bool SIInsertWaits::isOpRelevant(MachineOperand &Op) {

  // Constants are always irrelevant
  if (!Op.isReg())
    return false;

  // Defines are always relevant
  if (Op.isDef())
    return true;

  // For exports all registers are relevant
  MachineInstr &MI = *Op.getParent();
  if (MI.getOpcode() == AMDGPU::EXP)
    return true;

  // For stores the stored value is also relevant
  if (!MI.getDesc().mayStore())
    return false;

  for (MachineInstr::mop_iterator I = MI.operands_begin(),
       E = MI.operands_end(); I != E; ++I) {

    if (I->isReg() && I->isUse())
      return Op.isIdenticalTo(*I);
  }

  return false;
}
bool SIInsertWaits::isOpRelevant(MachineOperand &Op) {

    // Constants are always irrelevant
    if (!Op.isReg())
        return false;

    // Defines are always relevant
    if (Op.isDef())
        return true;

    // For exports all registers are relevant
    MachineInstr &MI = *Op.getParent();
    if (MI.getOpcode() == AMDGPU::EXP)
        return true;

    // For stores the stored value is also relevant
    if (!MI.getDesc().mayStore())
        return false;

    // Check if this operand is the value being stored.
    // Special case for DS instructions, since the address
    // operand comes before the value operand and it may have
    // multiple data operands.

    if (TII->isDS(MI.getOpcode())) {
        MachineOperand *Data = TII->getNamedOperand(MI, AMDGPU::OpName::data);
        if (Data && Op.isIdenticalTo(*Data))
            return true;

        MachineOperand *Data0 = TII->getNamedOperand(MI, AMDGPU::OpName::data0);
        if (Data0 && Op.isIdenticalTo(*Data0))
            return true;

        MachineOperand *Data1 = TII->getNamedOperand(MI, AMDGPU::OpName::data1);
        if (Data1 && Op.isIdenticalTo(*Data1))
            return true;

        return false;
    }

    // NOTE: This assumes that the value operand is before the
    // address operand, and that there is only one value operand.
    for (MachineInstr::mop_iterator I = MI.operands_begin(),
            E = MI.operands_end(); I != E; ++I) {

        if (I->isReg() && I->isUse())
            return Op.isIdenticalTo(*I);
    }

    return false;
}
Beispiel #3
0
/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
/// variables that are live out of DomBB will be marked as passing live through
/// BB.
void LiveVariables::addNewBlock(MachineBasicBlock *BB,
                                MachineBasicBlock *DomBB,
                                MachineBasicBlock *SuccBB) {
  const unsigned NumNew = BB->getNumber();

  SmallSet<unsigned, 16> Defs, Kills;

  MachineBasicBlock::iterator BBI = SuccBB->begin(), BBE = SuccBB->end();
  for (; BBI != BBE && BBI->isPHI(); ++BBI) {
    // Record the def of the PHI node.
    Defs.insert(BBI->getOperand(0).getReg());

    // All registers used by PHI nodes in SuccBB must be live through BB.
    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
      if (BBI->getOperand(i+1).getMBB() == BB)
        getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
  }

  // Record all vreg defs and kills of all instructions in SuccBB.
  for (; BBI != BBE; ++BBI) {
    for (MachineInstr::mop_iterator I = BBI->operands_begin(),
         E = BBI->operands_end(); I != E; ++I) {
      if (I->isReg() && TargetRegisterInfo::isVirtualRegister(I->getReg())) {
        if (I->isDef())
          Defs.insert(I->getReg());
        else if (I->isKill())
          Kills.insert(I->getReg());
      }
    }
  }

  // Update info for all live variables
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);

    // If the Defs is defined in the successor it can't be live in BB.
    if (Defs.count(Reg))
      continue;

    // If the register is either killed in or live through SuccBB it's also live
    // through BB.
    VarInfo &VI = getVarInfo(Reg);
    if (Kills.count(Reg) || VI.AliveBlocks.test(SuccBB->getNumber()))
      VI.AliveBlocks.set(NumNew);
  }
}
Beispiel #4
0
MachineBasicBlock *
MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
  // Splitting the critical edge to a landing pad block is non-trivial. Don't do
  // it in this generic function.
  if (Succ->isLandingPad())
    return nullptr;

  MachineFunction *MF = getParent();
  DebugLoc dl;  // FIXME: this is nowhere

  // Performance might be harmed on HW that implements branching using exec mask
  // where both sides of the branches are always executed.
  if (MF->getTarget().requiresStructuredCFG())
    return nullptr;

  // We may need to update this's terminator, but we can't do that if
  // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
    return nullptr;

  // Avoid bugpoint weirdness: A block may end with a conditional branch but
  // jumps to the same MBB is either case. We have duplicate CFG edges in that
  // case that we can't handle. Since this never happens in properly optimized
  // code, just skip those edges.
  if (TBB && TBB == FBB) {
    DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
                 << getNumber() << '\n');
    return nullptr;
  }

  MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
  MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
  DEBUG(dbgs() << "Splitting critical edge:"
        " BB#" << getNumber()
        << " -- BB#" << NMBB->getNumber()
        << " -- BB#" << Succ->getNumber() << '\n');

  LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>();
  SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>();
  if (LIS)
    LIS->insertMBBInMaps(NMBB);
  else if (Indexes)
    Indexes->insertMBBInMaps(NMBB);

  // On some targets like Mips, branches may kill virtual registers. Make sure
  // that LiveVariables is properly updated after updateTerminator replaces the
  // terminators.
  LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();

  // Collect a list of virtual registers killed by the terminators.
  SmallVector<unsigned, 4> KilledRegs;
  if (LV)
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I) {
      MachineInstr *MI = I;
      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
           OE = MI->operands_end(); OI != OE; ++OI) {
        if (!OI->isReg() || OI->getReg() == 0 ||
            !OI->isUse() || !OI->isKill() || OI->isUndef())
          continue;
        unsigned Reg = OI->getReg();
        if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
            LV->getVarInfo(Reg).removeKill(MI)) {
          KilledRegs.push_back(Reg);
          DEBUG(dbgs() << "Removing terminator kill: " << *MI);
          OI->setIsKill(false);
        }
      }
    }

  SmallVector<unsigned, 4> UsedRegs;
  if (LIS) {
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I) {
      MachineInstr *MI = I;

      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
           OE = MI->operands_end(); OI != OE; ++OI) {
        if (!OI->isReg() || OI->getReg() == 0)
          continue;

        unsigned Reg = OI->getReg();
        if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
          UsedRegs.push_back(Reg);
      }
    }
  }

  ReplaceUsesOfBlockWith(Succ, NMBB);

  // If updateTerminator() removes instructions, we need to remove them from
  // SlotIndexes.
  SmallVector<MachineInstr*, 4> Terminators;
  if (Indexes) {
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I)
      Terminators.push_back(I);
  }

  updateTerminator();

  if (Indexes) {
    SmallVector<MachineInstr*, 4> NewTerminators;
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I)
      NewTerminators.push_back(I);

    for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
        E = Terminators.end(); I != E; ++I) {
      if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
          NewTerminators.end())
       Indexes->removeMachineInstrFromMaps(*I);
    }
  }

  // Insert unconditional "jump Succ" instruction in NMBB if necessary.
  NMBB->addSuccessor(Succ);
  if (!NMBB->isLayoutSuccessor(Succ)) {
    Cond.clear();
    MF->getSubtarget().getInstrInfo()->InsertBranch(*NMBB, Succ, nullptr, Cond,
                                                    dl);

    if (Indexes) {
      for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
           I != E; ++I) {
        // Some instructions may have been moved to NMBB by updateTerminator(),
        // so we first remove any instruction that already has an index.
        if (Indexes->hasIndex(I))
          Indexes->removeMachineInstrFromMaps(I);
        Indexes->insertMachineInstrInMaps(I);
      }
    }
  }

  // Fix PHI nodes in Succ so they refer to NMBB instead of this
  for (MachineBasicBlock::instr_iterator
         i = Succ->instr_begin(),e = Succ->instr_end();
       i != e && i->isPHI(); ++i)
    for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
      if (i->getOperand(ni+1).getMBB() == this)
        i->getOperand(ni+1).setMBB(NMBB);

  // Inherit live-ins from the successor
  for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
         E = Succ->livein_end(); I != E; ++I)
    NMBB->addLiveIn(*I);

  // Update LiveVariables.
  const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
  if (LV) {
    // Restore kills of virtual registers that were killed by the terminators.
    while (!KilledRegs.empty()) {
      unsigned Reg = KilledRegs.pop_back_val();
      for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
        if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
          continue;
        if (TargetRegisterInfo::isVirtualRegister(Reg))
          LV->getVarInfo(Reg).Kills.push_back(I);
        DEBUG(dbgs() << "Restored terminator kill: " << *I);
        break;
      }
    }
    // Update relevant live-through information.
    LV->addNewBlock(NMBB, this, Succ);
  }

  if (LIS) {
    // After splitting the edge and updating SlotIndexes, live intervals may be
    // in one of two situations, depending on whether this block was the last in
    // the function. If the original block was the last in the function, all live
    // intervals will end prior to the beginning of the new split block. If the
    // original block was not at the end of the function, all live intervals will
    // extend to the end of the new split block.

    bool isLastMBB =
      std::next(MachineFunction::iterator(NMBB)) == getParent()->end();

    SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
    SlotIndex PrevIndex = StartIndex.getPrevSlot();
    SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);

    // Find the registers used from NMBB in PHIs in Succ.
    SmallSet<unsigned, 8> PHISrcRegs;
    for (MachineBasicBlock::instr_iterator
         I = Succ->instr_begin(), E = Succ->instr_end();
         I != E && I->isPHI(); ++I) {
      for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
        if (I->getOperand(ni+1).getMBB() == NMBB) {
          MachineOperand &MO = I->getOperand(ni);
          unsigned Reg = MO.getReg();
          PHISrcRegs.insert(Reg);
          if (MO.isUndef())
            continue;

          LiveInterval &LI = LIS->getInterval(Reg);
          VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
          assert(VNI && "PHI sources should be live out of their predecessors.");
          LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
        }
      }
    }

    MachineRegisterInfo *MRI = &getParent()->getRegInfo();
    for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
      unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
      if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
        continue;

      LiveInterval &LI = LIS->getInterval(Reg);
      if (!LI.liveAt(PrevIndex))
        continue;

      bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
      if (isLiveOut && isLastMBB) {
        VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
        assert(VNI && "LiveInterval should have VNInfo where it is live.");
        LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
      } else if (!isLiveOut && !isLastMBB) {
        LI.removeSegment(StartIndex, EndIndex);
      }
    }

    // Update all intervals for registers whose uses may have been modified by
    // updateTerminator().
    LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
  }

  if (MachineDominatorTree *MDT =
      P->getAnalysisIfAvailable<MachineDominatorTree>())
    MDT->recordSplitCriticalEdge(this, Succ, NMBB);

  if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
    if (MachineLoop *TIL = MLI->getLoopFor(this)) {
      // If one or the other blocks were not in a loop, the new block is not
      // either, and thus LI doesn't need to be updated.
      if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
        if (TIL == DestLoop) {
          // Both in the same loop, the NMBB joins loop.
          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else if (TIL->contains(DestLoop)) {
          // Edge from an outer loop to an inner loop.  Add to the outer loop.
          TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else if (DestLoop->contains(TIL)) {
          // Edge from an inner loop to an outer loop.  Add to the outer loop.
          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else {
          // Edge from two loops with no containment relation.  Because these
          // are natural loops, we know that the destination block must be the
          // header of its loop (adding a branch into a loop elsewhere would
          // create an irreducible loop).
          assert(DestLoop->getHeader() == Succ &&
                 "Should not create irreducible loops!");
          if (MachineLoop *P = DestLoop->getParentLoop())
            P->addBasicBlockToLoop(NMBB, MLI->getBase());
        }
      }
    }

  return NMBB;
}
MachineBasicBlock *
MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
  MachineFunction *MF = getParent();
  DebugLoc dl;  // FIXME: this is nowhere

  // We may need to update this's terminator, but we can't do that if
  // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
  MachineBasicBlock *TBB = 0, *FBB = 0;
  SmallVector<MachineOperand, 4> Cond;
  if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
    return NULL;

  // Avoid bugpoint weirdness: A block may end with a conditional branch but
  // jumps to the same MBB is either case. We have duplicate CFG edges in that
  // case that we can't handle. Since this never happens in properly optimized
  // code, just skip those edges.
  if (TBB && TBB == FBB) {
    DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
                 << getNumber() << '\n');
    return NULL;
  }

  MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
  MF->insert(llvm::next(MachineFunction::iterator(this)), NMBB);
  DEBUG(dbgs() << "Splitting critical edge:"
        " BB#" << getNumber()
        << " -- BB#" << NMBB->getNumber()
        << " -- BB#" << Succ->getNumber() << '\n');

  // On some targets like Mips, branches may kill virtual registers. Make sure
  // that LiveVariables is properly updated after updateTerminator replaces the
  // terminators.
  LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();

  // Collect a list of virtual registers killed by the terminators.
  SmallVector<unsigned, 4> KilledRegs;
  if (LV)
    for (iterator I = getFirstTerminator(), E = end(); I != E; ++I) {
      MachineInstr *MI = I;
      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
           OE = MI->operands_end(); OI != OE; ++OI) {
        if (!OI->isReg() || !OI->isUse() || !OI->isKill() || OI->isUndef())
          continue;
        unsigned Reg = OI->getReg();
        if (TargetRegisterInfo::isVirtualRegister(Reg) &&
            LV->getVarInfo(Reg).removeKill(MI)) {
          KilledRegs.push_back(Reg);
          DEBUG(dbgs() << "Removing terminator kill: " << *MI);
          OI->setIsKill(false);
        }
      }
    }

  ReplaceUsesOfBlockWith(Succ, NMBB);
  updateTerminator();

  // Insert unconditional "jump Succ" instruction in NMBB if necessary.
  NMBB->addSuccessor(Succ);
  if (!NMBB->isLayoutSuccessor(Succ)) {
    Cond.clear();
    MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl);
  }

  // Fix PHI nodes in Succ so they refer to NMBB instead of this
  for (MachineBasicBlock::iterator i = Succ->begin(), e = Succ->end();
       i != e && i->isPHI(); ++i)
    for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
      if (i->getOperand(ni+1).getMBB() == this)
        i->getOperand(ni+1).setMBB(NMBB);

  // Inherit live-ins from the successor
  for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
	 E = Succ->livein_end(); I != E; ++I)
    NMBB->addLiveIn(*I);

  // Update LiveVariables.
  if (LV) {
    // Restore kills of virtual registers that were killed by the terminators.
    while (!KilledRegs.empty()) {
      unsigned Reg = KilledRegs.pop_back_val();
      for (iterator I = end(), E = begin(); I != E;) {
        if (!(--I)->addRegisterKilled(Reg, NULL, /* addIfNotFound= */ false))
          continue;
        LV->getVarInfo(Reg).Kills.push_back(I);
        DEBUG(dbgs() << "Restored terminator kill: " << *I);
        break;
      }
    }
    // Update relevant live-through information.
    LV->addNewBlock(NMBB, this, Succ);
  }

  if (MachineDominatorTree *MDT =
      P->getAnalysisIfAvailable<MachineDominatorTree>()) {
    // Update dominator information.
    MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ);

    bool IsNewIDom = true;
    for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end();
         PI != E; ++PI) {
      MachineBasicBlock *PredBB = *PI;
      if (PredBB == NMBB)
        continue;
      if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) {
        IsNewIDom = false;
        break;
      }
    }

    // We know "this" dominates the newly created basic block.
    MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this);

    // If all the other predecessors of "Succ" are dominated by "Succ" itself
    // then the new block is the new immediate dominator of "Succ". Otherwise,
    // the new block doesn't dominate anything.
    if (IsNewIDom)
      MDT->changeImmediateDominator(SucccDTNode, NewDTNode);
  }

  if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
    if (MachineLoop *TIL = MLI->getLoopFor(this)) {
      // If one or the other blocks were not in a loop, the new block is not
      // either, and thus LI doesn't need to be updated.
      if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
        if (TIL == DestLoop) {
          // Both in the same loop, the NMBB joins loop.
          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else if (TIL->contains(DestLoop)) {
          // Edge from an outer loop to an inner loop.  Add to the outer loop.
          TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else if (DestLoop->contains(TIL)) {
          // Edge from an inner loop to an outer loop.  Add to the outer loop.
          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else {
          // Edge from two loops with no containment relation.  Because these
          // are natural loops, we know that the destination block must be the
          // header of its loop (adding a branch into a loop elsewhere would
          // create an irreducible loop).
          assert(DestLoop->getHeader() == Succ &&
                 "Should not create irreducible loops!");
          if (MachineLoop *P = DestLoop->getParentLoop())
            P->addBasicBlockToLoop(NMBB, MLI->getBase());
        }
      }
    }

  return NMBB;
}
/// Find all live intervals that need to shrink, then remove the instruction.
void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) {
  assert(MI->allDefsAreDead() && "Def isn't really dead");
  SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();

  // Never delete a bundled instruction.
  if (MI->isBundled()) {
    return;
  }
  // Never delete inline asm.
  if (MI->isInlineAsm()) {
    DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
    return;
  }

  // Use the same criteria as DeadMachineInstructionElim.
  bool SawStore = false;
  if (!MI->isSafeToMove(&TII, 0, SawStore)) {
    DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
    return;
  }

  DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);

  // Collect virtual registers to be erased after MI is gone.
  SmallVector<unsigned, 8> RegsToErase;
  bool ReadsPhysRegs = false;

  // Check for live intervals that may shrink
  for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
         MOE = MI->operands_end(); MOI != MOE; ++MOI) {
    if (!MOI->isReg())
      continue;
    unsigned Reg = MOI->getReg();
    if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
      // Check if MI reads any unreserved physregs.
      if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
        ReadsPhysRegs = true;
      else if (MOI->isDef()) {
        for (MCRegUnitIterator Units(Reg, MRI.getTargetRegisterInfo());
             Units.isValid(); ++Units) {
          if (LiveRange *LR = LIS.getCachedRegUnit(*Units)) {
            if (VNInfo *VNI = LR->getVNInfoAt(Idx))
              LR->removeValNo(VNI);
          }
        }
      }
      continue;
    }
    LiveInterval &LI = LIS.getInterval(Reg);

    // Shrink read registers, unless it is likely to be expensive and
    // unlikely to change anything. We typically don't want to shrink the
    // PIC base register that has lots of uses everywhere.
    // Always shrink COPY uses that probably come from live range splitting.
    if (MI->readsVirtualRegister(Reg) &&
        (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) ||
         LI.Query(Idx).isKill()))
      ToShrink.insert(&LI);

    // Remove defined value.
    if (MOI->isDef()) {
      if (VNInfo *VNI = LI.getVNInfoAt(Idx)) {
        if (TheDelegate)
          TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
        LI.removeValNo(VNI);
        if (LI.empty())
          RegsToErase.push_back(Reg);
      }
    }
  }

  // Currently, we don't support DCE of physreg live ranges. If MI reads
  // any unreserved physregs, don't erase the instruction, but turn it into
  // a KILL instead. This way, the physreg live ranges don't end up
  // dangling.
  // FIXME: It would be better to have something like shrinkToUses() for
  // physregs. That could potentially enable more DCE and it would free up
  // the physreg. It would not happen often, though.
  if (ReadsPhysRegs) {
    MI->setDesc(TII.get(TargetOpcode::KILL));
    // Remove all operands that aren't physregs.
    for (unsigned i = MI->getNumOperands(); i; --i) {
      const MachineOperand &MO = MI->getOperand(i-1);
      if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
        continue;
      MI->RemoveOperand(i-1);
    }
    DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
  } else {
    if (TheDelegate)
      TheDelegate->LRE_WillEraseInstruction(MI);
    LIS.RemoveMachineInstrFromMaps(MI);
    MI->eraseFromParent();
    ++NumDCEDeleted;
  }

  // Erase any virtregs that are now empty and unused. There may be <undef>
  // uses around. Keep the empty live range in that case.
  for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
    unsigned Reg = RegsToErase[i];
    if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
      ToShrink.remove(&LIS.getInterval(Reg));
      eraseVirtReg(Reg);
    }
  }
}
Beispiel #7
0
void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
                                      ArrayRef<unsigned> RegsBeingSpilled) {
  SetVector<LiveInterval*,
            SmallVector<LiveInterval*, 8>,
            SmallPtrSet<LiveInterval*, 8> > ToShrink;

  for (;;) {
    // Erase all dead defs.
    while (!Dead.empty()) {
      MachineInstr *MI = Dead.pop_back_val();
      assert(MI->allDefsAreDead() && "Def isn't really dead");
      SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();

      // Never delete inline asm.
      if (MI->isInlineAsm()) {
        DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
        continue;
      }

      // Use the same criteria as DeadMachineInstructionElim.
      bool SawStore = false;
      if (!MI->isSafeToMove(&TII, 0, SawStore)) {
        DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
        continue;
      }

      DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);

      // Check for live intervals that may shrink
      for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
             MOE = MI->operands_end(); MOI != MOE; ++MOI) {
        if (!MOI->isReg())
          continue;
        unsigned Reg = MOI->getReg();
        if (!TargetRegisterInfo::isVirtualRegister(Reg))
          continue;
        LiveInterval &LI = LIS.getInterval(Reg);

        // Shrink read registers, unless it is likely to be expensive and
        // unlikely to change anything. We typically don't want to shrink the
        // PIC base register that has lots of uses everywhere.
        // Always shrink COPY uses that probably come from live range splitting.
        if (MI->readsVirtualRegister(Reg) &&
            (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) ||
             LI.killedAt(Idx)))
          ToShrink.insert(&LI);

        // Remove defined value.
        if (MOI->isDef()) {
          if (VNInfo *VNI = LI.getVNInfoAt(Idx)) {
            if (TheDelegate)
              TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
            LI.removeValNo(VNI);
            if (LI.empty()) {
              ToShrink.remove(&LI);
              eraseVirtReg(Reg);
            }
          }
        }
      }

      if (TheDelegate)
        TheDelegate->LRE_WillEraseInstruction(MI);
      LIS.RemoveMachineInstrFromMaps(MI);
      MI->eraseFromParent();
      ++NumDCEDeleted;
    }

    if (ToShrink.empty())
      break;

    // Shrink just one live interval. Then delete new dead defs.
    LiveInterval *LI = ToShrink.back();
    ToShrink.pop_back();
    if (foldAsLoad(LI, Dead))
      continue;
    if (TheDelegate)
      TheDelegate->LRE_WillShrinkVirtReg(LI->reg);
    if (!LIS.shrinkToUses(LI, &Dead))
      continue;
    
    // Don't create new intervals for a register being spilled.
    // The new intervals would have to be spilled anyway so its not worth it.
    // Also they currently aren't spilled so creating them and not spilling
    // them results in incorrect code.
    bool BeingSpilled = false;
    for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
      if (LI->reg == RegsBeingSpilled[i]) {
        BeingSpilled = true;
        break;
      }
    }
    
    if (BeingSpilled) continue;

    // LI may have been separated, create new intervals.
    LI->RenumberValues(LIS);
    ConnectedVNInfoEqClasses ConEQ(LIS);
    unsigned NumComp = ConEQ.Classify(LI);
    if (NumComp <= 1)
      continue;
    ++NumFracRanges;
    bool IsOriginal = VRM && VRM->getOriginal(LI->reg) == LI->reg;
    DEBUG(dbgs() << NumComp << " components: " << *LI << '\n');
    SmallVector<LiveInterval*, 8> Dups(1, LI);
    for (unsigned i = 1; i != NumComp; ++i) {
      Dups.push_back(&createFrom(LI->reg));
      // If LI is an original interval that hasn't been split yet, make the new
      // intervals their own originals instead of referring to LI. The original
      // interval must contain all the split products, and LI doesn't.
      if (IsOriginal)
        VRM->setIsSplitFromReg(Dups.back()->reg, 0);
      if (TheDelegate)
        TheDelegate->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg);
    }
    ConEQ.Distribute(&Dups[0], MRI);
    DEBUG({
      for (unsigned i = 0; i != NumComp; ++i)
        dbgs() << '\t' << *Dups[i] << '\n';
    });
  }