Beispiel #1
0
void NIFMeshLoader::createSubMesh(Ogre::Mesh *mesh, const Nif::NiTriShape *shape)
{
    const Nif::NiTriShapeData *data = shape->data.getPtr();
    const Nif::NiSkinInstance *skin = (shape->skin.empty() ? NULL : shape->skin.getPtr());
    std::vector<Ogre::Vector3> srcVerts = data->vertices;
    std::vector<Ogre::Vector3> srcNorms = data->normals;
    Ogre::HardwareBuffer::Usage vertUsage = Ogre::HardwareBuffer::HBU_STATIC;
    bool vertShadowBuffer = false;

    bool geomMorpherController = false;
    if(!shape->controller.empty())
    {
        Nif::ControllerPtr ctrl = shape->controller;
        do {
            if(ctrl->recType == Nif::RC_NiGeomMorpherController)
            {
                vertUsage = Ogre::HardwareBuffer::HBU_DYNAMIC_WRITE_ONLY;
                vertShadowBuffer = true;
                geomMorpherController = true;
                break;
            }
        } while(!(ctrl=ctrl->next).empty());
    }

    if(skin != NULL)
    {
        vertUsage = Ogre::HardwareBuffer::HBU_DYNAMIC_WRITE_ONLY;
        vertShadowBuffer = true;

        // Only set a skeleton when skinning. Unskinned meshes with a skeleton will be
        // explicitly attached later.
        mesh->setSkeletonName(mName);

        // Convert vertices and normals to bone space from bind position. It would be
        // better to transform the bones into bind position, but there doesn't seem to
        // be a reliable way to do that.
        std::vector<Ogre::Vector3> newVerts(srcVerts.size(), Ogre::Vector3(0.0f));
        std::vector<Ogre::Vector3> newNorms(srcNorms.size(), Ogre::Vector3(0.0f));

        const Nif::NiSkinData *data = skin->data.getPtr();
        const Nif::NodeList &bones = skin->bones;
        for(size_t b = 0;b < bones.length();b++)
        {
            Ogre::Matrix4 mat;
            mat.makeTransform(data->bones[b].trafo.trans, Ogre::Vector3(data->bones[b].trafo.scale),
                              Ogre::Quaternion(data->bones[b].trafo.rotation));
            mat = bones[b]->getWorldTransform() * mat;

            const std::vector<Nif::NiSkinData::VertWeight> &weights = data->bones[b].weights;
            for(size_t i = 0;i < weights.size();i++)
            {
                size_t index = weights[i].vertex;
                float weight = weights[i].weight;

                newVerts.at(index) += (mat*srcVerts[index]) * weight;
                if(newNorms.size() > index)
                {
                    Ogre::Vector4 vec4(srcNorms[index][0], srcNorms[index][1], srcNorms[index][2], 0.0f);
                    vec4 = mat*vec4 * weight;
                    newNorms[index] += Ogre::Vector3(&vec4[0]);
                }
            }
        }

        srcVerts = newVerts;
        srcNorms = newNorms;
    }
    else
    {
        Ogre::SkeletonManager *skelMgr = Ogre::SkeletonManager::getSingletonPtr();
        if(skelMgr->getByName(mName).isNull())
        {
            // No skinning and no skeleton, so just transform the vertices and
            // normals into position.
            Ogre::Matrix4 mat4 = shape->getWorldTransform();
            for(size_t i = 0;i < srcVerts.size();i++)
            {
                Ogre::Vector4 vec4(srcVerts[i].x, srcVerts[i].y, srcVerts[i].z, 1.0f);
                vec4 = mat4*vec4;
                srcVerts[i] = Ogre::Vector3(&vec4[0]);
            }
            for(size_t i = 0;i < srcNorms.size();i++)
            {
                Ogre::Vector4 vec4(srcNorms[i].x, srcNorms[i].y, srcNorms[i].z, 0.0f);
                vec4 = mat4*vec4;
                srcNorms[i] = Ogre::Vector3(&vec4[0]);
            }
        }
    }

    // Set the bounding box first
    BoundsFinder bounds;
    bounds.add(&srcVerts[0][0], srcVerts.size());
    if(!bounds.isValid())
    {
        float v[3] = { 0.0f, 0.0f, 0.0f };
        bounds.add(&v[0], 1);
    }

    mesh->_setBounds(Ogre::AxisAlignedBox(bounds.minX()-0.5f, bounds.minY()-0.5f, bounds.minZ()-0.5f,
                                          bounds.maxX()+0.5f, bounds.maxY()+0.5f, bounds.maxZ()+0.5f));
    mesh->_setBoundingSphereRadius(bounds.getRadius());

    // This function is just one long stream of Ogre-barf, but it works
    // great.
    Ogre::HardwareBufferManager *hwBufMgr = Ogre::HardwareBufferManager::getSingletonPtr();
    Ogre::HardwareVertexBufferSharedPtr vbuf;
    Ogre::HardwareIndexBufferSharedPtr ibuf;
    Ogre::VertexBufferBinding *bind;
    Ogre::VertexDeclaration *decl;
    int nextBuf = 0;

    Ogre::SubMesh *sub = mesh->createSubMesh();

    // Add vertices
    sub->useSharedVertices = false;
    sub->vertexData = new Ogre::VertexData();
    sub->vertexData->vertexStart = 0;
    sub->vertexData->vertexCount = srcVerts.size();

    decl = sub->vertexData->vertexDeclaration;
    bind = sub->vertexData->vertexBufferBinding;
    if(srcVerts.size())
    {
        vbuf = hwBufMgr->createVertexBuffer(Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT3),
                                            srcVerts.size(), vertUsage, vertShadowBuffer);
        vbuf->writeData(0, vbuf->getSizeInBytes(), &srcVerts[0][0], true);

        decl->addElement(nextBuf, 0, Ogre::VET_FLOAT3, Ogre::VES_POSITION);
        bind->setBinding(nextBuf++, vbuf);
    }

    // Vertex normals
    if(srcNorms.size())
    {
        vbuf = hwBufMgr->createVertexBuffer(Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT3),
                                            srcNorms.size(), vertUsage, vertShadowBuffer);
        vbuf->writeData(0, vbuf->getSizeInBytes(), &srcNorms[0][0], true);

        decl->addElement(nextBuf, 0, Ogre::VET_FLOAT3, Ogre::VES_NORMAL);
        bind->setBinding(nextBuf++, vbuf);
    }

    // Vertex colors
    const std::vector<Ogre::Vector4> &colors = data->colors;
    if(colors.size())
    {
        Ogre::RenderSystem *rs = Ogre::Root::getSingleton().getRenderSystem();
        std::vector<Ogre::RGBA> colorsRGB(colors.size());
        for(size_t i = 0;i < colorsRGB.size();i++)
        {
            Ogre::ColourValue clr(colors[i][0], colors[i][1], colors[i][2], colors[i][3]);
            rs->convertColourValue(clr, &colorsRGB[i]);
        }
        vbuf = hwBufMgr->createVertexBuffer(Ogre::VertexElement::getTypeSize(Ogre::VET_COLOUR),
                                            colorsRGB.size(), Ogre::HardwareBuffer::HBU_STATIC);
        vbuf->writeData(0, vbuf->getSizeInBytes(), &colorsRGB[0], true);
        decl->addElement(nextBuf, 0, Ogre::VET_COLOUR, Ogre::VES_DIFFUSE);
        bind->setBinding(nextBuf++, vbuf);
    }

    // Texture UV coordinates
    size_t numUVs = data->uvlist.size();
    if (numUVs)
    {
        size_t elemSize = Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT2);

        for(size_t i = 0; i < numUVs; i++)
            decl->addElement(nextBuf, elemSize*i, Ogre::VET_FLOAT2, Ogre::VES_TEXTURE_COORDINATES, i);

        vbuf = hwBufMgr->createVertexBuffer(decl->getVertexSize(nextBuf), srcVerts.size(),
                                            Ogre::HardwareBuffer::HBU_STATIC);

        std::vector<Ogre::Vector2> allUVs;
        allUVs.reserve(srcVerts.size()*numUVs);
        for (size_t vert = 0; vert<srcVerts.size(); ++vert)
            for(size_t i = 0; i < numUVs; i++)
                allUVs.push_back(data->uvlist[i][vert]);

        vbuf->writeData(0, elemSize*srcVerts.size()*numUVs, &allUVs[0], true);

        bind->setBinding(nextBuf++, vbuf);
    }

    // Triangle faces
    const std::vector<short> &srcIdx = data->triangles;
    if(srcIdx.size())
    {
        ibuf = hwBufMgr->createIndexBuffer(Ogre::HardwareIndexBuffer::IT_16BIT, srcIdx.size(),
                                           Ogre::HardwareBuffer::HBU_STATIC);
        ibuf->writeData(0, ibuf->getSizeInBytes(), &srcIdx[0], true);
        sub->indexData->indexBuffer = ibuf;
        sub->indexData->indexCount = srcIdx.size();
        sub->indexData->indexStart = 0;
    }

    // Assign bone weights for this TriShape
    if(skin != NULL)
    {
        Ogre::SkeletonPtr skel = Ogre::SkeletonManager::getSingleton().getByName(mName);

        const Nif::NiSkinData *data = skin->data.getPtr();
        const Nif::NodeList &bones = skin->bones;
        for(size_t i = 0;i < bones.length();i++)
        {
            Ogre::VertexBoneAssignment boneInf;
            boneInf.boneIndex = skel->getBone(bones[i]->name)->getHandle();

            const std::vector<Nif::NiSkinData::VertWeight> &weights = data->bones[i].weights;
            for(size_t j = 0;j < weights.size();j++)
            {
                boneInf.vertexIndex = weights[j].vertex;
                boneInf.weight = weights[j].weight;
                sub->addBoneAssignment(boneInf);
            }
        }
    }

    const Nif::NiTexturingProperty *texprop = NULL;
    const Nif::NiMaterialProperty *matprop = NULL;
    const Nif::NiAlphaProperty *alphaprop = NULL;
    const Nif::NiVertexColorProperty *vertprop = NULL;
    const Nif::NiZBufferProperty *zprop = NULL;
    const Nif::NiSpecularProperty *specprop = NULL;
    const Nif::NiWireframeProperty *wireprop = NULL;
    bool needTangents = false;

    shape->getProperties(texprop, matprop, alphaprop, vertprop, zprop, specprop, wireprop);
    std::string matname = NIFMaterialLoader::getMaterial(data, mesh->getName(), mGroup,
                                                         texprop, matprop, alphaprop,
                                                         vertprop, zprop, specprop,
                                                         wireprop, needTangents);
    if(matname.length() > 0)
        sub->setMaterialName(matname);

    // build tangents if the material needs them
    if (needTangents)
    {
        unsigned short src,dest;
        if (!mesh->suggestTangentVectorBuildParams(Ogre::VES_TANGENT, src,dest))
            mesh->buildTangentVectors(Ogre::VES_TANGENT, src,dest);
    }

    // Create a dummy vertex animation track if there's a geom morpher controller
    // This is required to make Ogre create the buffers we will use for software vertex animation
    if (srcVerts.size() && geomMorpherController)
        mesh->createAnimation("dummy", 0)->createVertexTrack(1, sub->vertexData, Ogre::VAT_MORPH);
}
void CSceletalAnimationView::EngineSetup(void)
{
	Ogre::Root *Root = ((CSceletalAnimationApp*)AfxGetApp())->m_Engine->GetRoot();
	Ogre::SceneManager *SceneManager = NULL;
	SceneManager = Root->createSceneManager(Ogre::ST_GENERIC, "Animation");
 
    //
    // Create a render window
    // This window should be the current ChildView window using the externalWindowHandle
    // value pair option.
    //

    Ogre::NameValuePairList parms;
    parms["externalWindowHandle"] = Ogre::StringConverter::toString((long)m_hWnd);
    parms["vsync"] = "true";

	CRect   rect;
    GetClientRect(&rect);
	Ogre::RenderTarget *RenderWindow = Root->getRenderTarget("Mouse Input");

	if (RenderWindow == NULL)
	{
	try
	{
		m_RenderWindow = Root->createRenderWindow("Mouse Input", rect.Width(), rect.Height(), false, &parms);
	}
    catch(...)
	{
		MessageBox("Cannot initialize\nCheck that graphic-card driver is up-to-date", "Initialize Render System", MB_OK | MB_ICONSTOP);
		exit(EXIT_SUCCESS);
	}
	}
// Load resources
	Ogre::ResourceGroupManager::getSingleton().initialiseAllResourceGroups();

    // Create the camera
    m_Camera = SceneManager->createCamera("Camera");
    m_Camera->setNearClipDistance(0.5);
	m_Camera->setFarClipDistance(5000); 
	m_Camera->setCastShadows(false);
	m_Camera->setUseRenderingDistance(true);
	m_Camera->setPosition(Ogre::Vector3(5.0, 5.0, 10.0));
	Ogre::SceneNode *CameraNode = NULL;
	CameraNode = SceneManager->getRootSceneNode()->createChildSceneNode("CameraNode");

	Ogre::Viewport* Viewport = NULL;
	
	if (0 == m_RenderWindow->getNumViewports())
	{
		Viewport = m_RenderWindow->addViewport(m_Camera);
		Viewport->setBackgroundColour(Ogre::ColourValue(0.8f, 0.8f, 0.8f));
	}

    // Alter the camera aspect ratio to match the viewport
    m_Camera->setAspectRatio(Ogre::Real(rect.Width()) / Ogre::Real(rect.Height()));
	m_Camera->lookAt(Ogre::Vector3(0.5, 0.5, 0.5));
	m_Camera->setPolygonMode(Ogre::PolygonMode::PM_WIREFRAME);

	Ogre::ManualObject* ManualObject = NULL;
	ManualObject = SceneManager->createManualObject("Animation");
	ManualObject->setDynamic(false);
    ManualObject->begin("BaseWhiteNoLighting", Ogre::RenderOperation::OT_TRIANGLE_LIST);
	//face 1
	ManualObject->position(0, 0, 0);//0
	ManualObject->position(1, 0, 0);//1
	ManualObject->position(1, 1, 0);//2
	ManualObject->triangle(0, 1, 2);//3
	
	ManualObject->position(0, 0, 0);//4
	ManualObject->position(1, 1, 0);//5
	ManualObject->position(0, 1, 0);//6
	ManualObject->triangle(3, 4, 5);//7
	//face 2
	ManualObject->position(0, 0, 1);//8
	ManualObject->position(1, 0, 1);//9
	ManualObject->position(1, 1, 1);//10
	ManualObject->triangle(6, 7, 8);//11

	ManualObject->position(0, 0, 1);//12
	ManualObject->position(1, 1, 1);//13
	ManualObject->position(0, 1, 1);//14
	ManualObject->triangle(9, 10, 11);//15
	//face 3
	ManualObject->position(0, 0, 0);//16
	ManualObject->position(1, 0, 0);//17
	ManualObject->position(1, 0, 1);//18
	ManualObject->triangle(12, 13, 14);//19

	ManualObject->position(0, 0, 0);
	ManualObject->position(1, 0, 1);
	ManualObject->position(0, 1, 1);
	ManualObject->triangle(15, 16, 17);
	//face 4
	ManualObject->position(1, 0, 0);
	ManualObject->position(1, 1, 0);
	ManualObject->position(1, 1, 1);
	ManualObject->triangle(18, 19, 20);

	ManualObject->position(1, 0, 0);
	ManualObject->position(1, 1, 1);
	ManualObject->position(1, 0, 1);
	ManualObject->triangle(21, 22, 23);
	//face 5
	ManualObject->position(0, 1, 0);
	ManualObject->position(1, 1, 0);
	ManualObject->position(0, 1, 1);
	ManualObject->triangle(24, 25, 26);

	ManualObject->position(1, 1, 0);
	ManualObject->position(1, 1, 1);
	ManualObject->position(0, 1, 1);
	ManualObject->triangle(27, 28, 29);
	
	//face 6
	ManualObject->position(0, 0, 0);
	ManualObject->position(0, 1, 1);
	ManualObject->position(0, 0, 1);
	ManualObject->triangle(30, 31, 32);

	ManualObject->position(0, 0, 0);
	ManualObject->position(0, 1, 0);
	ManualObject->position(0, 1, 1);
	ManualObject->triangle(33, 34, 35);

	ManualObject->end();
	Ogre::MeshPtr MeshPtr = ManualObject->convertToMesh("Animation");
	Ogre::SubMesh* sub = MeshPtr->getSubMesh(0);
	
	Ogre::SkeletonPtr Skeleton = Ogre::SkeletonManager::getSingleton().create("Skeleton", Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
	MeshPtr.getPointer()->_notifySkeleton(Skeleton);
	Ogre::Bone *Root1 = NULL;
	Ogre::Bone *Child1 = NULL;
	Ogre::Bone *Child2 = NULL;

	Root1 = Skeleton.getPointer()->createBone("Root");
	Root1->setPosition(Ogre::Vector3(0.0, 0.0, 0.0));
	Root1->setOrientation(Ogre::Quaternion::IDENTITY);
	
	Child1 = Root1->createChild(1);
	Child1->setPosition(Ogre::Vector3(4.0, 0.0, 0.0));
	Child1->setOrientation(Ogre::Quaternion::IDENTITY);
	Child2 = Root1->createChild(2);
	Child2->setPosition(Ogre::Vector3(5.0, 0.0, 0.0));
	Child2->setOrientation(Ogre::Quaternion::IDENTITY);

	Ogre::VertexBoneAssignment Assignment;

	Assignment.boneIndex = 0;
	Assignment.vertexIndex = 0;
	Assignment.weight = 1.0;
	Skeleton->setBindingPose();

	sub->addBoneAssignment(Assignment);

	Assignment.vertexIndex = 1;
	sub->addBoneAssignment(Assignment);

	Assignment.vertexIndex = 2;
	sub->addBoneAssignment(Assignment);

	Ogre::Animation *Animation = MeshPtr->createAnimation("HandAnimation", 100.0);
	Ogre::NodeAnimationTrack *Track = Animation->createNodeTrack(0, Root1);
	Ogre::TransformKeyFrame *KeyFrame = NULL;

	for (float FrameTime = 0.0; FrameTime < 100.0; FrameTime += 0.1)
	{
		KeyFrame = Track->createNodeKeyFrame(FrameTime);
		KeyFrame->setTranslate(Ogre::Vector3(10.0, 0.0, 0.0));
	}

	Root1->setManuallyControlled(true);
	Child1->setManuallyControlled(true);
	Child2->setManuallyControlled(true);
	MeshPtr->load();

	MeshPtr.getPointer()->_notifySkeleton(Skeleton);
		
//	Ogre::SkeletonSerializer skeletonSerializer;
//	skeletonSerializer.exportSkeleton(Skeleton.get(), "C:\\Users\\Ilya\\Documents\\Visual Studio 2010\\Projects\\Recipes\\media\\models\\testskeleton.skeleton");
//	Ogre::MeshSerializer ser;
//    ser.exportMesh(MeshPtr.get(), "C:\\Users\\Ilya\\Documents\\Visual Studio 2010\\Projects\\Recipes\\media\\models\\testskeleton.mesh");

	Ogre::Entity *Entity = SceneManager->createEntity("Animation", "Animation"/*"testskeleton.mesh"*/);
	Ogre::SceneNode *SceneNode = SceneManager->getRootSceneNode()->createChildSceneNode();
	SceneNode->attachObject(Entity);
	Entity->setDisplaySkeleton(true);

	m_AnimationState = Entity->getAnimationState("HandAnimation");
	m_AnimationState->setEnabled(true);
	m_AnimationState->setLoop(true);
	
	m_Camera->setPolygonMode(Ogre::PolygonMode::PM_WIREFRAME);
	 
	Root->renderOneFrame();
}
void MilkshapePlugin::doExportMesh(msModel* pModel)
{


    // Create singletons
    Ogre::SkeletonManager skelMgr;
    Ogre::DefaultHardwareBufferManager defHWBufMgr;
	Ogre::LogManager& logMgr = Ogre::LogManager::getSingleton();
	Ogre::MeshManager meshMgr;


    //
    // choose filename
    //
    OPENFILENAME ofn;
    memset (&ofn, 0, sizeof (OPENFILENAME));

    char szFile[MS_MAX_PATH];
    char szFileTitle[MS_MAX_PATH];
    char szDefExt[32] = "mesh";
    char szFilter[128] = "OGRE .mesh Files (*.mesh)\0*.mesh\0All Files (*.*)\0*.*\0\0";
    szFile[0] = '\0';
    szFileTitle[0] = '\0';

    ofn.lStructSize = sizeof (OPENFILENAME);
    ofn.lpstrDefExt = szDefExt;
    ofn.lpstrFilter = szFilter;
    ofn.lpstrFile = szFile;
    ofn.nMaxFile = MS_MAX_PATH;
    ofn.lpstrFileTitle = szFileTitle;
    ofn.nMaxFileTitle = MS_MAX_PATH;
    ofn.Flags = OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT | OFN_PATHMUSTEXIST;
    ofn.lpstrTitle = "Export to OGRE Mesh";

    if (!::GetSaveFileName (&ofn))
        return /*0*/;

    logMgr.logMessage("Creating Mesh object...");
    Ogre::MeshPtr ogreMesh = Ogre::MeshManager::getSingleton().create("export", 
        Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
    logMgr.logMessage("Mesh object created.");

    bool foundBoneAssignment = false;

    // No shared geometry
    int i;
	int wh, numbones;
	int intweight[3], intbones[3];
    size_t j;
    Ogre::Vector3 min, max, currpos;
    Ogre::Real maxSquaredRadius;
    bool first = true;
    for (i = 0; i < msModel_GetMeshCount (pModel); i++)
    {
        msMesh *pMesh = msModel_GetMeshAt (pModel, i);

        logMgr.logMessage("Creating SubMesh object...");
        Ogre::SubMesh* ogreSubMesh = ogreMesh->createSubMesh();
        logMgr.logMessage("SubMesh object created.");
        // Set material
        logMgr.logMessage("Getting SubMesh Material...");
        int matIdx = msMesh_GetMaterialIndex(pMesh);

        if (matIdx == -1)
        {
            // No material, use blank
            ogreSubMesh->setMaterialName("BaseWhite");
            logMgr.logMessage("No Material, using default 'BaseWhite'.");
        }
        else
        {

            msMaterial *pMat = msModel_GetMaterialAt(pModel, matIdx);
            ogreSubMesh->setMaterialName(pMat->szName);
            logMgr.logMessage("SubMesh Material Done.");
        }


        logMgr.logMessage("Setting up geometry...");
        // Set up mesh geometry
        ogreSubMesh->vertexData = new Ogre::VertexData();
        ogreSubMesh->vertexData->vertexCount = msMesh_GetVertexCount (pMesh);
        ogreSubMesh->vertexData->vertexStart = 0;
        Ogre::VertexBufferBinding* bind = ogreSubMesh->vertexData->vertexBufferBinding;
        Ogre::VertexDeclaration* decl = ogreSubMesh->vertexData->vertexDeclaration;
        // Always 1 texture layer, 2D coords
        #define POSITION_BINDING 0
        #define NORMAL_BINDING 1
        #define TEXCOORD_BINDING 2
        decl->addElement(POSITION_BINDING, 0, Ogre::VET_FLOAT3, Ogre::VES_POSITION);
        decl->addElement(NORMAL_BINDING, 0, Ogre::VET_FLOAT3, Ogre::VES_NORMAL);
        decl->addElement(TEXCOORD_BINDING, 0, Ogre::VET_FLOAT2, Ogre::VES_TEXTURE_COORDINATES);
        // Create buffers
        Ogre::HardwareVertexBufferSharedPtr pbuf = Ogre::HardwareBufferManager::getSingleton().
            createVertexBuffer(decl->getVertexSize(POSITION_BINDING), ogreSubMesh->vertexData->vertexCount,
                Ogre::HardwareBuffer::HBU_DYNAMIC, false);
        Ogre::HardwareVertexBufferSharedPtr nbuf = Ogre::HardwareBufferManager::getSingleton().
            createVertexBuffer(decl->getVertexSize(NORMAL_BINDING), ogreSubMesh->vertexData->vertexCount,
                Ogre::HardwareBuffer::HBU_DYNAMIC, false);
        Ogre::HardwareVertexBufferSharedPtr tbuf = Ogre::HardwareBufferManager::getSingleton().
            createVertexBuffer(decl->getVertexSize(TEXCOORD_BINDING), ogreSubMesh->vertexData->vertexCount,
                Ogre::HardwareBuffer::HBU_DYNAMIC, false);
        bind->setBinding(POSITION_BINDING, pbuf);
        bind->setBinding(NORMAL_BINDING, nbuf);
        bind->setBinding(TEXCOORD_BINDING, tbuf);

        ogreSubMesh->useSharedVertices = false;

        float* pPos = static_cast<float*>(
            pbuf->lock(Ogre::HardwareBuffer::HBL_DISCARD));

        logMgr.logMessage("Doing positions and texture coords...");
        for (j = 0; j < ogreSubMesh->vertexData->vertexCount; ++j)
        {
            logMgr.logMessage("Doing vertex " + Ogre::StringConverter::toString(j));
            msVertex *pVertex = msMesh_GetVertexAt (pMesh, (int)j);
			msVertexEx *pVertexEx=msMesh_GetVertexExAt(pMesh, (int)j);
            msVec3 Vertex;
            msVertex_GetVertex (pVertex, Vertex);

            *pPos++ = Vertex[0];
            *pPos++ = Vertex[1];
            *pPos++ = Vertex[2];
            // Deal with bounds
            currpos = Ogre::Vector3(Vertex[0], Vertex[1], Vertex[2]);
            if (first)
            {
                min = max = currpos;
                maxSquaredRadius = currpos.squaredLength();
                first = false;
            }
            else
            {
                min.makeFloor(currpos);
                max.makeCeil(currpos);
                maxSquaredRadius = std::max(maxSquaredRadius, currpos.squaredLength());
            }

            int boneIdx = msVertex_GetBoneIndex(pVertex);
            if (boneIdx != -1)
            {
				foundBoneAssignment = true;
				numbones = 1;
				intbones[0] = intbones[1] = intbones[2] = -1;
				intweight[0] = intweight[1] = intweight[2] = 0;
				for(wh = 0; wh < 3; ++wh) 
				{
					intbones[wh] = msVertexEx_GetBoneIndices(pVertexEx, wh);
					if(intbones[wh] == -1) 
						break;

					++numbones;
					intweight[wh] = msVertexEx_GetBoneWeights(pVertexEx, wh);

				} // for(k)
				Ogre::VertexBoneAssignment vertAssign;
				vertAssign.boneIndex = boneIdx;
				vertAssign.vertexIndex = (unsigned int)j;
				if(numbones == 1) 
				{
					vertAssign.weight = 1.0;
				} // single assignment
				else 
				{
					vertAssign.weight=(Ogre::Real)intweight[0]/100.0;
				}
				ogreSubMesh->addBoneAssignment(vertAssign);
				if(numbones > 1) 
				{
					// this somewhat contorted logic is because the first weight [0] matches to the bone assignment
					// located with pVertex. The next two weights [1][2] match up to the first two bones found
					// with pVertexEx [0][1]. The weight for the fourth bone, if present, is the unassigned weight
					for(wh = 0; wh < 3; wh++) 
					{
						boneIdx = intbones[wh];
						if(boneIdx == -1) 
							break;
						vertAssign.boneIndex = boneIdx;
						vertAssign.vertexIndex = (unsigned int)j;
						if(wh == 2) 
						{ 
							// fourth weight is 1.0-(sumoffirstthreeweights)
							vertAssign.weight = 1.0-(((Ogre::Real)intweight[0]/100.0)+
								((Ogre::Real)intweight[1]/100.0)+((Ogre::Real)intweight[2]/100.0));
						}
						else 
						{
							vertAssign.weight=(Ogre::Real)intweight[wh+1];
						}
						ogreSubMesh->addBoneAssignment(vertAssign);
					} // for(k)
				} // if(numbones)
			}

        }
        pbuf->unlock();

        float* pTex = static_cast<float*>(
            tbuf->lock(Ogre::HardwareBuffer::HBL_DISCARD));
        logMgr.logMessage("Doing uvs, normals and indexes (v2)...");

        // Aargh, Milkshape uses stupid separate normal indexes for the same vertex like 3DS
        // Normals aren't described per vertex but per triangle vertex index
        // Pain in the arse, we have to do vertex duplication again if normals differ at a vertex (non smooth)
        // WHY don't people realise this format is a pain for passing to 3D APIs in vertex buffers?
        float* pNorm = static_cast<float*>(
            nbuf->lock(Ogre::HardwareBuffer::HBL_DISCARD));
        ogreSubMesh->indexData->indexCount = msMesh_GetTriangleCount (pMesh) * 3;
        // Always use 16-bit buffers, Milkshape can't handle more anyway
        Ogre::HardwareIndexBufferSharedPtr ibuf = Ogre::HardwareBufferManager::getSingleton().
            createIndexBuffer(Ogre::HardwareIndexBuffer::IT_16BIT,
            ogreSubMesh->indexData->indexCount, Ogre::HardwareBuffer::HBU_STATIC_WRITE_ONLY);
        ogreSubMesh->indexData->indexBuffer = ibuf;
        unsigned short *pIdx = static_cast<unsigned short*>(
            ibuf->lock(Ogre::HardwareBuffer::HBL_DISCARD));
        for (j = 0; j < ogreSubMesh->indexData->indexCount; j+=3)
        {
            msTriangle *pTriangle = msMesh_GetTriangleAt (pMesh, (int)j/3);
			msTriangleEx *pTriangleEx=msMesh_GetTriangleExAt(pMesh, (int)j/3);
            word nIndices[3];
            msTriangle_GetVertexIndices (pTriangle, nIndices);
            msVec3 Normal;
            msVec2 uv;
            int k, vertIdx;

            for (k = 0; k < 3; ++k)
            {
                vertIdx = nIndices[k];
                // Face index
                pIdx[j+k] = vertIdx;

                // Vertex normals
                // For the moment, ignore any discrepancies per vertex
				msTriangleEx_GetNormal(pTriangleEx, k, &Normal[0]);
				msTriangleEx_GetTexCoord(pTriangleEx, k, &uv[0]);
				pTex[(vertIdx*2)]=uv[0];
				pTex[(vertIdx*2)+1]=uv[1];
                pNorm[(vertIdx*3)] = Normal[0];
                pNorm[(vertIdx*3)+1] = Normal[1];
                pNorm[(vertIdx*3)+2] = Normal[2];
            }

        } // Faces
        nbuf->unlock();
        ibuf->unlock();
        tbuf->unlock();

        // Now use Ogre's ability to reorganise the vertex buffers the best way
        Ogre::VertexDeclaration* newDecl = 
            ogreSubMesh->vertexData->vertexDeclaration->getAutoOrganisedDeclaration(
                foundBoneAssignment, false);
        Ogre::BufferUsageList bufferUsages;
        for (size_t u = 0; u <= newDecl->getMaxSource(); ++u)
            bufferUsages.push_back(Ogre::HardwareBuffer::HBU_STATIC_WRITE_ONLY);
        ogreSubMesh->vertexData->reorganiseBuffers(newDecl, bufferUsages);


        logMgr.logMessage("Geometry done.");
    } // SubMesh

    // Set bounds
    ogreMesh->_setBoundingSphereRadius(Ogre::Math::Sqrt(maxSquaredRadius));
    ogreMesh->_setBounds(Ogre::AxisAlignedBox(min, max), false);


    // Keep hold of a Skeleton pointer for deletion later
    // Mesh uses Skeleton pointer for skeleton name
    Ogre::SkeletonPtr pSkel;

    if (exportSkeleton && foundBoneAssignment)
    {
        // export skeleton, also update mesh to point to it
        pSkel = doExportSkeleton(pModel, ogreMesh);
    }
    else if (!exportSkeleton && foundBoneAssignment)
    {
        // We've found bone assignments, but skeleton is not to be exported
        // Prompt the user to find the skeleton
        if (!locateSkeleton(ogreMesh))
            return;

    }

    // Export
    logMgr.logMessage("Creating MeshSerializer..");
    Ogre::MeshSerializer serializer;
    logMgr.logMessage("MeshSerializer created.");

    // Generate LODs if required
    if (generateLods)
    {
        // Build LOD depth list
        Ogre::Mesh::LodDistanceList distList;
        float depth = 0;
        for (unsigned short depthidx = 0; depthidx < numLods; ++depthidx)
        {
            depth += lodDepthIncrement;
            distList.push_back(depth);
        }

        ogreMesh->generateLodLevels(distList, lodReductionMethod, lodReductionAmount);
    }

    if (generateEdgeLists)
    {
        ogreMesh->buildEdgeList();
    }

    if (generateTangents)
    {
		unsigned short src, dest;
		ogreMesh->suggestTangentVectorBuildParams(tangentSemantic, src, dest);
		ogreMesh->buildTangentVectors(tangentSemantic, src, dest, tangentsSplitMirrored, tangentsSplitRotated, tangentsUseParity);
    }

    // Export
    Ogre::String msg;
	msg  = "Exporting mesh data to file '" + Ogre::String(szFile) + "'";
    logMgr.logMessage(msg);
    serializer.exportMesh(ogreMesh.getPointer(), szFile);
    logMgr.logMessage("Export successful");

    Ogre::MeshManager::getSingleton().remove(ogreMesh->getHandle());
    if (!pSkel.isNull())
        Ogre::SkeletonManager::getSingleton().remove(pSkel->getHandle());

	if (exportMaterials && msModel_GetMaterialCount(pModel) > 0)
	{
		doExportMaterials(pModel);
	}
}
Beispiel #4
0
 // Write submesh data to an Ogre compatible mesh
 bool Submesh::createOgreSubmesh(Ogre::MeshPtr pMesh,const ParamList& params)
 {
     size_t i,j;
     bool stat;
     // Create a new submesh
     Ogre::SubMesh* pSubmesh;
     if (m_name != "")
         pSubmesh = pMesh->createSubMesh(m_name.c_str());
     else
         pSubmesh = pMesh->createSubMesh();
     // Set material
     pSubmesh->setMaterialName(m_pMaterial->name().c_str());
     // Set use shared geometry flag
     pSubmesh->useSharedVertices = params.useSharedGeom;
     // Create vertex data for current submesh
     pSubmesh->vertexData = new Ogre::VertexData();
     // Set number of indexes
     pSubmesh->indexData->indexCount = 3*m_faces.size();
     pSubmesh->vertexData->vertexCount = m_vertices.size();
     // Check if we need to use 32 bit indexes
     bool use32BitIndexes = false;
     if (m_vertices.size() > 65536 || params.useSharedGeom)
     {
         use32BitIndexes = true;
     }
     // Create a new index buffer
     pSubmesh->indexData->indexBuffer = 
         Ogre::HardwareBufferManager::getSingleton().createIndexBuffer(
             use32BitIndexes ? Ogre::HardwareIndexBuffer::IT_32BIT : Ogre::HardwareIndexBuffer::IT_16BIT,
             pSubmesh->indexData->indexCount,
             Ogre::HardwareBuffer::HBU_STATIC_WRITE_ONLY);
     // Fill the index buffer with faces data
     if (use32BitIndexes)
     {
         Ogre::uint32* pIdx = static_cast<Ogre::uint32*>(
             pSubmesh->indexData->indexBuffer->lock(Ogre::HardwareBuffer::HBL_DISCARD));
         for (i=0; i<m_faces.size(); i++)
         {
             *pIdx++ = static_cast<Ogre::uint32>(m_faces[i].v[0]);
             *pIdx++ = static_cast<Ogre::uint32>(m_faces[i].v[1]);
             *pIdx++ = static_cast<Ogre::uint32>(m_faces[i].v[2]);
         }
         pSubmesh->indexData->indexBuffer->unlock();
     }
     else
     {
         Ogre::uint16* pIdx = static_cast<Ogre::uint16*>(
             pSubmesh->indexData->indexBuffer->lock(Ogre::HardwareBuffer::HBL_DISCARD));
         for (i=0; i<m_faces.size(); i++)
         {
             *pIdx++ = static_cast<Ogre::uint16>(m_faces[i].v[0]);
             *pIdx++ = static_cast<Ogre::uint16>(m_faces[i].v[1]);
             *pIdx++ = static_cast<Ogre::uint16>(m_faces[i].v[2]);
         }
         pSubmesh->indexData->indexBuffer->unlock();
     }
     // Define vertex declaration (only if we're not using shared geometry)
     if(!params.useSharedGeom)
     {
         Ogre::VertexDeclaration* pDecl = pSubmesh->vertexData->vertexDeclaration;
         unsigned buf = 0;
         size_t offset = 0;
         // Add vertex position
         pDecl->addElement(buf, offset, Ogre::VET_FLOAT3, Ogre::VES_POSITION);
         offset += Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT3);
         // Add vertex normal
         if (params.exportVertNorm)
         {
             pDecl->addElement(buf, offset, Ogre::VET_FLOAT3, Ogre::VES_NORMAL);
             offset += Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT3);
         }
         // Add vertex colour
         if(params.exportVertCol)
         {
             pDecl->addElement(buf, offset, Ogre::VET_COLOUR, Ogre::VES_DIFFUSE);
             offset += Ogre::VertexElement::getTypeSize(Ogre::VET_COLOUR);
         }
         // Add texture coordinates
         for (i=0; i<m_vertices[0].texcoords.size(); i++)
         {
             Ogre::VertexElementType uvType = Ogre::VertexElement::multiplyTypeCount(Ogre::VET_FLOAT1, 2);
             pDecl->addElement(buf, offset, uvType, Ogre::VES_TEXTURE_COORDINATES, static_cast<unsigned short>(i));
             offset += Ogre::VertexElement::getTypeSize(uvType);
         }
         Ogre::VertexDeclaration* pOptimalDecl = pDecl->getAutoOrganisedDeclaration(
             params.exportVBA, params.exportBlendShapes || params.exportVertAnims, false);
         // Fill the vertex buffer using the newly created vertex declaration
         stat = createOgreVertexBuffer(pSubmesh,pDecl,m_vertices);
         // Write vertex bone assignements list
         if (params.exportVBA)
         {
             // Create a new vertex bone assignements list
             Ogre::SubMesh::VertexBoneAssignmentList vbas;
             // Scan list of shared geometry vertices
             for (i=0; i<m_vertices.size(); i++)
             {
                 vertex v = m_vertices[i];
                 // Add all bone assignemnts for every vertex to the bone assignements list
                 for (j=0; j<v.vbas.size(); j++)
                 {
                     Ogre::VertexBoneAssignment vba;
                     vba.vertexIndex = static_cast<unsigned int>(i);
                     vba.boneIndex = v.vbas[j].jointIdx;
                     vba.weight = v.vbas[j].weight;
                     vbas.insert(Ogre::SubMesh::VertexBoneAssignmentList::value_type(i, vba));
                 }
             }
             // Rationalise the bone assignements list
             pSubmesh->parent->_rationaliseBoneAssignments(pSubmesh->vertexData->vertexCount,vbas);
             // Add bone assignements to the submesh
             for (Ogre::SubMesh::VertexBoneAssignmentList::iterator bi = vbas.begin(); bi != vbas.end(); bi++)
             {
                 pSubmesh->addBoneAssignment(bi->second);
             }
             pSubmesh->_compileBoneAssignments();
         }
         pSubmesh->vertexData->reorganiseBuffers(pOptimalDecl);
     }
     return true;
 }