boost::optional<Geom::Point> Line::intersection_with_viewbox (SPDesktop *desktop) { Geom::Rect vb = desktop->get_display_area(); /* remaining viewbox corners */ Geom::Point ul (vb.min()[Geom::X], vb.max()[Geom::Y]); Geom::Point lr (vb.max()[Geom::X], vb.min()[Geom::Y]); std::pair <Geom::Point, Geom::Point> e = side_of_intersection (vb.min(), lr, vb.max(), ul, this->pt, this->v_dir); if (e.first == e.second) { // perspective line lies outside the canvas return boost::optional<Geom::Point>(); } Line line (e.first, e.second); return this->intersect (line); }
Geom::Affine sp_gradient_get_g2d_matrix(SPGradient const *gr, Geom::Affine const &ctm, Geom::Rect const &bbox) { if (gr->getUnits() == SP_GRADIENT_UNITS_OBJECTBOUNDINGBOX) { return ( Geom::Scale(bbox.dimensions()) * Geom::Translate(bbox.min()) * Geom::Affine(ctm) ); } else { return ctm; } }
void FilterFlood::render_cairo(FilterSlot &slot) { cairo_surface_t *input = slot.getcairo(_input); double r = SP_RGBA32_R_F(color); double g = SP_RGBA32_G_F(color); double b = SP_RGBA32_B_F(color); double a = opacity; #if defined(HAVE_LIBLCMS1) || defined(HAVE_LIBLCMS2) if (icc) { guchar ru, gu, bu; icc_color_to_sRGB(icc, &ru, &gu, &bu); r = SP_COLOR_U_TO_F(ru); g = SP_COLOR_U_TO_F(gu); b = SP_COLOR_U_TO_F(bu); } #endif cairo_surface_t *out = ink_cairo_surface_create_same_size(input, CAIRO_CONTENT_COLOR_ALPHA); // Get filter primitive area in user units Geom::Rect fp = filter_primitive_area( slot.get_units() ); // Convert to Cairo units Geom::Rect fp_cairo = fp * slot.get_units().get_matrix_user2pb(); // Get area in slot (tile to fill) Geom::Rect sa = slot.get_slot_area(); // Get overlap Geom::OptRect optoverlap = intersect( fp_cairo, sa ); if( optoverlap ) { Geom::Rect overlap = *optoverlap; double dx = fp_cairo.min()[Geom::X] - sa.min()[Geom::X]; double dy = fp_cairo.min()[Geom::Y] - sa.min()[Geom::Y]; if( dx < 0.0 ) dx = 0.0; if( dy < 0.0 ) dy = 0.0; cairo_t *ct = cairo_create(out); cairo_set_source_rgba(ct, r, g, b, a); cairo_set_operator(ct, CAIRO_OPERATOR_SOURCE); cairo_rectangle(ct, dx, dy, overlap.width(), overlap.height() ); cairo_fill(ct); cairo_destroy(ct); } slot.set(_output, out); cairo_surface_destroy(out); }
/** * Given a Geom::Rect that may, for example, correspond to the bbox of an object, * this function fits the canvas to that rect by resizing the canvas * and translating the document root into position. */ void SPDocument::fitToRect(Geom::Rect const &rect) { double const w = rect.width(); double const h = rect.height(); double const old_height = sp_document_height(this); SPUnit const &px(sp_unit_get_by_id(SP_UNIT_PX)); sp_document_set_width(this, w, &px); sp_document_set_height(this, h, &px); Geom::Translate const tr(Geom::Point(0, (old_height - h)) - to_2geom(rect.min())); SP_GROUP(root)->translateChildItems(tr); SPNamedView *nv = sp_document_namedview(this, 0); if(nv) { Geom::Translate tr2(-rect.min()); nv->translateGuides(tr2); // update the viewport so the drawing appears to stay where it was nv->scrollAllDesktops(-tr2[0], tr2[1], false); } }
void sp_gradient_set_gs2d_matrix(SPGradient *gr, Geom::Affine const &ctm, Geom::Rect const &bbox, Geom::Affine const &gs2d) { gr->gradientTransform = gs2d * ctm.inverse(); if (gr->getUnits() == SP_GRADIENT_UNITS_OBJECTBOUNDINGBOX ) { gr->gradientTransform = ( gr->gradientTransform * Geom::Translate(-bbox.min()) * Geom::Scale(bbox.dimensions()).inverse() ); } gr->gradientTransform_set = TRUE; gr->requestModified(SP_OBJECT_MODIFIED_FLAG); }
void FilterTile::render_cairo(FilterSlot &slot) { // FIX ME! static bool tile_warning = false; if (!tile_warning) { g_warning("Renderer for feTile has non-optimal implementation, expect slowness and bugs."); tile_warning = true; } // Fixing isn't so easy as the Inkscape renderer breaks the canvas into "rendering" tiles for // faster rendering. (The "rendering" tiles are not the same as the tiles in this primitive.) // Only if the the feTile tile source falls inside the current "rendering" tile will the tile // image be available. // This input source contains only the "rendering" tile. cairo_surface_t *in = slot.getcairo(_input); // For debugging // static int i = 0; // ++i; // std::stringstream filename; // filename << "dump." << i << ".png"; // cairo_surface_write_to_png( in, filename.str().c_str() ); // This is the feTile source area as determined by the input primitive area (see SVG spec). Geom::Rect tile_area = slot.get_primitive_area(_input); if( tile_area.width() == 0.0 || tile_area.height() == 0.0 ) { slot.set(_output, in); std::cerr << "FileTile::render_cairo: tile has zero width or height" << std::endl; } else { cairo_surface_t *out = ink_cairo_surface_create_identical(in); // color_interpolation_filters for out same as in. copy_cairo_surface_ci(in, out); cairo_t *ct = cairo_create(out); // The rectangle of the "rendering" tile. Geom::Rect sa = slot.get_slot_area(); Geom::Affine trans = slot.get_units().get_matrix_user2pb(); // Create feTile tile ---------------- // Get tile area in pixbuf units (tile transformed). Geom::Rect tt = tile_area * trans; // Shift between "rendering" tile and feTile tile Geom::Point shift = sa.min() - tt.min(); // Create feTile tile surface cairo_surface_t *tile = cairo_surface_create_similar(in, cairo_surface_get_content(in), tt.width(), tt.height()); cairo_t *ct_tile = cairo_create(tile); cairo_set_source_surface(ct_tile, in, shift[Geom::X], shift[Geom::Y]); cairo_paint(ct_tile); // Paint tiles ------------------ // For debugging // std::stringstream filename; // filename << "tile." << i << ".png"; // cairo_surface_write_to_png( tile, filename.str().c_str() ); // Determine number of feTile rows and columns Geom::Rect pr = filter_primitive_area( slot.get_units() ); int tile_cols = ceil( pr.width() / tile_area.width() ); int tile_rows = ceil( pr.height() / tile_area.height() ); // Do tiling (TO DO: restrict to slot area.) for( int col=0; col < tile_cols; ++col ) { for( int row=0; row < tile_rows; ++row ) { Geom::Point offset( col*tile_area.width(), row*tile_area.height() ); offset *= trans; offset[Geom::X] -= trans[4]; offset[Geom::Y] -= trans[5]; cairo_set_source_surface(ct, tile, offset[Geom::X], offset[Geom::Y]); cairo_paint(ct); } } slot.set(_output, out); // Clean up cairo_destroy(ct); cairo_surface_destroy(out); cairo_destroy(ct_tile); cairo_surface_destroy(tile); } }
/** * Creates a surface with the given logical and physical extents. * When a drawing context is created for this surface, its pixels * will cover the area under the given rectangle. IT will contain * the number of pixels specified by the second argument. * @param logbox Logical extents of the surface * @param pixdims Pixel dimensions of the surface. */ DrawingSurface::DrawingSurface(Geom::Rect const &logbox, Geom::IntPoint const &pixdims) : _surface(NULL) , _origin(logbox.min()) , _scale(pixdims[X] / logbox.width(), pixdims[Y] / logbox.height()) , _pixels(pixdims) {}
std::vector<Geom::Point> Layout::createSelectionShape(iterator const &it_start, iterator const &it_end, Geom::Affine const &transform) const { std::vector<Geom::Point> quads; unsigned char_index; unsigned end_char_index; if (it_start._char_index < it_end._char_index) { char_index = it_start._char_index; end_char_index = it_end._char_index; } else { char_index = it_end._char_index; end_char_index = it_start._char_index; } for ( ; char_index < end_char_index ; ) { if (_characters[char_index].in_glyph == -1) { char_index++; continue; } double char_rotation = _glyphs[_characters[char_index].in_glyph].rotation; unsigned span_index = _characters[char_index].in_span; Geom::Point top_left, bottom_right; if (_path_fitted || char_rotation != 0.0) { Geom::Rect box = characterBoundingBox(iterator(this, char_index), &char_rotation); top_left = box.min(); bottom_right = box.max(); char_index++; } else { // for straight text we can be faster by combining all the character boxes in a span into one box double span_x = _spans[span_index].x_start + _spans[span_index].chunk(this).left_x; top_left[Geom::X] = span_x + _characters[char_index].x; while (char_index < end_char_index && _characters[char_index].in_span == span_index) char_index++; if (char_index == _characters.size() || _characters[char_index].in_span != span_index) bottom_right[Geom::X] = _spans[span_index].x_end + _spans[span_index].chunk(this).left_x; else bottom_right[Geom::X] = span_x + _characters[char_index].x; double baseline_y = _spans[span_index].line(this).baseline_y + _spans[span_index].baseline_shift; double vertical_scale = _glyphs.back().vertical_scale; if (_directions_are_orthogonal(_blockProgression(), TOP_TO_BOTTOM)) { double span_height = vertical_scale * (_spans[span_index].line_height.ascent + _spans[span_index].line_height.descent); top_left[Geom::Y] = top_left[Geom::X]; top_left[Geom::X] = baseline_y - span_height * 0.5; bottom_right[Geom::Y] = bottom_right[Geom::X]; bottom_right[Geom::X] = baseline_y + span_height * 0.5; } else { top_left[Geom::Y] = baseline_y - vertical_scale * _spans[span_index].line_height.ascent; bottom_right[Geom::Y] = baseline_y + vertical_scale * _spans[span_index].line_height.descent; } } Geom::Rect char_box(top_left, bottom_right); if (char_box.dimensions()[Geom::X] == 0.0 || char_box.dimensions()[Geom::Y] == 0.0) continue; Geom::Point center_of_rotation((top_left[Geom::X] + bottom_right[Geom::X]) * 0.5, top_left[Geom::Y] + _spans[span_index].line_height.ascent); Geom::Affine total_transform = Geom::Translate(-center_of_rotation) * Geom::Rotate(char_rotation) * Geom::Translate(center_of_rotation) * transform; for(int i = 0; i < 4; i ++) quads.push_back(char_box.corner(i) * total_transform); } return quads; }
void FilterImage::render_cairo(FilterSlot &slot) { if (!feImageHref) return; //cairo_surface_t *input = slot.getcairo(_input); // Viewport is filter primitive area (in user coordinates). // Note: viewport calculation in non-trivial. Do not rely // on get_matrix_primitiveunits2pb(). Geom::Rect vp = filter_primitive_area( slot.get_units() ); slot.set_primitive_area(_output, vp); // Needed for tiling double feImageX = vp.min()[Geom::X]; double feImageY = vp.min()[Geom::Y]; double feImageWidth = vp.width(); double feImageHeight = vp.height(); // feImage is suppose to use the same parameters as a normal SVG image. // If a width or height is set to zero, the image is not suppose to be displayed. // This does not seem to be what Firefox or Opera does, nor does the W3C displacement // filter test expect this behavior. If the width and/or height are zero, we use // the width and height of the object bounding box. Geom::Affine m = slot.get_units().get_matrix_user2filterunits().inverse(); Geom::Point bbox_00 = Geom::Point(0,0) * m; Geom::Point bbox_w0 = Geom::Point(1,0) * m; Geom::Point bbox_0h = Geom::Point(0,1) * m; double bbox_width = Geom::distance(bbox_00, bbox_w0); double bbox_height = Geom::distance(bbox_00, bbox_0h); if( feImageWidth == 0 ) feImageWidth = bbox_width; if( feImageHeight == 0 ) feImageHeight = bbox_height; // Internal image, like <use> if (from_element) { if (!SVGElem) return; // TODO: do not recreate the rendering tree every time // TODO: the entire thing is a hack, we should give filter primitives an "update" method // like the one for DrawingItems document->ensureUpToDate(); Drawing drawing; Geom::OptRect optarea = SVGElem->visualBounds(); if (!optarea) return; unsigned const key = SPItem::display_key_new(1); DrawingItem *ai = SVGElem->invoke_show(drawing, key, SP_ITEM_SHOW_DISPLAY); if (!ai) { g_warning("feImage renderer: error creating DrawingItem for SVG Element"); return; } drawing.setRoot(ai); Geom::Rect area = *optarea; Geom::Affine user2pb = slot.get_units().get_matrix_user2pb(); /* FIXME: These variables are currently unused. Why were they calculated? double scaleX = feImageWidth / area.width(); double scaleY = feImageHeight / area.height(); */ Geom::Rect sa = slot.get_slot_area(); cairo_surface_t *out = cairo_image_surface_create(CAIRO_FORMAT_ARGB32, sa.width(), sa.height()); Inkscape::DrawingContext dc(out, sa.min()); dc.transform(user2pb); // we are now in primitive units dc.translate(feImageX, feImageY); // dc.scale(scaleX, scaleY); No scaling should be done Geom::IntRect render_rect = area.roundOutwards(); // dc.translate(render_rect.min()); This seems incorrect // Update to renderable state drawing.update(render_rect); drawing.render(dc, render_rect); SVGElem->invoke_hide(key); // For the moment, we'll assume that any image is in sRGB color space set_cairo_surface_ci(out, SP_CSS_COLOR_INTERPOLATION_SRGB); slot.set(_output, out); cairo_surface_destroy(out); return; } // External image, like <image> if (!image && !broken_ref) { broken_ref = true; /* TODO: If feImageHref is absolute, then use that (preferably handling the * case that it's not a file URI). Otherwise, go up the tree looking * for an xml:base attribute, and use that as the base URI for resolving * the relative feImageHref URI. Otherwise, if document->base is valid, * then use that as the base URI. Otherwise, use feImageHref directly * (i.e. interpreting it as relative to our current working directory). * (See http://www.w3.org/TR/xmlbase/#resolution .) */ gchar *fullname = feImageHref; if ( !g_file_test( fullname, G_FILE_TEST_EXISTS ) ) { // Try to load from relative postion combined with document base if( document ) { fullname = g_build_filename( document->getBase(), feImageHref, NULL ); } } if ( !g_file_test( fullname, G_FILE_TEST_EXISTS ) ) { // Should display Broken Image png. g_warning("FilterImage::render: Can not find: %s", feImageHref ); return; } image = Inkscape::Pixbuf::create_from_file(fullname); if( fullname != feImageHref ) g_free( fullname ); if ( !image ) { g_warning("FilterImage::render: failed to load image: %s", feImageHref); return; } broken_ref = false; } if (broken_ref) { return; } cairo_surface_t *image_surface = image->getSurfaceRaw(); Geom::Rect sa = slot.get_slot_area(); cairo_surface_t *out = cairo_image_surface_create(CAIRO_FORMAT_ARGB32, sa.width(), sa.height()); // For the moment, we'll assume that any image is in sRGB color space // set_cairo_surface_ci(out, SP_CSS_COLOR_INTERPOLATION_SRGB); // This seemed like a sensible thing to do but it breaks filters-displace-01-f.svg cairo_t *ct = cairo_create(out); cairo_translate(ct, -sa.min()[Geom::X], -sa.min()[Geom::Y]); // now ct is in pb coordinates, note the feWidth etc. are in user units ink_cairo_transform(ct, slot.get_units().get_matrix_user2pb()); // now ct is in the coordinates of feImageX etc. // Now that we have the viewport, we must map image inside. // Partially copied from sp-image.cpp. // Do nothing if preserveAspectRatio is "none". if( aspect_align != SP_ASPECT_NONE ) { // Check aspect ratio of image vs. viewport double feAspect = feImageHeight/feImageWidth; double aspect = (double)image->height()/(double)image->width(); bool ratio = (feAspect < aspect); double ax, ay; // Align side switch( aspect_align ) { case SP_ASPECT_XMIN_YMIN: ax = 0.0; ay = 0.0; break; case SP_ASPECT_XMID_YMIN: ax = 0.5; ay = 0.0; break; case SP_ASPECT_XMAX_YMIN: ax = 1.0; ay = 0.0; break; case SP_ASPECT_XMIN_YMID: ax = 0.0; ay = 0.5; break; case SP_ASPECT_XMID_YMID: ax = 0.5; ay = 0.5; break; case SP_ASPECT_XMAX_YMID: ax = 1.0; ay = 0.5; break; case SP_ASPECT_XMIN_YMAX: ax = 0.0; ay = 1.0; break; case SP_ASPECT_XMID_YMAX: ax = 0.5; ay = 1.0; break; case SP_ASPECT_XMAX_YMAX: ax = 1.0; ay = 1.0; break; default: ax = 0.0; ay = 0.0; break; } if( aspect_clip == SP_ASPECT_SLICE ) { // image clipped by viewbox if( ratio ) { // clip top/bottom feImageY -= ay * (feImageWidth * aspect - feImageHeight); feImageHeight = feImageWidth * aspect; } else { // clip sides feImageX -= ax * (feImageHeight / aspect - feImageWidth); feImageWidth = feImageHeight / aspect; } } else { // image fits into viewbox if( ratio ) { // fit to height feImageX += ax * (feImageWidth - feImageHeight / aspect ); feImageWidth = feImageHeight / aspect; } else { // fit to width feImageY += ay * (feImageHeight - feImageWidth * aspect); feImageHeight = feImageWidth * aspect; } } } double scaleX = feImageWidth / image->width(); double scaleY = feImageHeight / image->height(); cairo_translate(ct, feImageX, feImageY); cairo_scale(ct, scaleX, scaleY); cairo_set_source_surface(ct, image_surface, 0, 0); cairo_paint(ct); cairo_destroy(ct); slot.set(_output, out); }
int main(int argc, char **argv) { char const *const filename = (argc >= 2 ? argv[1] : "toy.svgd"); FILE* f = fopen(filename, "r"); if (!f) { perror(filename); return 1; } display_path = read_svgd(f); Geom::Rect r = display_path.bbox(); display_path = display_path*Geom::translate(-r.min()); Geom::scale sc(r.max() - r.min()); display_path = display_path*(sc.inverse()*Geom::scale(500,500)); gtk_init (&argc, &argv); gdk_rgb_init(); GtkWidget* window = gtk_window_new(GTK_WINDOW_TOPLEVEL); gtk_window_set_title(GTK_WINDOW(window), "text toy"); gtk_window_set_policy(GTK_WINDOW(window), TRUE, TRUE, TRUE); gtk_signal_connect(GTK_OBJECT(window), "delete_event", GTK_SIGNAL_FUNC(delete_event_cb), NULL); gtk_widget_push_visual(gdk_rgb_get_visual()); gtk_widget_push_colormap(gdk_rgb_get_cmap()); canvas = gtk_drawing_area_new(); gtk_signal_connect(GTK_OBJECT (canvas), "expose_event", GTK_SIGNAL_FUNC(expose_event), 0); gtk_widget_add_events(canvas, (GDK_BUTTON_PRESS_MASK | GDK_BUTTON_RELEASE_MASK | GDK_KEY_PRESS_MASK | GDK_POINTER_MOTION_MASK)); gtk_signal_connect(GTK_OBJECT (canvas), "button_press_event", GTK_SIGNAL_FUNC(mouse_event), 0); gtk_signal_connect(GTK_OBJECT (canvas), "button_release_event", GTK_SIGNAL_FUNC(mouse_release_event), 0); gtk_signal_connect(GTK_OBJECT (canvas), "motion_notify_event", GTK_SIGNAL_FUNC(mouse_motion_event), 0); gtk_signal_connect(GTK_OBJECT(canvas), "key_press_event", GTK_SIGNAL_FUNC(key_release_event), 0); gtk_widget_pop_colormap(); gtk_widget_pop_visual(); GtkWidget *vb = gtk_vbox_new(0, 0); gtk_container_add(GTK_CONTAINER(window), vb); gtk_box_pack_start(GTK_BOX(vb), canvas, TRUE, TRUE, 0); gtk_window_set_default_size(GTK_WINDOW(window), 600, 600); gtk_widget_show_all(window); dash_gc = gdk_gc_new(canvas->window); gint8 dash_list[] = {4, 4}; gdk_gc_set_dashes(dash_gc, 0, dash_list, 2); GdkColor colour; colour.red = 0xffff; colour.green = 0xffff; colour.blue = 0xffff; plain_gc = gdk_gc_new(canvas->window); //gdk_gc_set_rgb_fg_color(dash_gc, &colour); gdk_rgb_find_color(gtk_widget_get_colormap(canvas), &colour); gdk_window_set_background(canvas->window, &colour); gdk_gc_set_line_attributes(dash_gc, 1, GDK_LINE_ON_OFF_DASH, GDK_CAP_BUTT,GDK_JOIN_MITER); /* Make sure the canvas can receive key press events. */ GTK_WIDGET_SET_FLAGS(canvas, GTK_CAN_FOCUS); assert(GTK_WIDGET_CAN_FOCUS(canvas)); gtk_widget_grab_focus(canvas); assert(gtk_widget_is_focus(canvas)); gtk_main(); return 0; }