > 0)
	{
		switch (core_state)
		{
		case DSPCORE_RUNNING:
			// Seems to slow things down
#if defined(_DEBUG) || defined(DEBUGFAST)
			cycles = DSPInterpreter::RunCyclesDebug(cycles);
#else
			cycles = DSPInterpreter::RunCycles(cycles);
#endif
			break;

		case DSPCORE_STEPPING:
			step_event.Wait();
			if (core_state != DSPCORE_STEPPING)
				continue;

			DSPInterpreter::Step();
			cycles--;

			DSPHost::UpdateDebugger();
			break;
		case DSPCORE_STOP:
			break;
		}
	}
	return cycles;
}
Beispiel #17
0
u32 VideoBackendHardware::Video_GetQueryResult(PerfQueryType type)
{
	if (!g_perf_query->ShouldEmulate())
	{
		return 0;
	}

	// TODO: Is this check sane?
	if (!g_perf_query->IsFlushed())
	{
		if (SConfig::GetInstance().m_LocalCoreStartupParameter.bCPUThread)
		{
			s_perfQueryReadyEvent.Reset();
			if (s_FifoShuttingDown.IsSet())
				return 0;
			s_perfQueryRequested.Set();
			s_perfQueryReadyEvent.Wait();
		}
		else
			g_perf_query->FlushResults();
	}

	return g_perf_query->GetQueryResult(type);
}
Beispiel #18
0
void SaveAs(const std::string& filename)
{
	// Pause the core while we save the state
	bool wasUnpaused = Core::PauseAndLock(true);

	// Measure the size of the buffer.
	u8 *ptr = NULL;
	PointerWrap p(&ptr, PointerWrap::MODE_MEASURE);
	DoState(p);
	const size_t buffer_size = reinterpret_cast<size_t>(ptr);

	// Then actually do the write.
	{
		std::lock_guard<std::mutex> lk(g_cs_current_buffer);
		g_current_buffer.resize(buffer_size);
		ptr = &g_current_buffer[0];
		p.SetMode(PointerWrap::MODE_WRITE);
		DoState(p);
	}

	if (p.GetMode() == PointerWrap::MODE_WRITE)
	{
		Core::DisplayMessage("Saving State...", 1000);
		if ((Movie::IsRecordingInput() || Movie::IsPlayingInput()) && !Movie::IsJustStartingRecordingInputFromSaveState())
			Movie::SaveRecording((filename + ".dtm").c_str());
		else if (!Movie::IsRecordingInput() && !Movie::IsPlayingInput())
			File::Delete(filename + ".dtm");

		CompressAndDumpState_args save_args;
		save_args.buffer_vector = &g_current_buffer;
		save_args.buffer_mutex = &g_cs_current_buffer;
		save_args.filename = filename;

		Flush();
		g_save_thread = std::thread(CompressAndDumpState, save_args);
		g_compressAndDumpStateSyncEvent.Wait();

		g_last_filename = filename;
	}
	else
	{
		// someone aborted the save by changing the mode?
		Core::DisplayMessage("Unable to Save : Internal DoState Error", 4000);
	}

	// Resume the core and disable stepping
	Core::PauseAndLock(false, wasUnpaused);
}
Beispiel #19
0
JNIEXPORT void JNICALL Java_org_dolphinemu_dolphinemu_dolphinemuactivity_main(JNIEnv *env, jobject obj)
{
	LogManager::Init();
	SConfig::Init();
	VideoBackend::PopulateList();
	VideoBackend::ActivateBackend(SConfig::GetInstance().
		m_LocalCoreStartupParameter.m_strVideoBackend);
	WiimoteReal::LoadSettings();

	// No use running the loop when booting fails
	if (BootManager::BootCore(""))
	{
		while (PowerPC::GetState() != PowerPC::CPU_POWERDOWN)
			updateMainFrameEvent.Wait();
	}

	WiimoteReal::Shutdown();
	VideoBackend::ClearList();
	SConfig::Shutdown();
	LogManager::Shutdown();
}
Beispiel #20
0
    void MotionEmuThread() {
        auto update_time = std::chrono::steady_clock::now();
        Math::Quaternion<float> q = MakeQuaternion(Math::Vec3<float>(), 0);
        Math::Quaternion<float> old_q;

        while (!shutdown_event.WaitUntil(update_time)) {
            update_time += update_duration;
            old_q = q;

            {
                std::lock_guard<std::mutex> guard(tilt_mutex);

                // Find the quaternion describing current 3DS tilting
                q = MakeQuaternion(Math::MakeVec(-tilt_direction.y, 0.0f, tilt_direction.x),
                                   tilt_angle);
            }

            auto inv_q = q.Inverse();

            // Set the gravity vector in world space
            auto gravity = Math::MakeVec(0.0f, -1.0f, 0.0f);

            // Find the angular rate vector in world space
            auto angular_rate = ((q - old_q) * inv_q).xyz * 2;
            angular_rate *= 1000 / update_millisecond / MathUtil::PI * 180;

            // Transform the two vectors from world space to 3DS space
            gravity = QuaternionRotate(inv_q, gravity);
            angular_rate = QuaternionRotate(inv_q, angular_rate);

            // Update the sensor state
            {
                std::lock_guard<std::mutex> guard(status_mutex);
                status = std::make_tuple(gravity, angular_rate);
            }
        }
    }
Beispiel #21
0
// Delegate to JIT or interpreter as appropriate.
// Handle state changes and stepping.
int DSPCore_RunCycles(int cycles)
{
  if (g_dsp_jit)
  {
    return g_dsp_jit->RunCycles(static_cast<u16>(cycles));
  }

  while (cycles > 0)
  {
    switch (core_state)
    {
    case State::Running:
// Seems to slow things down
#if defined(_DEBUG) || defined(DEBUGFAST)
      cycles = Interpreter::RunCyclesDebug(cycles);
#else
      cycles = Interpreter::RunCycles(cycles);
#endif
      break;

    case State::Stepping:
      step_event.Wait();
      if (core_state != State::Stepping)
        continue;

      Interpreter::Step();
      cycles--;

      Host::UpdateDebugger();
      break;
    case State::Stopped:
      break;
    }
  }
  return cycles;
}
Beispiel #22
0
int Fifo_Update(int ticks)
{
	const SConfig& param = SConfig::GetInstance();

	if (ticks == 0)
	{
		FlushGpu();
		return param.iSyncGpuMaxDistance;
	}

	// GPU is sleeping, so no need for synchronization
	if (s_gpu_mainloop.IsDone() || g_use_deterministic_gpu_thread)
	{
		if (s_sync_ticks.load() < 0)
		{
			int old = s_sync_ticks.fetch_add(ticks);
			if (old < param.iSyncGpuMinDistance && old + ticks >= param.iSyncGpuMinDistance)
				RunGpu();
		}
		return param.iSyncGpuMaxDistance;
	}

	int old = s_sync_ticks.fetch_add(ticks);
	if (old < param.iSyncGpuMinDistance && old + ticks >= param.iSyncGpuMinDistance)
		RunGpu();

	if (s_sync_ticks.load() >= param.iSyncGpuMaxDistance)
	{
		while (s_sync_ticks.load() > 0)
		{
			s_sync_wakeup_event.Wait();
		}
	}

	return param.iSyncGpuMaxDistance - s_sync_ticks.load();
}
Beispiel #23
0
namespace Fifo
{
static constexpr u32 FIFO_SIZE = 2 * 1024 * 1024;
static constexpr int GPU_TIME_SLOT_SIZE = 1000;

static Common::BlockingLoop s_gpu_mainloop;

static Common::Flag s_emu_running_state;

// Most of this array is unlikely to be faulted in...
static u8 s_fifo_aux_data[FIFO_SIZE];
static u8* s_fifo_aux_write_ptr;
static u8* s_fifo_aux_read_ptr;

// This could be in SConfig, but it depends on multiple settings
// and can change at runtime.
static bool s_use_deterministic_gpu_thread;

static CoreTiming::EventType* s_event_sync_gpu;

// STATE_TO_SAVE
static u8* s_video_buffer;
static u8* s_video_buffer_read_ptr;
static std::atomic<u8*> s_video_buffer_write_ptr;
static std::atomic<u8*> s_video_buffer_seen_ptr;
static u8* s_video_buffer_pp_read_ptr;
// The read_ptr is always owned by the GPU thread.  In normal mode, so is the
// write_ptr, despite it being atomic.  In deterministic GPU thread mode,
// things get a bit more complicated:
// - The seen_ptr is written by the GPU thread, and points to what it's already
// processed as much of as possible - in the case of a partial command which
// caused it to stop, not the same as the read ptr.  It's written by the GPU,
// under the lock, and updating the cond.
// - The write_ptr is written by the CPU thread after it copies data from the
// FIFO.  Maybe someday it will be under the lock.  For now, because RunGpuLoop
// polls, it's just atomic.
// - The pp_read_ptr is the CPU preprocessing version of the read_ptr.

static std::atomic<int> s_sync_ticks;
static bool s_syncing_suspended;
static Common::Event s_sync_wakeup_event;

void DoState(PointerWrap& p)
{
  p.DoArray(s_video_buffer, FIFO_SIZE);
  u8* write_ptr = s_video_buffer_write_ptr;
  p.DoPointer(write_ptr, s_video_buffer);
  s_video_buffer_write_ptr = write_ptr;
  p.DoPointer(s_video_buffer_read_ptr, s_video_buffer);
  if (p.mode == PointerWrap::MODE_READ && s_use_deterministic_gpu_thread)
  {
    // We're good and paused, right?
    s_video_buffer_seen_ptr = s_video_buffer_pp_read_ptr = s_video_buffer_read_ptr;
  }

  p.Do(s_sync_ticks);
  p.Do(s_syncing_suspended);
}

void PauseAndLock(bool doLock, bool unpauseOnUnlock)
{
  if (doLock)
  {
    SyncGPU(SyncGPUReason::Other);
    EmulatorState(false);

    const SConfig& param = SConfig::GetInstance();

    if (!param.bCPUThread || s_use_deterministic_gpu_thread)
      return;

    s_gpu_mainloop.WaitYield(std::chrono::milliseconds(100), Host_YieldToUI);
  }
  else
  {
    if (unpauseOnUnlock)
      EmulatorState(true);
  }
}

void Init()
{
  // Padded so that SIMD overreads in the vertex loader are safe
  s_video_buffer = static_cast<u8*>(Common::AllocateMemoryPages(FIFO_SIZE + 4));
  ResetVideoBuffer();
  if (SConfig::GetInstance().bCPUThread)
    s_gpu_mainloop.Prepare();
  s_sync_ticks.store(0);
}

void Shutdown()
{
  if (s_gpu_mainloop.IsRunning())
    PanicAlert("Fifo shutting down while active");

  Common::FreeMemoryPages(s_video_buffer, FIFO_SIZE + 4);
  s_video_buffer = nullptr;
  s_video_buffer_write_ptr = nullptr;
  s_video_buffer_pp_read_ptr = nullptr;
  s_video_buffer_read_ptr = nullptr;
  s_video_buffer_seen_ptr = nullptr;
  s_fifo_aux_write_ptr = nullptr;
  s_fifo_aux_read_ptr = nullptr;
}

// May be executed from any thread, even the graphics thread.
// Created to allow for self shutdown.
void ExitGpuLoop()
{
  // This should break the wait loop in CPU thread
  CommandProcessor::fifo.bFF_GPReadEnable = false;
  FlushGpu();

  // Terminate GPU thread loop
  s_emu_running_state.Set();
  s_gpu_mainloop.Stop(false);
}

void EmulatorState(bool running)
{
  s_emu_running_state.Set(running);
  if (running)
    s_gpu_mainloop.Wakeup();
  else
    s_gpu_mainloop.AllowSleep();
}

void SyncGPU(SyncGPUReason reason, bool may_move_read_ptr)
{
  if (s_use_deterministic_gpu_thread)
  {
    s_gpu_mainloop.Wait();
    if (!s_gpu_mainloop.IsRunning())
      return;

    // Opportunistically reset FIFOs so we don't wrap around.
    if (may_move_read_ptr && s_fifo_aux_write_ptr != s_fifo_aux_read_ptr)
      PanicAlert("aux fifo not synced (%p, %p)", s_fifo_aux_write_ptr, s_fifo_aux_read_ptr);

    memmove(s_fifo_aux_data, s_fifo_aux_read_ptr, s_fifo_aux_write_ptr - s_fifo_aux_read_ptr);
    s_fifo_aux_write_ptr -= (s_fifo_aux_read_ptr - s_fifo_aux_data);
    s_fifo_aux_read_ptr = s_fifo_aux_data;

    if (may_move_read_ptr)
    {
      u8* write_ptr = s_video_buffer_write_ptr;

      // what's left over in the buffer
      size_t size = write_ptr - s_video_buffer_pp_read_ptr;

      memmove(s_video_buffer, s_video_buffer_pp_read_ptr, size);
      // This change always decreases the pointers.  We write seen_ptr
      // after write_ptr here, and read it before in RunGpuLoop, so
      // 'write_ptr > seen_ptr' there cannot become spuriously true.
      s_video_buffer_write_ptr = write_ptr = s_video_buffer + size;
      s_video_buffer_pp_read_ptr = s_video_buffer;
      s_video_buffer_read_ptr = s_video_buffer;
      s_video_buffer_seen_ptr = write_ptr;
    }
  }
}

void PushFifoAuxBuffer(void* ptr, size_t size)
{
  if (size > (size_t)(s_fifo_aux_data + FIFO_SIZE - s_fifo_aux_write_ptr))
  {
    SyncGPU(SyncGPUReason::AuxSpace, /* may_move_read_ptr */ false);
    if (!s_gpu_mainloop.IsRunning())
    {
      // GPU is shutting down
      return;
    }
    if (size > (size_t)(s_fifo_aux_data + FIFO_SIZE - s_fifo_aux_write_ptr))
    {
      // That will sync us up to the last 32 bytes, so this short region
      // of FIFO would have to point to a 2MB display list or something.
      PanicAlert("absurdly large aux buffer");
      return;
    }
  }
  memcpy(s_fifo_aux_write_ptr, ptr, size);
  s_fifo_aux_write_ptr += size;
}

void* PopFifoAuxBuffer(size_t size)
{
  void* ret = s_fifo_aux_read_ptr;
  s_fifo_aux_read_ptr += size;
  return ret;
}

// Description: RunGpuLoop() sends data through this function.
static void ReadDataFromFifo(u32 readPtr)
{
  size_t len = 32;
  if (len > (size_t)(s_video_buffer + FIFO_SIZE - s_video_buffer_write_ptr))
  {
    size_t existing_len = s_video_buffer_write_ptr - s_video_buffer_read_ptr;
    if (len > (size_t)(FIFO_SIZE - existing_len))
    {
      PanicAlert("FIFO out of bounds (existing %zu + new %zu > %lu)", existing_len, len,
                 (unsigned long)FIFO_SIZE);
      return;
    }
    memmove(s_video_buffer, s_video_buffer_read_ptr, existing_len);
    s_video_buffer_write_ptr = s_video_buffer + existing_len;
    s_video_buffer_read_ptr = s_video_buffer;
  }
  // Copy new video instructions to s_video_buffer for future use in rendering the new picture
  Memory::CopyFromEmu(s_video_buffer_write_ptr, readPtr, len);
  s_video_buffer_write_ptr += len;
}

// The deterministic_gpu_thread version.
static void ReadDataFromFifoOnCPU(u32 readPtr)
{
  size_t len = 32;
  u8* write_ptr = s_video_buffer_write_ptr;
  if (len > (size_t)(s_video_buffer + FIFO_SIZE - write_ptr))
  {
    // We can't wrap around while the GPU is working on the data.
    // This should be very rare due to the reset in SyncGPU.
    SyncGPU(SyncGPUReason::Wraparound);
    if (!s_gpu_mainloop.IsRunning())
    {
      // GPU is shutting down, so the next asserts may fail
      return;
    }

    if (s_video_buffer_pp_read_ptr != s_video_buffer_read_ptr)
    {
      PanicAlert("desynced read pointers");
      return;
    }
    write_ptr = s_video_buffer_write_ptr;
    size_t existing_len = write_ptr - s_video_buffer_pp_read_ptr;
    if (len > (size_t)(FIFO_SIZE - existing_len))
    {
      PanicAlert("FIFO out of bounds (existing %zu + new %zu > %lu)", existing_len, len,
                 (unsigned long)FIFO_SIZE);
      return;
    }
  }
  Memory::CopyFromEmu(s_video_buffer_write_ptr, readPtr, len);
  s_video_buffer_pp_read_ptr = OpcodeDecoder::Run<true>(
      DataReader(s_video_buffer_pp_read_ptr, write_ptr + len), nullptr, false);
  // This would have to be locked if the GPU thread didn't spin.
  s_video_buffer_write_ptr = write_ptr + len;
}

void ResetVideoBuffer()
{
  s_video_buffer_read_ptr = s_video_buffer;
  s_video_buffer_write_ptr = s_video_buffer;
  s_video_buffer_seen_ptr = s_video_buffer;
  s_video_buffer_pp_read_ptr = s_video_buffer;
  s_fifo_aux_write_ptr = s_fifo_aux_data;
  s_fifo_aux_read_ptr = s_fifo_aux_data;
}

// Description: Main FIFO update loop
// Purpose: Keep the Core HW updated about the CPU-GPU distance
void RunGpuLoop()
{
  AsyncRequests::GetInstance()->SetEnable(true);
  AsyncRequests::GetInstance()->SetPassthrough(false);

  s_gpu_mainloop.Run(
      [] {
        const SConfig& param = SConfig::GetInstance();

        g_video_backend->PeekMessages();

        // Do nothing while paused
        if (!s_emu_running_state.IsSet())
          return;

        if (s_use_deterministic_gpu_thread)
        {
          AsyncRequests::GetInstance()->PullEvents();

          // All the fifo/CP stuff is on the CPU.  We just need to run the opcode decoder.
          u8* seen_ptr = s_video_buffer_seen_ptr;
          u8* write_ptr = s_video_buffer_write_ptr;
          // See comment in SyncGPU
          if (write_ptr > seen_ptr)
          {
            s_video_buffer_read_ptr =
                OpcodeDecoder::Run(DataReader(s_video_buffer_read_ptr, write_ptr), nullptr, false);
            s_video_buffer_seen_ptr = write_ptr;
          }
        }
        else
        {
          SCPFifoStruct& fifo = CommandProcessor::fifo;

          AsyncRequests::GetInstance()->PullEvents();

          CommandProcessor::SetCPStatusFromGPU();

          // check if we are able to run this buffer
          while (!CommandProcessor::IsInterruptWaiting() && fifo.bFF_GPReadEnable &&
                 fifo.CPReadWriteDistance && !AtBreakpoint())
          {
            if (param.bSyncGPU && s_sync_ticks.load() < param.iSyncGpuMinDistance)
              break;

            u32 cyclesExecuted = 0;
            u32 readPtr = fifo.CPReadPointer;
            ReadDataFromFifo(readPtr);

            if (readPtr == fifo.CPEnd)
              readPtr = fifo.CPBase;
            else
              readPtr += 32;

            _assert_msg_(COMMANDPROCESSOR, (s32)fifo.CPReadWriteDistance - 32 >= 0,
                         "Negative fifo.CPReadWriteDistance = %i in FIFO Loop !\nThat can produce "
                         "instability in the game. Please report it.",
                         fifo.CPReadWriteDistance - 32);

            u8* write_ptr = s_video_buffer_write_ptr;
            s_video_buffer_read_ptr = OpcodeDecoder::Run(
                DataReader(s_video_buffer_read_ptr, write_ptr), &cyclesExecuted, false);

            Common::AtomicStore(fifo.CPReadPointer, readPtr);
            Common::AtomicAdd(fifo.CPReadWriteDistance, -32);
            if ((write_ptr - s_video_buffer_read_ptr) == 0)
              Common::AtomicStore(fifo.SafeCPReadPointer, fifo.CPReadPointer);

            CommandProcessor::SetCPStatusFromGPU();

            if (param.bSyncGPU)
            {
              cyclesExecuted = (int)(cyclesExecuted / param.fSyncGpuOverclock);
              int old = s_sync_ticks.fetch_sub(cyclesExecuted);
              if (old >= param.iSyncGpuMaxDistance &&
                  old - (int)cyclesExecuted < param.iSyncGpuMaxDistance)
                s_sync_wakeup_event.Set();
            }

            // This call is pretty important in DualCore mode and must be called in the FIFO Loop.
            // If we don't, s_swapRequested or s_efbAccessRequested won't be set to false
            // leading the CPU thread to wait in Video_BeginField or Video_AccessEFB thus slowing
            // things down.
            AsyncRequests::GetInstance()->PullEvents();
          }

          // fast skip remaining GPU time if fifo is empty
          if (s_sync_ticks.load() > 0)
          {
            int old = s_sync_ticks.exchange(0);
            if (old >= param.iSyncGpuMaxDistance)
              s_sync_wakeup_event.Set();
          }

          // The fifo is empty and it's unlikely we will get any more work in the near future.
          // Make sure VertexManager finishes drawing any primitives it has stored in it's buffer.
          g_vertex_manager->Flush();
        }
      },
      100);

  AsyncRequests::GetInstance()->SetEnable(false);
  AsyncRequests::GetInstance()->SetPassthrough(true);
}

void FlushGpu()
{
  const SConfig& param = SConfig::GetInstance();

  if (!param.bCPUThread || s_use_deterministic_gpu_thread)
    return;

  s_gpu_mainloop.Wait();
}

void GpuMaySleep()
{
  s_gpu_mainloop.AllowSleep();
}

bool AtBreakpoint()
{
  SCPFifoStruct& fifo = CommandProcessor::fifo;
  return fifo.bFF_BPEnable && (fifo.CPReadPointer == fifo.CPBreakpoint);
}

void RunGpu()
{
  const SConfig& param = SConfig::GetInstance();

  // wake up GPU thread
  if (param.bCPUThread && !s_use_deterministic_gpu_thread)
  {
    s_gpu_mainloop.Wakeup();
  }

  // if the sync GPU callback is suspended, wake it up.
  if (!SConfig::GetInstance().bCPUThread || s_use_deterministic_gpu_thread ||
      SConfig::GetInstance().bSyncGPU)
  {
    if (s_syncing_suspended)
    {
      s_syncing_suspended = false;
      CoreTiming::ScheduleEvent(GPU_TIME_SLOT_SIZE, s_event_sync_gpu, GPU_TIME_SLOT_SIZE);
    }
  }
}

static int RunGpuOnCpu(int ticks)
{
  SCPFifoStruct& fifo = CommandProcessor::fifo;
  bool reset_simd_state = false;
  int available_ticks = int(ticks * SConfig::GetInstance().fSyncGpuOverclock) + s_sync_ticks.load();
  while (fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance && !AtBreakpoint() &&
         available_ticks >= 0)
  {
    if (s_use_deterministic_gpu_thread)
    {
      ReadDataFromFifoOnCPU(fifo.CPReadPointer);
      s_gpu_mainloop.Wakeup();
    }
    else
    {
      if (!reset_simd_state)
      {
        FPURoundMode::SaveSIMDState();
        FPURoundMode::LoadDefaultSIMDState();
        reset_simd_state = true;
      }
      ReadDataFromFifo(fifo.CPReadPointer);
      u32 cycles = 0;
      s_video_buffer_read_ptr = OpcodeDecoder::Run(
          DataReader(s_video_buffer_read_ptr, s_video_buffer_write_ptr), &cycles, false);
      available_ticks -= cycles;
    }

    if (fifo.CPReadPointer == fifo.CPEnd)
      fifo.CPReadPointer = fifo.CPBase;
    else
      fifo.CPReadPointer += 32;

    fifo.CPReadWriteDistance -= 32;
  }

  CommandProcessor::SetCPStatusFromGPU();

  if (reset_simd_state)
  {
    FPURoundMode::LoadSIMDState();
  }

  // Discard all available ticks as there is nothing to do any more.
  s_sync_ticks.store(std::min(available_ticks, 0));

  // If the GPU is idle, drop the handler.
  if (available_ticks >= 0)
    return -1;

  // Always wait at least for GPU_TIME_SLOT_SIZE cycles.
  return -available_ticks + GPU_TIME_SLOT_SIZE;
}

void UpdateWantDeterminism(bool want)
{
  // We are paused (or not running at all yet), so
  // it should be safe to change this.
  const SConfig& param = SConfig::GetInstance();
  bool gpu_thread = false;
  switch (param.m_GPUDeterminismMode)
  {
  case GPU_DETERMINISM_AUTO:
    gpu_thread = want;

    // Hack: For now movies are an exception to this being on (but not
    // to wanting determinism in general).  Once vertex arrays are
    // fixed, there should be no reason to want this off for movies by
    // default, so this can be removed.
    if (!NetPlay::IsNetPlayRunning())
      gpu_thread = false;

    break;
  case GPU_DETERMINISM_NONE:
    gpu_thread = false;
    break;
  case GPU_DETERMINISM_FAKE_COMPLETION:
    gpu_thread = true;
    break;
  }

  gpu_thread = gpu_thread && param.bCPUThread;

  if (s_use_deterministic_gpu_thread != gpu_thread)
  {
    s_use_deterministic_gpu_thread = gpu_thread;
    if (gpu_thread)
    {
      // These haven't been updated in non-deterministic mode.
      s_video_buffer_seen_ptr = s_video_buffer_pp_read_ptr = s_video_buffer_read_ptr;
      CopyPreprocessCPStateFromMain();
      VertexLoaderManager::MarkAllDirty();
    }
  }
}

bool UseDeterministicGPUThread()
{
  return s_use_deterministic_gpu_thread;
}

/* This function checks the emulated CPU - GPU distance and may wake up the GPU,
 * or block the CPU if required. It should be called by the CPU thread regularly.
 * @ticks The gone emulated CPU time.
 * @return A good time to call WaitForGpuThread() next.
 */
static int WaitForGpuThread(int ticks)
{
  const SConfig& param = SConfig::GetInstance();

  int old = s_sync_ticks.fetch_add(ticks);
  int now = old + ticks;

  // GPU is idle, so stop polling.
  if (old >= 0 && s_gpu_mainloop.IsDone())
    return -1;

  // Wakeup GPU
  if (old < param.iSyncGpuMinDistance && now >= param.iSyncGpuMinDistance)
    RunGpu();

  // If the GPU is still sleeping, wait for a longer time
  if (now < param.iSyncGpuMinDistance)
    return GPU_TIME_SLOT_SIZE + param.iSyncGpuMinDistance - now;

  // Wait for GPU
  if (now >= param.iSyncGpuMaxDistance)
    s_sync_wakeup_event.Wait();

  return GPU_TIME_SLOT_SIZE;
}

static void SyncGPUCallback(u64 ticks, s64 cyclesLate)
{
  ticks += cyclesLate;
  int next = -1;

  if (!SConfig::GetInstance().bCPUThread || s_use_deterministic_gpu_thread)
  {
    next = RunGpuOnCpu((int)ticks);
  }
  else if (SConfig::GetInstance().bSyncGPU)
  {
    next = WaitForGpuThread((int)ticks);
  }

  s_syncing_suspended = next < 0;
  if (!s_syncing_suspended)
    CoreTiming::ScheduleEvent(next, s_event_sync_gpu, next);
}

// Initialize GPU - CPU thread syncing, this gives us a deterministic way to start the GPU thread.
void Prepare()
{
  s_event_sync_gpu = CoreTiming::RegisterEvent("SyncGPUCallback", SyncGPUCallback);
  s_syncing_suspended = true;
}
}
Beispiel #24
0
void DSPCore_Step()
{
	if (core_state == DSPCORE_STEPPING)
		step_event.Set();
}
Beispiel #25
0
void Host_UpdateMainFrame()
{
	updateMainFrameEvent.Set();
}
Beispiel #26
0
void X11_MainLoop()
{
	bool fullscreen = SConfig::GetInstance().m_LocalCoreStartupParameter.bFullscreen;
	while (Core::GetState() == Core::CORE_UNINITIALIZED)
		updateMainFrameEvent.Wait();

	Display *dpy = XOpenDisplay(0);
	Window win = (Window)Core::GetWindowHandle();
	XSelectInput(dpy, win, KeyPressMask | FocusChangeMask);

	if (SConfig::GetInstance().m_LocalCoreStartupParameter.bDisableScreenSaver)
		X11Utils::InhibitScreensaver(dpy, win, true);

#if defined(HAVE_XRANDR) && HAVE_XRANDR
	X11Utils::XRRConfiguration *XRRConfig = new X11Utils::XRRConfiguration(dpy, win);
#endif

	Cursor blankCursor = None;
	if (SConfig::GetInstance().m_LocalCoreStartupParameter.bHideCursor)
	{
		// make a blank cursor
		Pixmap Blank;
		XColor DummyColor;
		char ZeroData[1] = {0};
		Blank = XCreateBitmapFromData (dpy, win, ZeroData, 1, 1);
		blankCursor = XCreatePixmapCursor(dpy, Blank, Blank, &DummyColor, &DummyColor, 0, 0);
		XFreePixmap (dpy, Blank);
		XDefineCursor(dpy, win, blankCursor);
	}

	if (fullscreen)
	{
		X11Utils::EWMH_Fullscreen(dpy, _NET_WM_STATE_TOGGLE);
#if defined(HAVE_XRANDR) && HAVE_XRANDR
		XRRConfig->ToggleDisplayMode(True);
#endif
	}

	// The actual loop
	while (running)
	{
		XEvent event;
		KeySym key;
		for (int num_events = XPending(dpy); num_events > 0; num_events--)
		{
			XNextEvent(dpy, &event);
			switch(event.type)
			{
				case KeyPress:
					key = XLookupKeysym((XKeyEvent*)&event, 0);
					if (key == XK_Escape)
					{
						if (Core::GetState() == Core::CORE_RUN)
						{
							if (SConfig::GetInstance().m_LocalCoreStartupParameter.bHideCursor)
								XUndefineCursor(dpy, win);
							Core::SetState(Core::CORE_PAUSE);
						}
						else
						{
							if (SConfig::GetInstance().m_LocalCoreStartupParameter.bHideCursor)
								XDefineCursor(dpy, win, blankCursor);
							Core::SetState(Core::CORE_RUN);
						}
					}
					else if ((key == XK_Return) && (event.xkey.state & Mod1Mask))
					{
						fullscreen = !fullscreen;
						X11Utils::EWMH_Fullscreen(dpy, _NET_WM_STATE_TOGGLE);
#if defined(HAVE_XRANDR) && HAVE_XRANDR
						XRRConfig->ToggleDisplayMode(fullscreen);
#endif
					}
					else if (key >= XK_F1 && key <= XK_F8)
					{
						int slot_number = key - XK_F1 + 1;
						if (event.xkey.state & ShiftMask)
							State::Save(slot_number);
						else
							State::Load(slot_number);
					}
					else if (key == XK_F9)
						Core::SaveScreenShot();
					else if (key == XK_F11)
						State::LoadLastSaved();
					else if (key == XK_F12)
					{
						if (event.xkey.state & ShiftMask)
							State::UndoLoadState();
						else
							State::UndoSaveState();
					}
					break;
				case FocusIn:
					rendererHasFocus = true;
					if (SConfig::GetInstance().m_LocalCoreStartupParameter.bHideCursor &&
							Core::GetState() != Core::CORE_PAUSE)
						XDefineCursor(dpy, win, blankCursor);
					break;
				case FocusOut:
					rendererHasFocus = false;
					if (SConfig::GetInstance().m_LocalCoreStartupParameter.bHideCursor)
						XUndefineCursor(dpy, win);
					break;
			}
		}
		if (!fullscreen)
		{
			Window winDummy;
			unsigned int borderDummy, depthDummy;
			XGetGeometry(dpy, win, &winDummy,
					&SConfig::GetInstance().m_LocalCoreStartupParameter.iRenderWindowXPos,
					&SConfig::GetInstance().m_LocalCoreStartupParameter.iRenderWindowYPos,
					(unsigned int *)&SConfig::GetInstance().m_LocalCoreStartupParameter.iRenderWindowWidth,
					(unsigned int *)&SConfig::GetInstance().m_LocalCoreStartupParameter.iRenderWindowHeight,
					&borderDummy, &depthDummy);
		}
		usleep(100000);
	}

#if defined(HAVE_XRANDR) && HAVE_XRANDR
	delete XRRConfig;
#endif
	if (SConfig::GetInstance().m_LocalCoreStartupParameter.bDisableScreenSaver)
		X11Utils::InhibitScreensaver(dpy, win, false);

	if (SConfig::GetInstance().m_LocalCoreStartupParameter.bHideCursor)
		XFreeCursor(dpy, blankCursor);
	XCloseDisplay(dpy);
	Core::Stop();
}
Beispiel #27
0
void DSPCore_Step()
{
  if (core_state == State::Stepping)
    step_event.Set();
}
Beispiel #28
0
int main(int argc, char* argv[])
{
  auto parser = CommandLineParse::CreateParser(CommandLineParse::ParserOptions::OmitGUIOptions);
  optparse::Values& options = CommandLineParse::ParseArguments(parser.get(), argc, argv);
  std::vector<std::string> args = parser->args();

  std::string boot_filename;
  if (options.is_set("exec"))
  {
    boot_filename = static_cast<const char*>(options.get("exec"));
  }
  else if (args.size())
  {
    boot_filename = args.front();
    args.erase(args.begin());
  }
  else
  {
    parser->print_help();
    return 0;
  }

  std::string user_directory;
  if (options.is_set("user"))
  {
    user_directory = static_cast<const char*>(options.get("user"));
  }

  platform = GetPlatform();
  if (!platform)
  {
    fprintf(stderr, "No platform found\n");
    return 1;
  }

  UICommon::SetUserDirectory(user_directory);
  UICommon::Init();

  Core::SetOnStoppedCallback([]() { s_running.Clear(); });
  platform->Init();

  // Shut down cleanly on SIGINT and SIGTERM
  struct sigaction sa;
  sa.sa_handler = signal_handler;
  sigemptyset(&sa.sa_mask);
  sa.sa_flags = SA_RESETHAND;
  sigaction(SIGINT, &sa, nullptr);
  sigaction(SIGTERM, &sa, nullptr);

  DolphinAnalytics::Instance()->ReportDolphinStart("nogui");

  if (!BootManager::BootCore(BootParameters::GenerateFromFile(boot_filename)))
  {
    fprintf(stderr, "Could not boot %s\n", boot_filename.c_str());
    return 1;
  }

  while (!Core::IsRunning() && s_running.IsSet())
  {
    Core::HostDispatchJobs();
    updateMainFrameEvent.Wait();
  }

  if (s_running.IsSet())
    platform->MainLoop();
  Core::Stop();

  Core::Shutdown();
  platform->Shutdown();
  UICommon::Shutdown();

  delete platform;

  return 0;
}
Beispiel #29
0
namespace DVDThread
{
struct ReadRequest
{
  bool copy_to_ram;
  u32 output_address;
  u64 dvd_offset;
  u32 length;
  DiscIO::Partition partition;

  // This determines which code DVDInterface will run to reply
  // to the emulated software. We can't use callbacks,
  // because function pointers can't be stored in savestates.
  DVDInterface::ReplyType reply_type;

  // IDs are used to uniquely identify a request. They must not be
  // identical to IDs of any other requests that currently exist, but
  // it's fine to re-use IDs of requests that have existed in the past.
  u64 id;

  // Only used for logging
  u64 time_started_ticks;
  u64 realtime_started_us;
  u64 realtime_done_us;
};

using ReadResult = std::pair<ReadRequest, std::vector<u8>>;

static void StartDVDThread();
static void StopDVDThread();

static void DVDThread();
static void WaitUntilIdle();

static void StartReadInternal(bool copy_to_ram, u32 output_address, u64 dvd_offset, u32 length,
                              const DiscIO::Partition& partition,
                              DVDInterface::ReplyType reply_type, s64 ticks_until_completion);

static void FinishRead(u64 id, s64 cycles_late);
static CoreTiming::EventType* s_finish_read;

static u64 s_next_id = 0;

static std::thread s_dvd_thread;
static Common::Event s_request_queue_expanded;    // Is set by CPU thread
static Common::Event s_result_queue_expanded;     // Is set by DVD thread
static Common::Flag s_dvd_thread_exiting(false);  // Is set by CPU thread

static Common::SPSCQueue<ReadRequest, false> s_request_queue;
static Common::SPSCQueue<ReadResult, false> s_result_queue;
static std::map<u64, ReadResult> s_result_map;

static std::unique_ptr<DiscIO::Volume> s_disc;

void Start()
{
  s_finish_read = CoreTiming::RegisterEvent("FinishReadDVDThread", FinishRead);

  s_request_queue_expanded.Reset();
  s_result_queue_expanded.Reset();
  s_request_queue.Clear();
  s_result_queue.Clear();

  // This is reset on every launch for determinism, but it doesn't matter
  // much, because this will never get exposed to the emulated game.
  s_next_id = 0;

  StartDVDThread();
}

static void StartDVDThread()
{
  ASSERT(!s_dvd_thread.joinable());
  s_dvd_thread_exiting.Clear();
  s_dvd_thread = std::thread(DVDThread);
}

void Stop()
{
  StopDVDThread();
  s_disc.reset();
}

static void StopDVDThread()
{
  ASSERT(s_dvd_thread.joinable());

  // By setting s_DVD_thread_exiting, we ask the DVD thread to cleanly exit.
  // In case the request queue is empty, we need to set s_request_queue_expanded
  // so that the DVD thread will wake up and check s_DVD_thread_exiting.
  s_dvd_thread_exiting.Set();
  s_request_queue_expanded.Set();

  s_dvd_thread.join();
}

void DoState(PointerWrap& p)
{
  // By waiting for the DVD thread to be done working, we ensure
  // that s_request_queue will be empty and that the DVD thread
  // won't be touching anything while this function runs.
  WaitUntilIdle();

  // Move all results from s_result_queue to s_result_map because
  // PointerWrap::Do supports std::map but not Common::SPSCQueue.
  // This won't affect the behavior of FinishRead.
  ReadResult result;
  while (s_result_queue.Pop(result))
    s_result_map.emplace(result.first.id, std::move(result));

  // Both queues are now empty, so we don't need to savestate them.
  p.Do(s_result_map);
  p.Do(s_next_id);

  // s_disc isn't savestated (because it points to files on the
  // local system). Instead, we check that the status of the disc
  // is the same as when the savestate was made. This won't catch
  // cases of having the wrong disc inserted, though.
  // TODO: Check the game ID, disc number, revision?
  bool had_disc = HasDisc();
  p.Do(had_disc);
  if (had_disc != HasDisc())
  {
    if (had_disc)
      PanicAlertT("An inserted disc was expected but not found.");
    else
      s_disc.reset();
  }

  // TODO: Savestates can be smaller if the buffers of results aren't saved,
  // but instead get re-read from the disc when loading the savestate.

  // TODO: It would be possible to create a savestate faster by stopping
  // the DVD thread regardless of whether there are pending requests.

  // After loading a savestate, the debug log in FinishRead will report
  // screwed up times for requests that were submitted before the savestate
  // was made. Handling that properly may be more effort than it's worth.
}

void SetDisc(std::unique_ptr<DiscIO::Volume> disc)
{
  WaitUntilIdle();
  s_disc = std::move(disc);
}

bool HasDisc()
{
  return s_disc != nullptr;
}

bool IsEncryptedAndHashed()
{
  // IsEncryptedAndHashed is thread-safe, so calling WaitUntilIdle isn't necessary.
  return s_disc->IsEncryptedAndHashed();
}

DiscIO::Platform GetDiscType()
{
  // GetVolumeType is thread-safe, so calling WaitUntilIdle isn't necessary.
  return s_disc->GetVolumeType();
}

u64 PartitionOffsetToRawOffset(u64 offset, const DiscIO::Partition& partition)
{
  // PartitionOffsetToRawOffset is thread-safe, so calling WaitUntilIdle isn't necessary.
  return s_disc->PartitionOffsetToRawOffset(offset, partition);
}

IOS::ES::TMDReader GetTMD(const DiscIO::Partition& partition)
{
  WaitUntilIdle();
  return s_disc->GetTMD(partition);
}

IOS::ES::TicketReader GetTicket(const DiscIO::Partition& partition)
{
  WaitUntilIdle();
  return s_disc->GetTicket(partition);
}

bool IsInsertedDiscRunning()
{
  if (!s_disc)
    return false;

  WaitUntilIdle();

  return SConfig::GetInstance().GetGameID() == s_disc->GetGameID();
}

bool UpdateRunningGameMetadata(const DiscIO::Partition& partition, std::optional<u64> title_id)
{
  if (!s_disc)
    return false;

  WaitUntilIdle();

  if (title_id)
  {
    const std::optional<u64> volume_title_id = s_disc->GetTitleID(partition);
    if (!volume_title_id || *volume_title_id != *title_id)
      return false;
  }

  SConfig::GetInstance().SetRunningGameMetadata(*s_disc, partition);
  return true;
}

void WaitUntilIdle()
{
  ASSERT(Core::IsCPUThread());

  while (!s_request_queue.Empty())
    s_result_queue_expanded.Wait();

  StopDVDThread();
  StartDVDThread();
}

void StartRead(u64 dvd_offset, u32 length, const DiscIO::Partition& partition,
               DVDInterface::ReplyType reply_type, s64 ticks_until_completion)
{
  StartReadInternal(false, 0, dvd_offset, length, partition, reply_type, ticks_until_completion);
}

void StartReadToEmulatedRAM(u32 output_address, u64 dvd_offset, u32 length,
                            const DiscIO::Partition& partition, DVDInterface::ReplyType reply_type,
                            s64 ticks_until_completion)
{
  StartReadInternal(true, output_address, dvd_offset, length, partition, reply_type,
                    ticks_until_completion);
}

static void StartReadInternal(bool copy_to_ram, u32 output_address, u64 dvd_offset, u32 length,
                              const DiscIO::Partition& partition,
                              DVDInterface::ReplyType reply_type, s64 ticks_until_completion)
{
  ASSERT(Core::IsCPUThread());

  ReadRequest request;

  request.copy_to_ram = copy_to_ram;
  request.output_address = output_address;
  request.dvd_offset = dvd_offset;
  request.length = length;
  request.partition = partition;
  request.reply_type = reply_type;

  u64 id = s_next_id++;
  request.id = id;

  request.time_started_ticks = CoreTiming::GetTicks();
  request.realtime_started_us = Common::Timer::GetTimeUs();

  s_request_queue.Push(std::move(request));
  s_request_queue_expanded.Set();

  CoreTiming::ScheduleEvent(ticks_until_completion, s_finish_read, id);
}

static void FinishRead(u64 id, s64 cycles_late)
{
  // We can't simply pop s_result_queue and always get the ReadResult
  // we want, because the DVD thread may add ReadResults to the queue
  // in a different order than we want to get them. What we do instead
  // is to pop the queue until we find the ReadResult we want (the one
  // whose ID matches userdata), which means we may end up popping
  // ReadResults that we don't want. We can't add those unwanted results
  // back to the queue, because the queue can only have one writer.
  // Instead, we add them to a map that only is used by the CPU thread.
  // When this function is called again later, it will check the map for
  // the wanted ReadResult before it starts searching through the queue.
  ReadResult result;
  auto it = s_result_map.find(id);
  if (it != s_result_map.end())
  {
    result = std::move(it->second);
    s_result_map.erase(it);
  }
  else
  {
    while (true)
    {
      while (!s_result_queue.Pop(result))
        s_result_queue_expanded.Wait();

      if (result.first.id == id)
        break;
      else
        s_result_map.emplace(result.first.id, std::move(result));
    }
  }
  // We have now obtained the right ReadResult.

  const ReadRequest& request = result.first;
  const std::vector<u8>& buffer = result.second;

  DEBUG_LOG(DVDINTERFACE,
            "Disc has been read. Real time: %" PRIu64 " us. "
            "Real time including delay: %" PRIu64 " us. "
            "Emulated time including delay: %" PRIu64 " us.",
            request.realtime_done_us - request.realtime_started_us,
            Common::Timer::GetTimeUs() - request.realtime_started_us,
            (CoreTiming::GetTicks() - request.time_started_ticks) /
                (SystemTimers::GetTicksPerSecond() / 1000000));

  if (buffer.size() != request.length)
  {
    PanicAlertT("The disc could not be read (at 0x%" PRIx64 " - 0x%" PRIx64 ").",
                request.dvd_offset, request.dvd_offset + request.length);
  }
  else
  {
    if (request.copy_to_ram)
      Memory::CopyToEmu(request.output_address, buffer.data(), request.length);
  }

  // Notify the emulated software that the command has been executed
  DVDInterface::FinishExecutingCommand(request.reply_type, DVDInterface::INT_TCINT, cycles_late,
                                       buffer);
}

static void DVDThread()
{
  Common::SetCurrentThreadName("DVD thread");

  while (true)
  {
    s_request_queue_expanded.Wait();

    if (s_dvd_thread_exiting.IsSet())
      return;

    ReadRequest request;
    while (s_request_queue.Pop(request))
    {
      FileMonitor::Log(*s_disc, request.partition, request.dvd_offset);

      std::vector<u8> buffer(request.length);
      if (!s_disc->Read(request.dvd_offset, request.length, buffer.data(), request.partition))
        buffer.resize(0);

      request.realtime_done_us = Common::Timer::GetTimeUs();

      s_result_queue.Push(ReadResult(std::move(request), std::move(buffer)));
      s_result_queue_expanded.Set();

      if (s_dvd_thread_exiting.IsSet())
        return;
    }
  }
}
}  // namespace DVDThread
Beispiel #30
0
// Description: Main FIFO update loop
// Purpose: Keep the Core HW updated about the CPU-GPU distance
void RunGpuLoop()
{

	AsyncRequests::GetInstance()->SetEnable(true);
	AsyncRequests::GetInstance()->SetPassthrough(false);

	s_gpu_mainloop.Run(
	[] {
		const SConfig& param = SConfig::GetInstance();

		g_video_backend->PeekMessages();

		// Do nothing while paused
		if (!s_emu_running_state.load())
			return;

		if (g_use_deterministic_gpu_thread)
		{
			AsyncRequests::GetInstance()->PullEvents();

			// All the fifo/CP stuff is on the CPU.  We just need to run the opcode decoder.
			u8* seen_ptr = s_video_buffer_seen_ptr;
			u8* write_ptr = s_video_buffer_write_ptr;
			// See comment in SyncGPU
			if (write_ptr > seen_ptr)
			{
				s_video_buffer_read_ptr = OpcodeDecoder_Run(DataReader(s_video_buffer_read_ptr, write_ptr), nullptr, false);
				s_video_buffer_seen_ptr = write_ptr;
			}
		}
		else
		{
			SCPFifoStruct &fifo = CommandProcessor::fifo;

			AsyncRequests::GetInstance()->PullEvents();

			CommandProcessor::SetCPStatusFromGPU();

			// check if we are able to run this buffer
			while (!CommandProcessor::IsInterruptWaiting() && fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance && !AtBreakpoint())
			{
				if (param.bSyncGPU && s_sync_ticks.load() < param.iSyncGpuMinDistance)
					break;

				u32 cyclesExecuted = 0;
				u32 readPtr = fifo.CPReadPointer;
				ReadDataFromFifo(readPtr);

				if (readPtr == fifo.CPEnd)
					readPtr = fifo.CPBase;
				else
					readPtr += 32;

				_assert_msg_(COMMANDPROCESSOR, (s32)fifo.CPReadWriteDistance - 32 >= 0 ,
					"Negative fifo.CPReadWriteDistance = %i in FIFO Loop !\nThat can produce instability in the game. Please report it.", fifo.CPReadWriteDistance - 32);

				u8* write_ptr = s_video_buffer_write_ptr;
				s_video_buffer_read_ptr = OpcodeDecoder_Run(DataReader(s_video_buffer_read_ptr, write_ptr), &cyclesExecuted, false);

				Common::AtomicStore(fifo.CPReadPointer, readPtr);
				Common::AtomicAdd(fifo.CPReadWriteDistance, -32);
				if ((write_ptr - s_video_buffer_read_ptr) == 0)
					Common::AtomicStore(fifo.SafeCPReadPointer, fifo.CPReadPointer);

				CommandProcessor::SetCPStatusFromGPU();

				if (param.bSyncGPU)
				{
					cyclesExecuted = (int)(cyclesExecuted / param.fSyncGpuOverclock);
					int old = s_sync_ticks.fetch_sub(cyclesExecuted);
					if (old > 0 && old - (int)cyclesExecuted <= 0)
						s_sync_wakeup_event.Set();
				}

				// This call is pretty important in DualCore mode and must be called in the FIFO Loop.
				// If we don't, s_swapRequested or s_efbAccessRequested won't be set to false
				// leading the CPU thread to wait in Video_BeginField or Video_AccessEFB thus slowing things down.
				AsyncRequests::GetInstance()->PullEvents();
			}

			// fast skip remaining GPU time if fifo is empty
			if (s_sync_ticks.load() > 0)
			{
				int old = s_sync_ticks.exchange(0);
				if (old > 0)
					s_sync_wakeup_event.Set();
			}

			// The fifo is empty and it's unlikely we will get any more work in the near future.
			// Make sure VertexManager finishes drawing any primitives it has stored in it's buffer.
			VertexManager::Flush();
		}
	}, 100);

	AsyncRequests::GetInstance()->SetEnable(false);
	AsyncRequests::GetInstance()->SetPassthrough(true);
}