Beispiel #1
0
void
hAccFuncCalc(OpenBabel::OBMol* mol, Pharmacophore* pharmacophore)
{
   // Create for every hydrogen acceptor a pharmacophore point
   std::vector<OpenBabel::OBAtom*>::iterator ai;
   for (OpenBabel::OBAtom* atom = mol->BeginAtom(ai); atom; atom = mol->NextAtom(ai))
   {
      if (atom->GetAtomicNum() == 7 || atom->GetAtomicNum() == 8)
      {
         if (atom->GetFormalCharge() <= 0)
         {        
            if(_hAccDelocalized(atom) || (_hAccCalcAccSurf(atom) < 0.02))
            {
               continue;
            }
            PharmacophorePoint p;
            p.func = HACC;
            p.point.x = atom->x();
            p.point.y = atom->y();
            p.point.z = atom->z();
            p.hasNormal = true;
            p.alpha = funcSigma[HACC];
            p.normal = _hAccCalcNormal(atom);
            pharmacophore->push_back(p);
         }
      }
   }
}
void ReadFileThread::detectConformers(unsigned int c,
                                      const OpenBabel::OBMol &first,
                                      const OpenBabel::OBMol &current)
{
  if (!c) {
    // this is the first molecule read
    m_moleculeFile->setConformerFile(true);
    addConformer(current);
    return;
  }

  if (!m_moleculeFile->isConformerFile())
    return;

  // as long as we are not sure if this really is a
  // conformer/trajectory file, add the conformers
  addConformer(current);

  // performance: check only certain molecule 1-10,20,50
  switch (c) {
  case 1:
  case 2:
  case 3:
  case 4:
  case 5:
  case 6:
  case 7:
  case 8:
  case 9:
  case 10:
  case 20:
  case 50:
    break;
  default:
    return;
  }

  if (first.NumAtoms() != current.NumAtoms()) {
    m_moleculeFile->setConformerFile(false);
    m_moleculeFile->m_conformers.clear();
    return;
  }

  for (unsigned int i = 0; i < first.NumAtoms(); ++i) {
    OpenBabel::OBAtom *firstAtom = first.GetAtom(i+1);
    OpenBabel::OBAtom *currentAtom = current.GetAtom(i+1);
    if (firstAtom->GetAtomicNum() != currentAtom->GetAtomicNum()) {
      m_moleculeFile->setConformerFile(false);
      m_moleculeFile->m_conformers.clear();
      return;
    }
  }
}
Beispiel #3
0
Coordinate
_hDonCalcNormal(OpenBabel::OBAtom* a)
{
   int nbrBonds(0);
   Coordinate normal;

   std::vector<OpenBabel::OBBond*>::iterator bi;
   for (OpenBabel::OBBond* b = a->BeginBond(bi); b; b = a->NextBond(bi))
   {
      OpenBabel::OBAtom* aa = b->GetNbrAtom(a);
      if (aa->GetAtomicNum() == 1)
      {
         continue;
      }
      ++nbrBonds;
      normal.x += (aa->x() - a->x());
      normal.y += (aa->y() - a->y());
      normal.z += (aa->z() - a->z());
   }
   double length(sqrt(normal.x*normal.x + normal.y*normal.y + normal.z*normal.z));
   normal.x /= length;
   normal.y /= length;
   normal.z /= length;
  
   normal.x = -normal.x;
   normal.y = -normal.y;
   normal.z = -normal.z;
  
   normal.x += a->x();
   normal.y += a->y();
   normal.z += a->z();
  
   return normal;
}
Beispiel #4
0
std::list<OpenBabel::OBAtom*>
_hAccGetNeighbors(OpenBabel::OBAtom* a)
{
   std::list<OpenBabel::OBAtom*> aList;
   OpenBabel::OBMol* parent(a->GetParent());

   double r;
   OpenBabel::OBElementTable et;
   std::vector<OpenBabel::OBAtom*>::iterator ai;
   for (OpenBabel::OBAtom* aa = parent->BeginAtom(ai); aa; aa = parent->NextAtom(ai))
   {
      if (*aa == a)
      {
         continue;
      }
    
      r = et.GetVdwRad(aa->GetAtomicNum());
      double delta(H_BOND_DIST + H_RADIUS + r);
      double maxDistSq(delta*delta);
      double distSq((a->x() - aa->x()) * (a->x() - aa->x()) +
                    (a->y() - aa->y()) * (a->y() - aa->y()) +
                    (a->z() - aa->z()) * (a->z() - aa->z()));
    
      if (distSq <= maxDistSq)
      {
         aList.push_back(aa);
      }
   }
   return aList;
}
Beispiel #5
0
void
hDonFuncCalc(OpenBabel::OBMol* mol, Pharmacophore* pharmacophore)
{
   // Create for every hydrogen donor a pharmacophore point
   std::vector<OpenBabel::OBAtom*>::iterator ai;
   for (OpenBabel::OBAtom* a = mol->BeginAtom(ai); a; a = mol->NextAtom(ai))
   {
      if (a->GetAtomicNum() == 7 || a->GetAtomicNum() == 8)
      {
         if (a->GetFormalCharge() >= 0 && ((a->GetImplicitValence() - a->GetHvyValence()) !=0)) 
         {
            PharmacophorePoint p;
            p.func = HDON;
            p.point.x = a->x();
            p.point.y = a->y();
            p.point.z = a->z();
            p.hasNormal = true;
            p.alpha = funcSigma[HDON];
            p.normal = _hDonCalcNormal(a);
            pharmacophore->push_back(p);
         }
      }
   }
}
Beispiel #6
0
unsigned int
Schuffenhauer::CalculateHeteroAtoms(OpenBabel::OBMol& mol, OpenBabel::OBRing* ring, int a = 0)
{
   	unsigned int n(0);
   	OpenBabel::OBAtom* atom;
   	std::vector<OpenBabel::OBAtom*>::iterator avi;
   	for (atom = mol.BeginAtom(avi); atom; atom = mol.NextAtom(avi))
   	{
      	if (ring->IsMember(atom) && (atom->GetAtomicNum() == a))
      	{
         	++n;
      	}
      	if (!a && ring->IsMember(atom))
      	{
         	if ((atom->GetAtomicNum() == 7) ||
				(atom->GetAtomicNum() == 8) ||
				(atom->GetAtomicNum() == 16))
         	{
            	++n;
         	}
      	}
   	}
   	return n;
}
Beispiel #7
0
void Molecule::addHydrogens(Atom *a,
                            const QList<unsigned long> &atomIds,
                            const QList<unsigned long> &bondIds)
{
    if (atomIds.size() != bondIds.size()) {
        qDebug() << "Error, addHydrogens called with atom & bond id lists of different size!";
    }

    // Construct an OBMol, call AddHydrogens and translate the changes
    OpenBabel::OBMol obmol = OBMol();
    if (a) {
        OpenBabel::OBAtom *obatom = obmol.GetAtom(a->index()+1);
        // Set implicit valence for unusual elements not handled by OpenBabel
        // PR#2803076
        switch (obatom->GetAtomicNum()) {
        case 3:
        case 11:
        case 19:
        case 37:
        case 55:
        case 85:
        case 87:
            obatom->SetImplicitValence(1);
            obatom->SetHyb(1);
            obmol.SetImplicitValencePerceived();
            break;

        case 4:
        case 12:
        case 20:
        case 38:
        case 56:
        case 88:
            obatom->SetImplicitValence(2);
            obatom->SetHyb(2);
            obmol.SetImplicitValencePerceived();
            break;

        case 84: // Po
            obatom->SetImplicitValence(2);
            obatom->SetHyb(3);
            obmol.SetImplicitValencePerceived();
            break;

        default: // do nothing
            break;
        }
        obmol.AddHydrogens(obatom);
    }
    else
        obmol.AddHydrogens();
    // All new atoms in the OBMol must be the additional hydrogens
    unsigned int numberAtoms = numAtoms();
    int j = 0;
    for (unsigned int i = numberAtoms+1; i <= obmol.NumAtoms(); ++i, ++j) {
        if (obmol.GetAtom(i)->IsHydrogen()) {
            OpenBabel::OBAtom *obatom = obmol.GetAtom(i);
            Atom *atom;
            if (atomIds.isEmpty())
                atom = addAtom();
            else if (j < atomIds.size())
                atom = addAtom(atomIds.at(j));
            else {
                qDebug() << "Error - not enough unique ids in addHydrogens.";
                break;
            }
            atom->setOBAtom(obatom);
            // Get the neighbor atom
            OpenBabel::OBBondIterator iter;
            OpenBabel::OBAtom *next = obatom->BeginNbrAtom(iter);
            Bond *bond;
            if (bondIds.isEmpty())
                bond = addBond();
            else // Already confirmed by atom ids
                bond = addBond(bondIds.at(j));
            bond->setEnd(Molecule::atom(atom->index()));
            bond->setBegin(Molecule::atom(next->GetIdx()-1));
        }
    }
    for (unsigned int i = 1; i <= numberAtoms; ++i) {
        // Warning -- OB atom index off-by-one here
        atom(i-1)->setPartialCharge(obmol.GetAtom(i)->GetPartialCharge());
    }
}
Beispiel #8
0
bool
Oprea_2::CalculateScaffold(const OpenBabel::OBMol& mol, Options* o)
{
   	OpenBabel::OBMol m(mol);

   	// Tag all HBD
   	std::vector<bool> hbd(m.NumAtoms() + 1);
   	for (OpenBabel::OBMolAtomIter atom(m); atom; ++atom)
   	{    
		if (atom->MatchesSMARTS("[NH,NH2,NH3,OH,nH]"))
      	{
         	hbd[atom->GetIdx()] = true;
      	}
      	else
      	{
         	hbd[atom->GetIdx()] = false;
      	}
   	}
   
   	// Tag all HBA
   	std::vector<bool> hba(m.NumAtoms() + 1);
   	for (OpenBabel::OBMolAtomIter atom(m); atom; ++atom)
   	{   
 		if (!atom->IsAmideNitrogen() &&        // No amide nitrogen
			!atom->IsAromatic() &&             // Not aromatic
			(atom->GetFormalCharge() <= 0) &&    // No + charge
			atom->MatchesSMARTS("[NH0]"))        // No hydrogens
      	{
         	hba[atom->GetIdx()] = true;
      	}
      	else
		if (atom->IsNitrogen() &&              // Nitrogen
          	atom->IsAromatic() &&              // Aromatic
			atom->MatchesSMARTS("[nH0]") && 	   // No hydrogens
         	(atom->GetHvyValence() <= 2) &&    // Maximal two non-H atoms connected
         	(atom->GetFormalCharge() <= 0))    // No + charge
      	{     
         	hba[atom->GetIdx()] = true;
      	}
      	else
      	if (atom->IsOxygen() &&                // Oxygen
         	(atom->GetFormalCharge() <= 0))    // No + charge
      	{
         	hba[atom->GetIdx()] = true;
     	}
      	else
      	{
          	hba[atom->GetIdx()] = false;
      	}
   	}
   
   	// Mark the C(=O) or S(=O) also as HBA
   	for (OpenBabel::OBMolAtomIter atom(m); atom; ++atom)
   	{   
		if (atom->MatchesSMARTS("C=O"))
		{
         	hba[atom->GetIdx()] = true;
		}
		else
		if (atom->MatchesSMARTS("S=O"))
		{
         	hba[atom->GetIdx()] = true;
		} 
	}

   	// Make all atoms as neutral C, N (HBD), or O (HBA)
   	m.BeginModify();
   	std::vector<OpenBabel::OBAtom*>::iterator avi;
   	OpenBabel::OBAtom* atom;
   	for (atom = m.BeginAtom(avi); atom; atom = m.NextAtom(avi))
   	{
      	if (hba[atom->GetIdx()])
		{
			atom->SetAtomicNum(8);
		}
      	else
		if (hbd[atom->GetIdx()])
		{
			atom->SetAtomicNum(7);
		}
      	else
		{
			atom->SetAtomicNum(6);
		}
      	atom->SetFormalCharge(0);
   	}
   	m.EndModify();

	// Remove all endstanding atoms
   	OpenBabel::OBBondIterator bi;
  	OpenBabel::OBBond* bond;
   	std::vector<OpenBabel::OBBond*>::iterator bvi;
    bool removed(true);
   	while (removed)
   	{
      	removed = false;
      	for (atom = m.BeginAtom(avi); atom; atom = m.NextAtom(avi))
      	{
         	if (IsEndStanding(atom, false, false))
         	{
	         	m.DeleteAtom(atom);
            	removed = true;
				break;
         	}
      	}
   	}
   
   	// Set all bond orders equal to 1
   	m.BeginModify();
   	for (bond = m.BeginBond(bvi); bond; bond = m.NextBond(bvi))
   	{
      	bond->SetBondOrder(1);
   	}
   	m.EndModify();

   	// Transform all neighbouring linker atoms into a single bond
   	removed = true; 
	OpenBabel::OBAtom* nbrAtom[2];
   	while (removed)
   	{
		removed = false;
		for (atom = m.BeginAtom(avi); atom; atom = m.NextAtom(avi))
		{
			if (!atom->IsInRing() && (atom->GetValence() == 2))
			{
				m.BeginModify();
		        nbrAtom[0] = atom->BeginNbrAtom(bi);
		        nbrAtom[1] = atom->NextNbrAtom(bi);
				if (nbrAtom[0] && nbrAtom[1])
				{
		        	m.AddBond(nbrAtom[0]->GetIdx(), nbrAtom[1]->GetIdx(), 1);
		        	m.DeleteAtom(atom);
		      		m.EndModify();
					removed = true;
					break;
				}
			}
		}
   	}

   	// Shrink all rings to their minimum size
   	removed = true;
   	while (removed)
   	{
      	removed = false;
      	for (atom = m.BeginAtom(avi); atom; atom = m.NextAtom(avi))
      	{
         	if ((atom->MemberOfRingSize() > 3) && (atom->GetValence() == 2))
         	{
            	nbrAtom[0] = atom->BeginNbrAtom(bi);
            	nbrAtom[1] = atom->NextNbrAtom(bi);
				if (nbrAtom[0] && nbrAtom[1])
				{
            		if (nbrAtom[0]->GetAtomicNum() == atom->GetAtomicNum())
            		{
               			m.BeginModify();
               			m.AddBond(nbrAtom[0]->GetIdx(), nbrAtom[1]->GetIdx(), 1);
               			m.DeleteAtom(atom);
               			m.EndModify();
               			removed = true;
               			break;
            		}
            		else
					if (nbrAtom[1]->GetAtomicNum() == atom->GetAtomicNum())
            		{
               			m.BeginModify();
               			m.AddBond(nbrAtom[0]->GetIdx(), nbrAtom[1]->GetIdx(), 1);
               			m.DeleteAtom(atom);
               			m.EndModify();
               			removed = true;
               			break;
					}
            	}
         	}
      	}
   	}

   	if (!m.Empty())
	{
		_smiles = _mol2can.WriteString(&m, true);
	}
   	else
   	{
      	_smiles = "-";
      	return false;
   	}
   	return true;
}
Beispiel #9
0
bool
_hAccDelocalized(OpenBabel::OBAtom* a)
{
   if (a->GetAtomicNum() != 7)
   {
      return false;
   }
   if (a->IsAromatic() && a->GetImplicitValence() == 3)
   {
      return true;
   }
  
   std::vector<OpenBabel::OBBond*>::iterator bi1;
   for (OpenBabel::OBBond* b1 = a->BeginBond(bi1); b1; b1 = a->NextBond(bi1))
   {
      OpenBabel::OBAtom* aa = b1->GetNbrAtom(a);
    
      if (aa->IsAromatic() && a->GetImplicitValence() == 3)
      {
         return true;
      }
    
      if (aa->GetAtomicNum() == 6)
      {
         std::vector<OpenBabel::OBBond*>::iterator bi2;
         for (OpenBabel::OBBond* b2 = aa->BeginBond(bi2); b2; b2 = aa->NextBond(bi2))
         {
            OpenBabel::OBAtom* aaa = b2->GetNbrAtom(aa);
            
            if (aaa == a)
            {
               continue;
            }
            if (b2->GetBO() == 2)
            {
               if (aaa->GetAtomicNum() == 8)  return true;
               if (aaa->GetAtomicNum() == 7)  return true;
               if (aaa->GetAtomicNum() == 16) return true;
            }
         }
      }
      else if (aa->GetAtomicNum() == 16)
      {
         std::vector<OpenBabel::OBBond*>::iterator bi2;
         for (OpenBabel::OBBond* b2 = aa->BeginBond(bi2); b2; b2 = aa->NextBond(bi2))
         {
            OpenBabel::OBAtom* aaa = b2->GetNbrAtom(aa);
            
            if (aaa == a)
            {
               continue;
            }
            if ((b2->GetBO() == 2) && (aaa->GetAtomicNum() == 8))
            {
               return true;
            }
         }
      }
   }
   return false;
}
	//--
	bool DataProperty::Satisfy(OpenBabel::OBMol* pMolecule, 
									const std::string& refTo, 
									std::vector<Class*>& vecSatisfiedClasses, 
									std::string& refValue)
	{
		//bool bSatisfied = false;
		int iPosition = -1;

		// [rad] if we are default, we automatically satisfy		
		if(!IsDefault())
		{			
			if(!SatisfyCommon(vecSatisfiedClasses, iPosition))
			{
				// [rad] this property does not apply

				refValue = "";
				return(false);
			}
		}

		// [rad] go through possible data types..

		if(!refTo.compare("MOLECULE_ATOM_COUNT"))
		{
			ConvertInt(pMolecule->NumAtoms(), refValue);
		}
		else if(!refTo.compare("MOLECULE_BOND_COUNT"))
		{
			ConvertInt(pMolecule->NumBonds(), refValue);
		}
		else if(!refTo.compare("MOLECULE_RING_COUNT"))
		{
			std::vector<OpenBabel::OBRing*>& refSSSR = pMolecule->GetSSSR();
			ConvertInt(refSSSR.size(), refValue);
		}
		else if(!refTo.compare("MOLECULE_HEAVY_HYDROGEN_COUNT"))
		{
			ConvertInt(pMolecule->NumHvyAtoms(), refValue);
		}
		else if(!refTo.compare("MOLECULE_RESIDUE_COUNT"))
		{
			ConvertInt(pMolecule->NumResidues(), refValue);
		}
		else if(!refTo.compare("MOLECULE_ROTOR_COUNT"))
		{
			ConvertInt(pMolecule->NumRotors(), refValue);
		}
		else if(!refTo.compare("MOLECULE_FORMULA"))
		{
			refValue = pMolecule->GetFormula();
		}
		else if(!refTo.compare("MOLECULE_FORMATION_HEAT"))
		{
			ConvertDouble(pMolecule->GetEnergy(), refValue);
		}
		else if(!refTo.compare("MOLECULE_STANDARD_MOLAR_MASS"))
		{
			ConvertDouble(pMolecule->GetMolWt(), refValue);
		}
		else if(!refTo.compare("MOLECULE_EXACT_MASS"))
		{
			ConvertDouble(pMolecule->GetExactMass(), refValue);
		}
		else if(!refTo.compare("MOLECULE_TOTAL_CHARGE"))
		{
			ConvertInt(pMolecule->GetTotalCharge(), refValue);
		}
		else if(!refTo.compare("MOLECULE_SPIN_MULTIPLICITY"))
		{
			ConvertInt(pMolecule->GetTotalSpinMultiplicity(), refValue);
		}
		else if(!refTo.compare("MOLECULE_IS_CHIRAL"))
		{
			ConvertBool(pMolecule->IsChiral(), refValue);
		}
		else if(!refTo.compare("MOLECULE_HAS_AROMATIC_RING"))
		{
			std::vector<OpenBabel::OBRing*>& refSSSR = pMolecule->GetSSSR();
			bool bAromatic = false;
			std::vector<OpenBabel::OBRing*>::iterator iter_rings = refSSSR.begin();
			while(iter_rings != refSSSR.end())
			{
				if((*iter_rings)->IsAromatic())
				{
					bAromatic = true;
					break;
				}

				iter_rings++;
			}

			ConvertBool(bAromatic, refValue);
		}
		else if(!refTo.compare("MOLECULE_HAS_HOMOCYCLIC_RING"))
		{
			std::vector<OpenBabel::OBRing*>& refSSSR = pMolecule->GetSSSR();
			std::vector<OpenBabel::OBRing*>::iterator iter_rings = refSSSR.begin();
			OpenBabel::OBAtom* pAtom;

			bool bHomoCyclic = true;

			while(iter_rings != refSSSR.end())
			{
				std::vector<int>::iterator iter_path = (*iter_rings)->_path.begin();
				while(iter_path != (*iter_rings)->_path.end())
				{
					pAtom = pMolecule->GetAtom((*iter_path));

					if(pAtom)
					{
						if(6 != pAtom->GetAtomicNum())
						{
							bHomoCyclic = false;
							break;
						}
					}

					iter_path++;
				}

				if(!bHomoCyclic) break;

				iter_rings++;
			}
		
			ConvertBool(bHomoCyclic, refValue);
		}
		else if(!refTo.compare("MOLECULE_HAS_HETEROCYCLIC_RING"))
		{
			std::vector<OpenBabel::OBRing*>& refSSSR = pMolecule->GetSSSR();
			std::vector<OpenBabel::OBRing*>::iterator iter_rings = refSSSR.begin();
			OpenBabel::OBAtom* pAtom;

			bool bHeteroCyclic = false;

			while(iter_rings != refSSSR.end())
			{
				std::vector<int>::iterator iter_path = (*iter_rings)->_path.begin();
				while(iter_path != (*iter_rings)->_path.end())
				{
					pAtom = pMolecule->GetAtom((*iter_path));

					if(pAtom)
					{
						if(6 != pAtom->GetAtomicNum())
						{
							bHeteroCyclic = true;
							break;
						}
					}

					iter_path++;
				}

				if(bHeteroCyclic) break;

				iter_rings++;
			}
		
			ConvertBool(bHeteroCyclic, refValue);
		}
		else
		{
			// [rad] maybe it's a descriptor?
			if(SatisfyDescriptor(pMolecule, refTo, refValue))
			{
				return(true);
			}

			// [rad] unknown datatype?
			refValue = "";
			return(false);
		}

		return(true);
	}
	//--
	bool DataProperty::Satisfy(OpenBabel::OBRing* pRing, 
								const std::string& refTo, 
								std::vector<Class*>& vecSatisfiedClasses, 
								std::string& refValue)
	{
		//bool bSatisfied = false;
		int iPosition = -1;

		// [rad] if we are default, we automatically satisfy		
		if(!IsDefault())
		{			
			if(!SatisfyCommon(vecSatisfiedClasses, iPosition))
			{
				// [rad] this property does not apply

				refValue = "";
				return(false);
			}
		}

		// [rad] go through possible data types..

		if(!refTo.compare("RING_SIZE"))
		{
			ConvertInt(pRing->Size(), refValue);
		}
		else if(!refTo.compare("RING_IS_AROMATIC"))
		{
			ConvertBool(pRing->IsAromatic(), refValue);
		}
		else if(!refTo.compare("RING_IS_HOMOCYCLIC"))
		{
			OpenBabel::OBMol* pMolecule = pRing->GetParent();
			OpenBabel::OBAtom* pAtom;

			bool bHomoCyclic = true;

			std::vector<int>::iterator iter_path = pRing->_path.begin();
			while(iter_path != pRing->_path.end())
			{
				pAtom = pMolecule->GetAtom((*iter_path));

				if(pAtom)
				{
					if(6 != pAtom->GetAtomicNum())
					{
						bHomoCyclic = false;
						break;
					}
				}

				iter_path++;
			}

			ConvertBool(bHomoCyclic, refValue);
		}
		else if(!refTo.compare("RING_IS_HETEROCYCLIC"))
		{
			OpenBabel::OBMol* pMolecule = pRing->GetParent();
			OpenBabel::OBAtom* pAtom;

			bool bHeteroCyclic = false;

			std::vector<int>::iterator iter_path = pRing->_path.begin();
			while(iter_path != pRing->_path.end())
			{
				pAtom = pMolecule->GetAtom((*iter_path));

				if(pAtom)
				{
					if(6 != pAtom->GetAtomicNum())
					{
						bHeteroCyclic = true;
						break;
					}
				}

				iter_path++;
			}

			ConvertBool(bHeteroCyclic, refValue);
		}
		else
		{
			// [rad] unknown datatype?
			refValue = "";
			return(false);
		}

		return(true);
	}
Beispiel #12
0
static int extract_thermo(OpenBabel::OBMol *mol,string method,double temperature,
                          double ezpe,double Hcorr,double Gcorr,double E0,double CV,
                          int RotSymNum,std::vector<double> Scomponents)
{
    // Initiate correction database
    OpenBabel::OBAtomicHeatOfFormationTable *ahof = new OpenBabel::OBAtomicHeatOfFormationTable();
    OpenBabel::OBAtomIterator OBai;
    OpenBabel::OBAtom *OBa;
    OpenBabel::OBElementTable *OBet;
    char valbuf[128];
    int ii,atomid,atomicnumber,found,foundall;
    double dhofM0, dhofMT, S0MT, DeltaSMT;
    double eFactor = HARTEE_TO_KCALPERMOL;

    OBet = new OpenBabel::OBElementTable();

    // Now loop over atoms in order to correct the Delta H formation
    OBai     = mol->BeginAtoms();
    atomid   = 0;
    foundall = 0;
    dhofM0   = E0*eFactor;
    dhofMT   = dhofM0+(Hcorr-ezpe)*eFactor;
    S0MT     = 0;
    if (temperature > 0)
    {
        // Multiply by 1000 to make the unit cal/mol K
        S0MT += 1000*eFactor*(Hcorr-Gcorr)/temperature;
    }

    // Check for symmetry
    OBPointGroup obPG;

    obPG.Setup(mol);
    const char *pg = obPG.IdentifyPointGroup();

    double Rgas = 1.9872041; // cal/mol K http://en.wikipedia.org/wiki/Gas_constant
    double Srot = -Rgas * log(RotSymNum);

    //printf("DHf(M,0) = %g, DHf(M,T) = %g, S0(M,T) = %g\nPoint group = %s RotSymNum = %d Srot = %g\n",
    //       dhofM0, dhofMT, S0MT, pg, RotSymNum, Srot);
    if (RotSymNum > 1)
    {
        // We assume Gaussian has done this correctly!
        Srot = 0;
    }
    S0MT     += Srot;
    DeltaSMT  = S0MT;

    for (OBa = mol->BeginAtom(OBai); (NULL != OBa); OBa = mol->NextAtom(OBai))
    {
        double dhfx0, dhfxT, S0xT;
        atomicnumber = OBa->GetAtomicNum();
        found = ahof->GetHeatOfFormation(OBet->GetSymbol(atomicnumber),
                                         0,
                                         method,
                                         temperature,
                                         &dhfx0, &dhfxT, &S0xT);
        if (1 == found)
        {
            dhofM0 += dhfx0;
            dhofMT += dhfxT;
            DeltaSMT += S0xT;
            foundall ++;
        }
        atomid++;
    }
    if (foundall == atomid)
    {
        std::string attr[5];
        double result[5];
        char buf[32];

        attr[0].assign("DeltaHform(0K)");
        result[0] = dhofM0;
        snprintf(buf, sizeof(buf), "DeltaHform(%gK)", temperature);
        attr[1].assign(buf);
        result[1] = dhofMT;
        snprintf(buf, sizeof(buf), "DeltaSform(%gK)", temperature);
        attr[2].assign(buf);
        result[2] = DeltaSMT;
        snprintf(buf, sizeof(buf), "DeltaGform(%gK)", temperature);
        attr[3].assign(buf);
        result[3] = dhofMT - temperature*result[2]/1000;
        snprintf(buf, sizeof(buf), "S0(%gK)", temperature);
        attr[4].assign(buf);
        result[4] = S0MT;

        add_unique_pairdata_to_mol(mol, "method", method, 0);
        for(ii=0; (ii<5); ii++)
        {
            // Add to molecule properties
            sprintf(valbuf,"%f", result[ii]);
            add_unique_pairdata_to_mol(mol, attr[ii], valbuf, 0);
        }
        sprintf(valbuf, "%f", CV);
        add_unique_pairdata_to_mol(mol, "cv", valbuf, 0);
        sprintf(valbuf, "%f", CV+Rgas);
        add_unique_pairdata_to_mol(mol, "cp", valbuf, 0);
        // Entropy components
        if (Scomponents.size() == 3)
        {
            const char *comps[3] = { "Strans", "Srot", "Svib" };
            for(int i=0; (i<3); i++)
            {
                sprintf(valbuf, "%f", Scomponents[i]);
                add_unique_pairdata_to_mol(mol, comps[i], valbuf, 0);
            }
        }
        // Finally store the energy in internal data structures as well.
        mol->SetEnergy(dhofMT);
    }
    else
    {
        // Debug message?
    }
    // Clean up
    delete OBet;
    delete ahof;

    if (foundall == atomid)
        return 1;
    else
        return 0;
}