Beispiel #1
0
	//************This method could be used only when there are many steps, otherwise it might be removed*******************************************//
	//Create a combined mxb matrix for trajectories from A to B to A
	Eigen::MatrixXf CreateCombinedMXBMatrix(Eigen::MatrixXf matrixA, Eigen::MatrixXf matrixB, float increment, int i, int j, int offset)
	{
	    //Create a matrix with zmp trajectory from A to B
	    Eigen::MatrixXf mxbMatrixBA = MXB(matrixA.row(i), matrixB.row(j), increment, offset);

		Eigen::MatrixXf noZMPMovement(mxbMatrixBA.rows(), mxbMatrixBA.cols());
		for(int i = 0; i < mxbMatrixBA.rows(); i++)
		{
			noZMPMovement.row(i) = mxbMatrixBA.bottomRows(1);
		}

        Eigen::MatrixXf tempMatrix(2*mxbMatrixBA.rows(), mxbMatrixBA.cols());
        tempMatrix << mxbMatrixBA, noZMPMovement;
        mxbMatrixBA.swap(tempMatrix);

	    //Append both step trajectories
	    if(matrixA.rows() > i+1)
	    {
			//Create a matrix with zmp trajectory from B to A
	        Eigen::MatrixXf mxbMatrixAB = MXB(matrixB.row(j), matrixA.row(i+1), increment, offset);

			for(int i = 0; i < mxbMatrixAB.rows(); i++)
			{
				noZMPMovement.row(i) = mxbMatrixAB.bottomRows(1);
			}

	        Eigen::MatrixXf tempMatrix2(2*mxbMatrixAB.rows(), mxbMatrixAB.cols());
	        tempMatrix2 << mxbMatrixAB, noZMPMovement;
	        mxbMatrixAB.swap(tempMatrix2);

	        Eigen::MatrixXf mxbMatrix(mxbMatrixBA.rows()+mxbMatrixAB.rows(), mxbMatrixBA.cols());
	        mxbMatrix << mxbMatrixBA, mxbMatrixAB;

	        return mxbMatrix;
	    }
	    else
	    {
	        return mxbMatrixBA;
	    }
	}
Beispiel #2
0
int Shell::split(QVariantList points)
{
	QPointF point;

	//omit last value, because it is always zero
	int dataSize = points.size()-1;

	Eigen::MatrixXf x; x.resize(dataSize,2);
	Eigen::VectorXf y(dataSize);

  //create the linear eq system in the form of y = beta1*x + beta2*1
	for( int i = 0; i < dataSize; i++)
	{
		point = points[i].toPointF();
		x(i, 0) = 1.0f; //beta for y-intercept
		x(i, 1) = point.x(); //beta for slope (dependent on x)

		y(i) = point.y(); 
	}

	//Error function (least squares of ax+b)
	auto error = [](Regression reg, int b, int a)->float
	{
		float result = 0;
		for(int i=0 ; i< reg.y.size(); i++)
		{
			float functionValue = a*reg.x(i, 1)+ b;
			float squarederror = std::pow(reg.y(i) - functionValue, 2);
			result+=squarederror;
		}
		return result;

	};

	//Perform all pairs of regressions
	float lowestError = std::numeric_limits<float>::max();
	float r1a, r1b;
	float r2a, r2b;
	int splitIndex = 0;

	for( int i = 2; i < dataSize; i++)
	{
		Regression reg1; reg1.x = x.topRows(i); reg1.y = y.head(i);
		Regression reg2; reg2.x = x.bottomRows(dataSize-i); reg2.y = y.tail(dataSize-i);

		Eigen::MatrixXf reg1Result = ((reg1.x.transpose() * reg1.x).inverse() * reg1.x.transpose()) * reg1.y;
		Eigen::MatrixXf reg2Result = ((reg2.x.transpose() * reg2.x).inverse() * reg2.x.transpose()) * reg2.y;

		float currentError = error(reg1,reg1Result(0),reg1Result(1)) + error(reg2,reg2Result(0),reg2Result(1));
		if (currentError < lowestError)
		{
			r1a = reg1Result(1); r1b = reg1Result(0);
			r2a = reg2Result(1); r2b = reg2Result(0);
			lowestError = currentError;
			splitIndex = i;
		}

	}
	std::cout << "r1:" << r1a << "x + " << r1b << std::endl;
	std::cout << "r2:" << r2a << "x + " << r2b << std::endl;
	std::cout << "(smallest error:" << lowestError << ")" << std::endl;

	return splitIndex;
}