Beispiel #1
0
void mat3::set_rotation(const math::vec3 &u, const math::vec3 &v)
{
	scalar phi = u.dot_product(v);        
    vec3 w = u.cross_product(v);
    scalar lambda = u.dot_product(u);
    scalar h;
    
    if (lambda > EPSILON)
        h = (ONE - phi) / lambda;
    else
        h = lambda;
    
    scalar hxy = w.x * w.y * h;
    scalar hxz = w.x * w.z * h;
    scalar hyz = w.y * w.z * h;

    a00 = phi + w.x * w.x * h;
    a01 = hxy - w.z;
    a02 = hxz + w.y;

    a10 = hxy + w.z;
    a11 = phi + w.y * w.y * h;
    a12 = hyz - w.x;

    a20 = hxz - w.y;
    a21 = hyz + w.x;
    a22 = phi + w.z * w.z * h;
}
Beispiel #2
0
	/// Distance between point p and line segment p1, p2
	static double distance(math::vec3 const& p, math::vec3 const& p1, math::vec3 const& p2)
	{
		math::vec3 const v = p2 - p1;
		math::vec3 const w = p - p1;

		double const c1 = w.dot(v);
		double const c2 = v.dot(v);
		double const b = c1 / c2;

		math::vec3 const pb = p1 + v * b;
		return p.distance(pb);
	}
Beispiel #3
0
	static bool segment_plane_intersect(math::vec3 const& segment_point1, math::vec3 const& segment_point2,
		math::vec3 const&  plane_p0, math::vec3 const&  plane_n, math::vec3& result)
	{
		math::vec3 const dir = (segment_point2 - segment_point1).normalize(); // ray direction
		double const denom = plane_n.dot(dir);
		if (math::is_zero(denom))
		{
			return false; // no intersection: ray is parallel to plane
		}

		math::vec3 const p1 = plane_p0 - segment_point1;
		double const d = p1.dot(plane_n) / denom;
		result = segment_point1 + dir * d; // intersection point
		return true;
	}
Beispiel #4
0
  // sphere/sphere
  hit::list sphere::collide(const sphere& p) const {
    hit::list res;
      
    const math::vec3 diff = p.geo.center - geo.center;
    const math::real dist = diff.norm();
      
    // core::log("dist:", dist, "r1:", geo.radius, "r2:", p.geo.radius);
    const math::real error = p.geo.radius + geo.radius - dist;
    if( dist && (error >= 0) ) {
	
      math::real alpha = 0.5 * (geo.radius + dist - p.geo.radius);
      assert( alpha >= 0 );
	
      const math::vec3 n = diff / dist;
      const math::vec3 pos = geo.center + alpha * n;
	 
      res.push_back( hit{this, &p, pos, n, error} ); 

    }
      
    return res;
  }
            void BoundingPolyhedron::positionAround(const math::vec3 desiredCentre, const std::vector<math::vec3>& points)
            {
                if(!mInitialised)
                    throw::std::runtime_error("Using uninitialised bounding polyhedron");

                if(points.size()==0)
                    return;

                auto bounding = calculateBoundSphere(points);

                float radius = (bounding.second + desiredCentre.distance(bounding.first))*mDesc.scaleMultiplier;
                setCentreAndRadius(desiredCentre, radius);
            }
Beispiel #6
0
	static bool segment_sphere_intersect(math::vec3 const& segment_point1, math::vec3 const& segment_point2,
		math::vec3 const& sphere_center, double sphere_radius)
	{
#if 0
		math::vec3 closest_point;
		closest_point.get_nearest_point_on_line(sphere_center, segment_point1, segment_point2);

		math::vec3 const distance = closest_point - sphere_center;
		double const sqr_distance = distance.dot(distance);
		double const sqr_radius = sphere_radius * sphere_radius;

		return sqr_distance <= sqr_radius;
#else
		math::vec3 const p = segment_point1 - sphere_center; // ray_origin - sphere_center
		math::vec3 const d = (segment_point2 - segment_point1).normalize(); // ray_direction

		double const a = d.dot(d);
		double const b = 2 * d.dot(p);
		double const c = p.dot(p) - sphere_radius * sphere_radius;

		double const D = b * b - 4 * a * c;

		if (D >= 0)
		{
			/*
			intersection points:

			double t[2];
			t[0] = (-b - sqrt(D)) / (2 * a);
			t[1] = (-b + sqrt(D)) / (2 * a);

			math::vec3 result[2];
			result[0] = segment_point1 + d * t[0];
			result[1] = segment_point1 + d * t[1];
			*/
			return true;
		}
		return false;
#endif
	}
Beispiel #7
0
        cv::Mat AlphaRayLocator::findAlphas(
                const BoundingPolyhedron* polyhedrons,
                const size_t polyhedronCount,
                const ia::InputAssembler& input) const
            {
                assert(polyhedronCount>1);
                START_TIMER(AlphaLocator);

                const cv::Mat& mat = input.mat();
                const unsigned r = input.mat().rows, c = input.mat().cols;
                const math::vec3 background = input.background();

                cv::Mat out;
                out.create(r, c, CV_32FC1);

                const SpherePolyhedron& outerPoly = polyhedrons[1];
                const SpherePolyhedron& innerPoly = polyhedrons[0];

                //For each point, send rays
                for (unsigned i = 0; i < r; ++i)
                {
                    float* data = (float*)(mat.data + mat.step*i);
                    float* dataOut = (float*)(out.data + out.step*i);
                    for(unsigned j = 0; j < c; ++j)
                    {
                        math::vec3& point = *((math::vec3*)(data + j*3));
                        float alpha;

                        //If right in the middle
                        if(background==point)
                            alpha = 0;
                        else
                        {
                            //Prepare vector
                            const math::vec3 vector = point - background;
                            const float vectorLen = vector.length();
                            const math::vec3 vectorNorm = vector/vectorLen;
                            const float distanceToPoint = point.distance(background);

                            const float distanceToOuterPoly = outerPoly.findDistanceToPolyhedron(vectorNorm);

                            //If inside outer poly, alpha < 1
                            if(distanceToPoint < distanceToOuterPoly)
                            {
                                float distanceToInnerPoly = innerPoly.findDistanceToPolyhedron(vectorNorm);

                                //If does not intersect with inner, fully inside
                                if(distanceToPoint < distanceToInnerPoly)
                                    alpha = 0;
                                else //interpolate between inner and outer
                                    alpha = (vectorLen - distanceToInnerPoly) /
                                            (distanceToOuterPoly - distanceToInnerPoly);

                            }
                            else //If intersects with middle, it's outside. Alpha = 1.
                                alpha = 1;
                        }

                        *(dataOut+j) = alpha;
                    }
                }

                END_TIMER(AlphaLocator);

                return out;
            }
	void TerrainObserver::SetPosition(const Math::vec3& value)
	{
		m_view->UpdatePosition(value.XZ());
	}
	void BulletSimulator::SetGravity(const Math::vec3& g)
	{
		btVector3 v(g.X(), g.Y(), g.Z());
		m_dynamics_world->setGravity(v);
	}
Beispiel #10
0
void Shader::setUniform3f(const QString &name, math::vec3<float> &vector)
{


    oglfunc.glUniform3f(getUniformLocation((GLchar *)name.toStdString().c_str()),vector.getX(),vector.getY(),vector.getZ());
}
      /** \brief Expand the boundary.
       *
       * Uses some manual checking to decrease comparison count instead of pure
       * min/max.
       *
       * \param pnt Point to expand with.
       */
      void expand(const math::vec3<T> &pnt)
      {
        if(pnt.x() > m_pnt_max.x())
        {
          m_pnt_max.x() = pnt.x();
        }
        else if(pnt.x() < m_pnt_min.x())
        {
          m_pnt_min.x() = pnt.x();
        }

        if(pnt.y() > m_pnt_max.y())
        {
          m_pnt_max.y() = pnt.y();
        }
        else if(pnt.y() < m_pnt_min.y())
        {
          m_pnt_min.y() = pnt.y();
        }
        
        if(pnt.z() > m_pnt_max.z())
        {
          m_pnt_max.z() = pnt.z();
        }
        else if(pnt.z() < m_pnt_min.z())
        {
          m_pnt_min.z() = pnt.z();
        }
      }