void PathConstrainer::SetDefaultProperty( Property::Index index, const Property::Value& propertyValue )
{
  if( index == Dali::PathConstrainer::Property::FORWARD )
  {
    propertyValue.Get(mForward);
  }
  else if( index == Dali::PathConstrainer::Property::POINTS  )
  {
    const Property::Array* array = propertyValue.GetArray();
    mPath->ClearPoints();
    if( array )
    {
      for( Property::Array::SizeType i = 0, count = array->Count(); i < count; ++i )
      {
        Vector3 point;
        array->GetElementAt( i ).Get( point );
        mPath->AddPoint( point );
      }
    }
  }
  else if( index == Dali::PathConstrainer::Property::CONTROL_POINTS )
  {
    const Property::Array* array = propertyValue.GetArray();
    mPath->ClearControlPoints();
    if( array )
    {
      for( Property::Array::SizeType i = 0, count = array->Count(); i < count; ++i )
      {
        Vector3 point;
        array->GetElementAt( i ).Get( point );
        mPath->AddControlPoint( point );
      }
    }
  }
}
void LinearConstrainer::SetDefaultProperty( Property::Index index, const Property::Value& propertyValue )
{
  const Property::Array* array = propertyValue.GetArray();
  if( array )
  {
    size_t propertyArrayCount = array->Count();
    if( index == Dali::LinearConstrainer::Property::VALUE  )
    {
      mValue.Clear(); // remove old values
      mValue.Resize( propertyArrayCount );
      for( size_t i(0); i != propertyArrayCount; ++i )
      {
        array->GetElementAt( i ).Get( mValue[ i ] );
      }
    }
    else if( index == Dali::LinearConstrainer::Property::PROGRESS  )
    {
      mProgress.Clear(); // remove old values
      mProgress.Resize( propertyArrayCount );
      for( size_t i(0); i != propertyArrayCount; ++i )
      {
        array->GetElementAt( i ).Get( mProgress[ i ] );
      }
    }
  }
}
int UtcDaliControlRendererGetPropertyMap4(void)
{
  ToolkitTestApplication application;
  tet_infoline( "UtcDaliControlRendererGetPropertyMap4: radial GradientRenderer" );

  RendererFactory factory = RendererFactory::Get();
  DALI_TEST_CHECK( factory );

  Property::Map propertyMap;
  propertyMap.Insert("renderer-type", "gradient-renderer");

  Vector2 center(100.f, 100.f);
  float radius = 100.f;
  propertyMap.Insert("gradient-units", "user-space");
  propertyMap.Insert("gradient-center", center);
  propertyMap.Insert("gradient-radius", radius);
  propertyMap.Insert("gradient-stop-offset", Vector3(0.1f, 0.3f, 1.1f));

  Property::Array stopColors;
  stopColors.PushBack( Color::RED );
  stopColors.PushBack( Color::BLACK );
  stopColors.PushBack( Color::GREEN );
  propertyMap.Insert("gradient-stop-color", stopColors);

  ControlRenderer gradientRenderer = factory.GetControlRenderer(propertyMap);
  DALI_TEST_CHECK( gradientRenderer );

  Property::Map resultMap;
  gradientRenderer.CreatePropertyMap( resultMap );

  // check the property values from the returned map from control renderer
  Property::Value* value = resultMap.Find( "renderer-type", Property::STRING );
  DALI_TEST_CHECK( value );
  DALI_TEST_CHECK( value->Get<std::string>() == "gradient-renderer" );

  value = resultMap.Find( "gradient-units", Property::STRING );
  DALI_TEST_CHECK( value );
  DALI_TEST_CHECK( value->Get<std::string>() == "user-space" );

  value = resultMap.Find( "gradient-spread-method", Property::STRING );
  DALI_TEST_CHECK( value );
  DALI_TEST_CHECK( value->Get<std::string>() == "pad" );

  value = resultMap.Find( "gradient-center", Property::VECTOR2 );
  DALI_TEST_CHECK( value );
  DALI_TEST_EQUALS( value->Get<Vector2>(), center , Math::MACHINE_EPSILON_100, TEST_LOCATION );

  value = resultMap.Find( "gradient-radius", Property::FLOAT );
  DALI_TEST_CHECK( value );
  DALI_TEST_EQUALS( value->Get<float>(), radius , Math::MACHINE_EPSILON_100, TEST_LOCATION );

  value = resultMap.Find( "gradient-stop-offset", Property::ARRAY );
  DALI_TEST_CHECK( value );
  Property::Array* offsetArray = value->GetArray();
  DALI_TEST_CHECK( offsetArray->Count() == 3 );
  DALI_TEST_EQUALS( offsetArray->GetElementAt(0).Get<float>(), 0.1f , Math::MACHINE_EPSILON_100, TEST_LOCATION );
  DALI_TEST_EQUALS( offsetArray->GetElementAt(1).Get<float>(), 0.3f , Math::MACHINE_EPSILON_100, TEST_LOCATION );
  // any stop value will be clamped to [0.0, 1.0];
  DALI_TEST_EQUALS( offsetArray->GetElementAt(2).Get<float>(), 1.0f , Math::MACHINE_EPSILON_100, TEST_LOCATION );

  value = resultMap.Find( "gradient-stop-color", Property::ARRAY );
  DALI_TEST_CHECK( value );
  Property::Array* colorArray = value->GetArray();
  DALI_TEST_CHECK( colorArray->Count() == 3 );
  DALI_TEST_EQUALS( colorArray->GetElementAt(0).Get<Vector4>(), Color::RED , Math::MACHINE_EPSILON_100, TEST_LOCATION );
  DALI_TEST_EQUALS( colorArray->GetElementAt(1).Get<Vector4>(), Color::BLACK , Math::MACHINE_EPSILON_100, TEST_LOCATION );
  DALI_TEST_EQUALS( colorArray->GetElementAt(2).Get<Vector4>(), Color::GREEN , Math::MACHINE_EPSILON_100, TEST_LOCATION );

  END_TEST;
}
int UtcDaliControlRendererGetPropertyMap3(void)
{
  ToolkitTestApplication application;
  tet_infoline( "UtcDaliControlRendererGetPropertyMap3: linear GradientRenderer" );

  RendererFactory factory = RendererFactory::Get();
  DALI_TEST_CHECK( factory );

  Property::Map propertyMap;
  propertyMap.Insert("renderer-type", "gradient-renderer");

  Vector2 start(-1.f, -1.f);
  Vector2 end(1.f, 1.f);
  propertyMap.Insert("gradient-start-position", start);
  propertyMap.Insert("gradient-end-position", end);
  propertyMap.Insert("gradient-spread-method", "repeat");

  propertyMap.Insert("gradient-stop-offset", Vector2(0.2f, 0.8f));

  Property::Array stopColors;
  stopColors.PushBack( Color::RED );
  stopColors.PushBack( Color::GREEN );
  propertyMap.Insert("gradient-stop-color", stopColors);

  ControlRenderer gradientRenderer = factory.GetControlRenderer(propertyMap);

  Property::Map resultMap;
  gradientRenderer.CreatePropertyMap( resultMap );

  // check the property values from the returned map from control renderer
  Property::Value* value = resultMap.Find( "renderer-type", Property::STRING );
  DALI_TEST_CHECK( value );
  DALI_TEST_CHECK( value->Get<std::string>() == "gradient-renderer" );

  value = resultMap.Find( "gradient-units", Property::STRING );
  DALI_TEST_CHECK( value );
  DALI_TEST_CHECK( value->Get<std::string>() == "object-bounding-box" );

  value = resultMap.Find( "gradient-spread-method", Property::STRING );
  DALI_TEST_CHECK( value );
  DALI_TEST_CHECK( value->Get<std::string>() == "repeat" );

  value = resultMap.Find( "gradient-start-position", Property::VECTOR2 );
  DALI_TEST_CHECK( value );
  DALI_TEST_EQUALS( value->Get<Vector2>(), start , Math::MACHINE_EPSILON_100, TEST_LOCATION );

  value = resultMap.Find( "gradient-end-position", Property::VECTOR2 );
  DALI_TEST_CHECK( value );
  DALI_TEST_EQUALS( value->Get<Vector2>(), end , Math::MACHINE_EPSILON_100, TEST_LOCATION );

  value = resultMap.Find( "gradient-stop-offset", Property::ARRAY );
  DALI_TEST_CHECK( value );
  Property::Array* offsetArray = value->GetArray();
  DALI_TEST_CHECK( offsetArray->Count() == 2 );
  DALI_TEST_EQUALS( offsetArray->GetElementAt(0).Get<float>(), 0.2f , Math::MACHINE_EPSILON_100, TEST_LOCATION );
  DALI_TEST_EQUALS( offsetArray->GetElementAt(1).Get<float>(), 0.8f , Math::MACHINE_EPSILON_100, TEST_LOCATION );

  value = resultMap.Find( "gradient-stop-color", Property::ARRAY );
  DALI_TEST_CHECK( value );
  Property::Array* colorArray = value->GetArray();
  DALI_TEST_CHECK( colorArray->Count() == 2 );
  DALI_TEST_EQUALS( colorArray->GetElementAt(0).Get<Vector4>(), Color::RED , Math::MACHINE_EPSILON_100, TEST_LOCATION );
  DALI_TEST_EQUALS( colorArray->GetElementAt(1).Get<Vector4>(), Color::GREEN , Math::MACHINE_EPSILON_100, TEST_LOCATION );

  END_TEST;
}
Beispiel #5
0
bool SetPropertyFromNode( const TreeNode& node, Property::Value& value,
                          const Replacement& replacer )
{
  bool done = false;

  // some values are ambiguous as we have no Property::Type but can be disambiguated in the json

  // Currently Rotations and Rectangle must always be disambiguated when a type isnt available
  if( Disambiguated( node, value, replacer ) )
  {
    done = true;
  }
  else
  {
    if( node.Size() )
    {
      // our current heuristic for deciding an array is actually a vector and not say a map
      // is to check if the values are all floats
      bool allNumbers = true;
      for(TreeConstIter iter = node.CBegin(); iter != node.CEnd(); ++iter)
      {
        OptionalFloat f = IsFloat((*iter).second);
        if(!f)
        {
          allNumbers = false;
          break;
        }
      }

      if( allNumbers )
      {
        // prefer finding vectors over presuming composite Property::Array...
        if( OptionalMatrix v = IsMatrix(node) )
        {
          value = *v;
          done = true;
        }
        else if( OptionalMatrix3 v = IsMatrix3(node) )
        {
          value = *v;
          done = true;
        }
        else if( OptionalVector4 v = IsVector4(node) )
        {
          value = *v;
          done = true;
        }
        else if( OptionalVector3 v = IsVector3(node) )
        {
          value = *v;
          done = true;
        }
        else if( OptionalVector2 v = IsVector2(node) )
        {
          value = *v;
          done = true;
        }
        else if( 4 == node.Size() )
        {
          if( OptionalVector4 v = IsVector4(node) )
          {
            value = *v;
            done = true;
          }
        }
        else
        {
          value = Property::Value(Property::ARRAY);
          Property::Array* array = value.GetArray();

          if( array )
          {
            for(TreeConstIter iter = node.CBegin(); iter != node.CEnd(); ++iter)
            {
              Property::Value childValue;
              if( SetPropertyFromNode( (*iter).second, childValue, replacer ) )
              {
                array->PushBack( childValue );
                done = true;
              }
            }
          }
        }
      }

      if(!done)
      {
        // presume an array or map
        // container of size 1
        TreeNode::ConstIterator iter = node.CBegin();

        // its seems legal with current json parser for a map to have an empty key
        // but here we take that to mean the structure is a list
        if( ((*iter).first) == 0 )
        {
          value = Property::Value(Property::ARRAY);
          Property::Array* array = value.GetArray();

          if( array )
          {
            for(unsigned int i = 0; i < node.Size(); ++i, ++iter)
            {
              Property::Value childValue;
              if( SetPropertyFromNode( (*iter).second, childValue, replacer ) )
              {
                array->PushBack( childValue );
                done = true;
              }
            }
          }
        }
        else
        {
          value = Property::Value(Property::MAP);
          Property::Map* map = value.GetMap();

          if( map )
          {
            for(unsigned int i = 0; i < node.Size(); ++i, ++iter)
            {
              Property::Value childValue;
              if( SetPropertyFromNode( (*iter).second, childValue, replacer ) )
              {
                map->Insert( (*iter).first, childValue );
                done = true;
              }
            }
          }
        }
      } // if!done
    } // if node.size()
    else // if( 0 == node.size() )
    {
      // no children so either one of bool, float, integer, string
      OptionalBoolean aBool    = replacer.IsBoolean(node);
      OptionalInteger anInt    = replacer.IsInteger(node);
      OptionalFloat   aFloat   = replacer.IsFloat(node);
      OptionalString  aString  = replacer.IsString(node);

      if(aBool)
      {
        // a bool is also an int but here we presume int
        if(anInt)
        {
          value = *anInt;
          done = true;
        }
        else
        {
          value = *aBool;
          done = true;
        }
      }
      else
      {
        // Note: These are both floats and strings
        // {"value":"123"}
        // {"value":123}
        // This means we can't have a string with purely numeric content without disambiguation.
        if(aFloat)
        {
          value = *aFloat;
          done = true;
        }
        else if(anInt)
        {
          value = *anInt;
          done = true;
        }
        else
        {
          // string always succeeds with the current json parser so its last
          value = *aString;
          done = true;
        }

      } // if aBool

    } // if( node.size() )

  } // if Disambiguated()

  return done;
} // bool SetPropertyFromNode( const TreeNode& node, Property::Value& value )
Beispiel #6
0
bool SetPropertyFromNode( const TreeNode& node, Property::Type type, Property::Value& value,
                          const Replacement& replacer )
{
  bool done = false;

  switch(type)
  {
    case Property::BOOLEAN:
    {
      if( OptionalBoolean v = replacer.IsBoolean(node) )
      {
        value = *v;
        done = true;
      }
      break;
    }
    case Property::FLOAT:
    {
      if( OptionalFloat v = replacer.IsFloat(node) )
      {
        value = *v;
        done = true;
      }
      break;
    }
    case Property::INTEGER:
    {
      if( OptionalInteger v = replacer.IsInteger(node) )
      {
        value = *v;
        done = true;
      }
      break;
    }
    case Property::VECTOR2:
    {
      if( OptionalVector2 v = replacer.IsVector2(node) )
      {
        value = *v;
        done = true;
      }
      break;
    }
    case Property::VECTOR3:
    {
      if( OptionalVector3 v = replacer.IsVector3(node) )
      {
        value = *v;
        done = true;
      }
      break;
    }
    case Property::VECTOR4:
    {
      if( OptionalVector4 v = replacer.IsVector4(node) )
      {
        value = *v;
        done = true;
      }
      else if( OptionalString s = replacer.IsString(node) )
      {
        if( (*s)[0] == '#' && 7 == (*s).size() )
        {
          value = HexStringToVector4( &(*s)[1] );
          done = true;
        }
        else if( Dali::ColorController::Get() )
        {
          Vector4 color;
          done = Dali::ColorController::Get().RetrieveColor( *s, color );
          value = color;
        }
      }
      else if( TreeNode::OBJECT == node.GetType() )
      {
        // check for "r", "g" and "b" child color component nodes
        OptionalInteger r = replacer.IsInteger( IsChild(node, "r") );
        OptionalInteger g = replacer.IsInteger( IsChild(node, "g") );
        OptionalInteger b = replacer.IsInteger( IsChild(node, "b") );
        if( r && g && b )
        {
          float red( (*r) * (1.0f/255.0f) );
          float green( (*g) * (1.0f/255.0f) );
          float blue( (*b) * (1.0f/255.0f) );
          // check for optional "a" (alpha) node, default to fully opaque if it is not found.
          float alpha( 1.0f );
          OptionalInteger a = replacer.IsInteger( IsChild(node, "a") );
          if( a )
          {
            alpha = (*a) * (1.0f/255.0f);
          }
          value = Vector4( red, green, blue, alpha );
          done = true;
        }
      }
      break;
    }
    case Property::MATRIX3:
    {
      if( OptionalMatrix3 v = replacer.IsMatrix3(node) )
      {
        value = *v;
        done = true;
      }
      break;
    }
    case Property::MATRIX:
    {
      if( OptionalMatrix v = replacer.IsMatrix(node) )
      {
        value = *v;
        done = true;
      }
      break;
    }
    case Property::RECTANGLE:
    {
      if( OptionalRect v = replacer.IsRect(node) )
      {
        value = *v;
        done = true;
      }
      break;
    }
    case Property::ROTATION:
    {
      if(4 == node.Size())
      {
        if( OptionalVector4 ov = replacer.IsVector4(node) )
        {
          const Vector4& v = *ov;
          // angle, axis as per spec
          value = Quaternion(Radian(Degree(v[3])),
                             Vector3(v[0],v[1],v[2]));
          done = true;
        }
      }
      else
      {
        // degrees Euler as per spec
        if( OptionalVector3 v = replacer.IsVector3(node) )
        {
          value = Quaternion(Radian(Degree((*v).x)),
                             Radian(Degree((*v).y)),
                             Radian(Degree((*v).z)));
          done = true;
        }
      }
      break;
    }
    case Property::STRING:
    {
      if( OptionalString v = replacer.IsString(node) )
      {
        value = *v;
        done = true;
      }
      break;
    }
    case Property::ARRAY:
    {
      if( replacer.IsArray( node, value ) )
      {
        done = true;
      }
      else if(node.Size())
      {
        value = Property::Value(Property::ARRAY);
        Property::Array* array = value.GetArray();

        unsigned int i = 0;
        TreeNode::ConstIterator iter(node.CBegin());

        if( array )
        {
          for( ; i < node.Size(); ++i, ++iter)
          {
            Property::Value childValue;
            if( SetPropertyFromNode( (*iter).second, childValue, replacer ) )
            {
              array->PushBack( childValue );
            }
          }

          if( array->Count() == node.Size() )
          {
            done = true;
          }
          else
          {
            done = false;
          }
        }
      }
      break;
    }
    case Property::MAP:
    {
      if( replacer.IsMap( node, value ) )
      {
        done = true;
      }
      else if(node.Size())
      {
        value = Property::Value(Property::MAP);
        Property::Map* map = value.GetMap();

        unsigned int i = 0;
        TreeNode::ConstIterator iter(node.CBegin());

        if( map )
        {
          for( ; i < node.Size(); ++i, ++iter)
          {
            Property::Value childValue;
            if( SetPropertyFromNode( (*iter).second, childValue, replacer ) )
            {
              map->Insert( (*iter).first, childValue );
            }
          }

          if( map->Count() == node.Size() )
          {
            done = true;
          }
          else
          {
            done = false;
          }
        }
      }
      break;
    }
    case Property::NONE:
    {
      break;
    }
  } // switch type

  return done;
}