void MLCPProjectOnConstraints::postCompute()
{
  _hasBeenUpdated = true;
  // This function is used to set y/lambda values using output from
  // lcp_driver (w,z).  Only Interactions (ie Interactions) of
  // indexSet(leveMin) are concerned.

  // === Get index set from Topology ===
  SP::InteractionsGraph indexSet = simulation()->indexSet(indexSetLevel());

  // y and lambda vectors
  SP::SiconosVector lambda;
  SP::SiconosVector y;

  // === Loop through "active" Interactions (ie present in
  // indexSets[1]) ===
  /** We chose to do a small step _alpha in view of stabilized the algorithm.*/
#ifdef MLCPPROJ_DEBUG
  printf("MLCPProjectOnConstraints::postCompute damping value = %f\n", _alpha);
#endif
  (*_z) *= _alpha;
  unsigned int pos = 0;
#ifdef MLCPPROJ_DEBUG
  printf("MLCPProjectOnConstraints::postCompute _z\n");
  _z->display();
  display();
#endif



  InteractionsGraph::VIterator ui, uiend;

  for (std11::tie(ui, uiend) = indexSet->vertices(); ui != uiend; ++ui)
  {

    SP::Interaction inter = indexSet->bundle(*ui);
    // Get the relative position of inter-interactionBlock in the vector w
    // or z
    pos = _M->getPositionOfInteractionBlock(*inter);
    RELATION::TYPES relationType = inter->relation()->getType();
    if (relationType == NewtonEuler)
    {
      postComputeNewtonEulerR(inter, pos);
    }
    else if (relationType == Lagrangian)
    {
      postComputeLagrangianR(inter, pos);
    }
    else
    {
      RuntimeException::selfThrow("MLCPProjectOnConstraints::computeInteractionBlock - relation type is not from Lagrangian type neither NewtonEuler.");
    }

  }



}
Beispiel #2
0
void SchatzmanPaoliOSI::computeFreeOutput(InteractionsGraph::VDescriptor& vertex_inter, OneStepNSProblem* osnsp)
{

  DEBUG_BEGIN("SchatzmanPaoliOSI::computeFreeOutput(InteractionsGraph::VDescriptor& vertex_inter, OneStepNSProblem* osnsp)\n");
  /** \warning: ensures that it can also work with two different osi for two different ds ?
   */

  SP::InteractionsGraph indexSet = osnsp->simulation()->indexSet(osnsp->indexSetLevel());
  SP::Interaction inter = indexSet->bundle(vertex_inter);
  SP::OneStepNSProblems  allOSNS  = _simulation->oneStepNSProblems();
  VectorOfBlockVectors& inter_work_block = *indexSet->properties(vertex_inter).workBlockVectors;


  // Get relation and non smooth law types
  RELATION::TYPES relationType = inter->relation()->getType();
  RELATION::SUBTYPES relationSubType = inter->relation()->getSubType();
  unsigned int sizeY = inter->nonSmoothLaw()->size();

  unsigned int relativePosition = 0;



  Index coord(8);
  coord[0] = relativePosition;
  coord[1] = relativePosition + sizeY;
  coord[2] = 0;
  coord[4] = 0;
  coord[6] = 0;
  coord[7] = sizeY;
  SP::SiconosMatrix  C;
  SP::SiconosMatrix  D;
  SP::SiconosMatrix  F;
  SP::BlockVector deltax;
  SiconosVector& osnsp_rhs = *(*indexSet->properties(vertex_inter).workVectors)[SchatzmanPaoliOSI::OSNSP_RHS];

  SP::SiconosVector e;
  SP::BlockVector Xfree =  inter_work_block[SchatzmanPaoliOSI::xfree];;
  assert(Xfree);


  SP::Interaction mainInteraction = inter;
  assert(mainInteraction);
  assert(mainInteraction->relation());
  DEBUG_EXPR(inter->display(););
void MLCPProjectOnConstraints::postComputeNewtonEulerR(SP::Interaction inter, unsigned int pos)
{
  SP::NewtonEulerR ner = (std11::static_pointer_cast<NewtonEulerR>(inter->relation()));
  SP::SiconosVector lambda = inter->lambda(0);
  SP::SiconosVector y = inter->y(0);
  unsigned int sizeY = std11::static_pointer_cast<OSNSMatrixProjectOnConstraints>
    (_M)->computeSizeForProjection(inter);
  // Copy _w/_z values, starting from index pos into y/lambda.

  //setBlock(*_w, y, sizeY, pos, 0);
  setBlock(*_z, lambda, sizeY, pos, 0);

}
Beispiel #4
0
void LinearOSNS::computeDiagonalInteractionBlock(const InteractionsGraph::VDescriptor& vd)
{
  DEBUG_BEGIN("LinearOSNS::computeDiagonalInteractionBlock(const InteractionsGraph::VDescriptor& vd)\n");

  // Computes matrix _interactionBlocks[inter1][inter1] (and allocates memory if
  // necessary) one or two DS are concerned by inter1 .  How
  // _interactionBlocks are computed depends explicitely on the type of
  // Relation of each Interaction.

  // Warning: we suppose that at this point, all non linear
  // operators (G for lagrangian relation for example) have been
  // computed through plug-in mechanism.

  // Get dimension of the NonSmoothLaw (ie dim of the interactionBlock)
  SP::InteractionsGraph indexSet = simulation()->indexSet(indexSetLevel());
  SP::Interaction inter = indexSet->bundle(vd);
  // Get osi property from interaction
  // We assume that all ds in vertex_inter have the same osi.
  SP::OneStepIntegrator Osi = indexSet->properties(vd).osi;
  //SP::OneStepIntegrator Osi = simulation()->integratorOfDS(ds);
  OSI::TYPES  osiType = Osi->getType();


  // At most 2 DS are linked by an Interaction
  SP::DynamicalSystem DS1;
  SP::DynamicalSystem DS2;
  unsigned int pos1, pos2;
  // --- Get the dynamical system(s) (edge(s)) connected to the current interaction (vertex) ---
  if (indexSet->properties(vd).source != indexSet->properties(vd).target)
  {
    DEBUG_PRINT("a two DS Interaction\n");
    DS1 = indexSet->properties(vd).source;
    DS2 = indexSet->properties(vd).target;
  }
  else
  {
    DEBUG_PRINT("a single DS Interaction\n");
    DS1 = indexSet->properties(vd).source;
    DS2 = DS1;
    // \warning this looks like some debug code, but it gets executed even with NDEBUG.
    // may be compiler does something smarter, but still it should be rewritten. --xhub
    InteractionsGraph::OEIterator oei, oeiend;
    for (std11::tie(oei, oeiend) = indexSet->out_edges(vd);
         oei != oeiend; ++oei)
    {
      // note : at most 4 edges
      DS2 = indexSet->bundle(*oei);
      if (DS2 != DS1)
      {
        assert(false);
        break;
      }
    }
  }
  assert(DS1);
  assert(DS2);
  pos1 = indexSet->properties(vd).source_pos;
  pos2 = indexSet->properties(vd).target_pos;

  // --- Check block size ---
  assert(indexSet->properties(vd).block->size(0) == inter->nonSmoothLaw()->size());
  assert(indexSet->properties(vd).block->size(1) == inter->nonSmoothLaw()->size());

  // --- Compute diagonal block ---
  // Block to be set in OSNS Matrix, corresponding to
  // the current interaction
  SP::SiconosMatrix currentInteractionBlock = indexSet->properties(vd).block;
  SP::SiconosMatrix leftInteractionBlock, rightInteractionBlock;

  RELATION::TYPES relationType;
  double h = simulation()->currentTimeStep();

  // General form of the interactionBlock is : interactionBlock =
  // a*extraInteractionBlock + b * leftInteractionBlock * centralInteractionBlocks
  // * rightInteractionBlock a and b are scalars, centralInteractionBlocks a
  // matrix depending on the integrator (and on the DS), the
  // simulation type ...  left, right and extra depend on the relation
  // type and the non smooth law.
  relationType = inter->relation()->getType();
  VectorOfSMatrices& workMInter = *indexSet->properties(vd).workMatrices;

  inter->getExtraInteractionBlock(currentInteractionBlock, workMInter);

  unsigned int nslawSize = inter->nonSmoothLaw()->size();
  // loop over the DS connected to the interaction.
  bool endl = false;
  unsigned int pos = pos1;
  for (SP::DynamicalSystem ds = DS1; !endl; ds = DS2)
  {
    assert(ds == DS1 || ds == DS2);
    endl = (ds == DS2);
    unsigned int sizeDS = ds->dimension();
    // get _interactionBlocks corresponding to the current DS
    // These _interactionBlocks depends on the relation type.
    leftInteractionBlock.reset(new SimpleMatrix(nslawSize, sizeDS));
    inter->getLeftInteractionBlockForDS(pos, leftInteractionBlock, workMInter);
    DEBUG_EXPR(leftInteractionBlock->display(););
    // Computing depends on relation type -> move this in Interaction method?
    if (relationType == FirstOrder)
    {

      rightInteractionBlock.reset(new SimpleMatrix(sizeDS, nslawSize));

      inter->getRightInteractionBlockForDS(pos, rightInteractionBlock, workMInter);

      if (osiType == OSI::EULERMOREAUOSI)
      {
        if ((std11::static_pointer_cast<EulerMoreauOSI> (Osi))->useGamma() || (std11::static_pointer_cast<EulerMoreauOSI> (Osi))->useGammaForRelation())
        {
          *rightInteractionBlock *= (std11::static_pointer_cast<EulerMoreauOSI> (Osi))->gamma();
        }
      }

      // for ZOH, we have a different formula ...
      if (osiType == OSI::ZOHOSI && indexSet->properties(vd).forControl)
      {
        *rightInteractionBlock = std11::static_pointer_cast<ZeroOrderHoldOSI>(Osi)->Bd(ds);
        prod(*leftInteractionBlock, *rightInteractionBlock, *currentInteractionBlock, false);
      }
      else
      {
        // centralInteractionBlock contains a lu-factorized matrix and we solve
        // centralInteractionBlock * X = rightInteractionBlock with PLU
        SP::SiconosMatrix centralInteractionBlock = getOSIMatrix(Osi, ds);
        centralInteractionBlock->PLUForwardBackwardInPlace(*rightInteractionBlock);
        inter->computeKhat(*rightInteractionBlock, workMInter, h); // if K is non 0

        //      integration of r with theta method removed
        //      *currentInteractionBlock += h *Theta[*itDS]* *leftInteractionBlock * (*rightInteractionBlock); //left = C, right = W.B
        //gemm(h,*leftInteractionBlock,*rightInteractionBlock,1.0,*currentInteractionBlock);
        *leftInteractionBlock *= h;
        prod(*leftInteractionBlock, *rightInteractionBlock, *currentInteractionBlock, false);
        //left = C, right = inv(W).B
      }

    }
    else if (relationType == Lagrangian ||
             relationType == NewtonEuler)
    {

      SP::BoundaryCondition bc;
      Type::Siconos dsType = Type::value(*ds);
      if (dsType == Type::LagrangianLinearTIDS || dsType == Type::LagrangianDS)
      {
        SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (ds);
        if (d->boundaryConditions()) bc = d->boundaryConditions();
      }
      else if (dsType == Type::NewtonEulerDS)
      {
        SP::NewtonEulerDS d = std11::static_pointer_cast<NewtonEulerDS> (ds);
        if (d->boundaryConditions()) bc = d->boundaryConditions();
      }
      if (bc)
      {
        for (std::vector<unsigned int>::iterator itindex = bc->velocityIndices()->begin() ;
             itindex != bc->velocityIndices()->end();
             ++itindex)
        {
          // (nslawSize,sizeDS));
          SP::SiconosVector coltmp(new SiconosVector(nslawSize));
          coltmp->zero();
          leftInteractionBlock->setCol(*itindex, *coltmp);
        }
      }
      DEBUG_PRINT("leftInteractionBlock after application of boundary conditions\n");
      DEBUG_EXPR(leftInteractionBlock->display(););
Beispiel #5
0
void EulerMoreauOSI::computeW(double t, DynamicalSystem& ds, DynamicalSystemsGraph::VDescriptor& dsgVD)
{
  // Compute W matrix of the Dynamical System ds, at time t and for the current ds state.

  // When this function is called, WMap[ds] is supposed to exist and not to be null
  // Memory allocation has been done during initW.

  unsigned int dsN = ds.number();
  assert((WMap.find(dsN) != WMap.end()) &&
         "EulerMoreauOSI::computeW(t,ds) - W(ds) does not exists. Maybe you forget to initialize the osi?");

  double h = simulationLink->timeStep();
  Type::Siconos dsType = Type::value(ds);

  SiconosMatrix& W = *WMap[dsN];

  // 1 - First order non linear systems
  if (dsType == Type::FirstOrderNonLinearDS)
  {
    // W =  M - h*_theta* [jacobian_x f(t,x,z)]
    FirstOrderNonLinearDS& d = static_cast<FirstOrderNonLinearDS&> (ds);

    // Copy M or I if M is Null into W
    if (d.M())
      W = *d.M();
    else
      W.eye();

    d.computeJacobianfx(t);
    // Add -h*_theta*jacobianfx to W
    scal(-h * _theta, *d.jacobianfx(), W, false);
  }
  // 2 - First order linear systems
  else if (dsType == Type::FirstOrderLinearDS || dsType == Type::FirstOrderLinearTIDS)
  {
    FirstOrderLinearDS& d = static_cast<FirstOrderLinearDS&> (ds);
    if (dsType == Type::FirstOrderLinearDS)
      d.computeA(t);

    if (d.M())
      W = *d.M();
    else
      W.eye();

    scal(-h * _theta, *d.A(), W, false);
  }
  else RuntimeException::selfThrow("EulerMoreauOSI::computeW - not yet implemented for Dynamical system type :" + dsType);

//  if (_useGamma)
  {
    Topology& topo = *simulationLink->model()->nonSmoothDynamicalSystem()->topology();
    DynamicalSystemsGraph& DSG0 = *topo.dSG(0);
    InteractionsGraph& indexSet = *topo.indexSet(0);
    DynamicalSystemsGraph::OEIterator oei, oeiend;
    InteractionsGraph::VDescriptor ivd;
    SP::SiconosMatrix K;
    SP::Interaction inter;
    for (std11::tie(oei, oeiend) = DSG0.out_edges(dsgVD); oei != oeiend; ++oei)
    {
      inter = DSG0.bundle(*oei);
      ivd = indexSet.descriptor(inter);
      FirstOrderR& rel = static_cast<FirstOrderR&>(*inter->relation());
      K = rel.K();
      if (!K) K = (*indexSet.properties(ivd).workMatrices)[FirstOrderR::mat_K];
      if (K)
      {
        scal(-h * _gamma, *K, W, false);
      }
    }
  }
  // Remark: W is not LU-factorized here.
  // Function PLUForwardBackward will do that if required.
}
Beispiel #6
0
void LsodarOSI::computeFreeOutput(InteractionsGraph::VDescriptor& vertex_inter, OneStepNSProblem* osnsp)
{
  SP::OneStepNSProblems  allOSNS  = simulationLink->oneStepNSProblems();
  SP::InteractionsGraph indexSet = osnsp->simulation()->indexSet(osnsp->indexSetLevel());
  SP::Interaction inter = indexSet->bundle(vertex_inter);

  VectorOfBlockVectors& DSlink = *indexSet->properties(vertex_inter).DSlink;
  // Get relation and non smooth law types
  RELATION::TYPES relationType = inter->relation()->getType();
  RELATION::SUBTYPES relationSubType = inter->relation()->getSubType();
  unsigned int sizeY = inter->nonSmoothLaw()->size();

  unsigned int relativePosition = 0;
  SP::Interaction mainInteraction = inter;
  Index coord(8);
  coord[0] = relativePosition;
  coord[1] = relativePosition + sizeY;
  coord[2] = 0;
  coord[4] = 0;
  coord[6] = 0;
  coord[7] = sizeY;
  SP::SiconosMatrix  C;
  //   SP::SiconosMatrix  D;
  //   SP::SiconosMatrix  F;
  SiconosVector& yForNSsolver = *inter->yForNSsolver();
  SP::BlockVector Xfree;


  // All of these values should be stored in the node corrseponding to the Interactionwhen a MoreauJeanOSI scheme is used.

  /* V.A. 10/10/2010
       * Following the type of OSNS  we need to retrieve the velocity or the acceleration
       * This tricks is not very nice but for the moment the OSNS do not known if
       * it is in accelaration of not
       */

  //SP::OneStepNSProblems  allOSNS  = _simulation->oneStepNSProblems();
  if (((*allOSNS)[SICONOS_OSNSP_ED_SMOOTH_ACC]).get() == osnsp)
  {
    if (relationType == Lagrangian)
    {
      Xfree = DSlink[LagrangianR::xfree];
    }
    // else if  (relationType == NewtonEuler)
    // {
    //   Xfree = inter->data(NewtonEulerR::free);
    // }
    assert(Xfree);
    //        std::cout << "Computeqblock Xfree (Gamma)========" << std::endl;
    //       Xfree->display();
  }
  else  if (((*allOSNS)[SICONOS_OSNSP_ED_IMPACT]).get() == osnsp)
  {
    Xfree = DSlink[LagrangianR::q1];
    //        std::cout << "Computeqblock Xfree (Velocity)========" << std::endl;
    //       Xfree->display();

  }
  else
    RuntimeException::selfThrow(" computeqBlock for Event Event-driven is wrong ");

  if (relationType == Lagrangian)
  {
    C = mainInteraction->relation()->C();
    if (C)
    {
      assert(Xfree);

      coord[3] = C->size(1);
      coord[5] = C->size(1);

      subprod(*C, *Xfree, yForNSsolver, coord, true);
    }

    SP::SiconosMatrix ID(new SimpleMatrix(sizeY, sizeY));
    ID->eye();

    Index xcoord(8);
    xcoord[0] = 0;
    xcoord[1] = sizeY;
    xcoord[2] = 0;
    xcoord[3] = sizeY;
    xcoord[4] = 0;
    xcoord[5] = sizeY;
    xcoord[6] = 0;
    xcoord[7] = sizeY;
    // For the relation of type LagrangianRheonomousR
    if (relationSubType == RheonomousR)
    {
      if (((*allOSNS)[SICONOS_OSNSP_ED_SMOOTH_ACC]).get() == osnsp)
      {
        RuntimeException::selfThrow("LsodarOSI::computeFreeOutput not yet implemented for LCP at acceleration level with LagrangianRheonomousR");
      }
      else if (((*allOSNS)[SICONOS_OSNSP_TS_VELOCITY]).get() == osnsp)
      {
        SiconosVector q = *DSlink[LagrangianR::q0];
        SiconosVector z = *DSlink[LagrangianR::z];

        std11::static_pointer_cast<LagrangianRheonomousR>(inter->relation())->computehDot(simulation()->getTkp1(), q, z);
        *DSlink[LagrangianR::z] = z;
        subprod(*ID, *(std11::static_pointer_cast<LagrangianRheonomousR>(inter->relation())->hDot()), yForNSsolver, xcoord, false); // y += hDot
      }
      else
        RuntimeException::selfThrow("LsodarOSI::computeFreeOutput not implemented for SICONOS_OSNSP ");
    }
    // For the relation of type LagrangianScleronomousR
    if (relationSubType == ScleronomousR)
    {
      if (((*allOSNS)[SICONOS_OSNSP_ED_SMOOTH_ACC]).get() == osnsp)
      {
        std11::static_pointer_cast<LagrangianScleronomousR>(inter->relation())->computedotjacqhXqdot(simulation()->getTkp1(), *inter, DSlink);
        subprod(*ID, *(std11::static_pointer_cast<LagrangianScleronomousR>(inter->relation())->dotjacqhXqdot()), yForNSsolver, xcoord, false); // y += NonLinearPart
      }
    }
  }
  else
    RuntimeException::selfThrow("LsodarOSI::computeFreeOutput not yet implemented for Relation of type " + relationType);
  if (((*allOSNS)[SICONOS_OSNSP_ED_IMPACT]).get() == osnsp)
  {
    if (inter->relation()->getType() == Lagrangian || inter->relation()->getType() == NewtonEuler)
    {
      SP::SiconosVisitor nslEffectOnFreeOutput(new _NSLEffectOnFreeOutput(osnsp, inter));
      inter->nonSmoothLaw()->accept(*nslEffectOnFreeOutput);
    }
  }

}
double D1MinusLinearOSI::computeResiduHalfExplicitAccelerationLevel()
{
  DEBUG_BEGIN("\n D1MinusLinearOSI::computeResiduHalfExplicitAccelerationLevel()\n");

  double t = _simulation->nextTime(); // end of the time step
  double told = _simulation->startingTime(); // beginning of the time step
  double h = _simulation->timeStep(); // time step length

  SP::OneStepNSProblems allOSNS  = _simulation->oneStepNSProblems(); // all OSNSP
  SP::Topology topo =  _simulation->nonSmoothDynamicalSystem()->topology();
  SP::InteractionsGraph indexSet2 = topo->indexSet(2);

  /**************************************************************************************************************
   *  Step 1-  solve a LCP at acceleration level for lambda^+_{k} for the last set indices
   *   if index2 is empty we should skip this step
   **************************************************************************************************************/

  DEBUG_PRINT("\nEVALUATE LEFT HAND SIDE\n");

  DEBUG_EXPR(std::cout<< "allOSNS->empty()   " << std::boolalpha << allOSNS->empty() << std::endl << std::endl);
  DEBUG_EXPR(std::cout<< "allOSNS->size()   "  << allOSNS->size() << std::endl << std::endl);

// -- LEFT SIDE --
  DynamicalSystemsGraph::VIterator dsi, dsend;
  for (std11::tie(dsi, dsend) = _dynamicalSystemsGraph->vertices(); dsi != dsend; ++dsi)
  {
    if (!checkOSI(dsi)) continue;
    SP::DynamicalSystem ds = _dynamicalSystemsGraph->bundle(*dsi);

    Type::Siconos dsType = Type::value(*ds);
    SP::SiconosVector accFree;
    SP::SiconosVector work_tdg;
    SP::SiconosMatrix Mold;
    DEBUG_EXPR((*it)->display());

    if ((dsType == Type::LagrangianDS) || (dsType == Type::LagrangianLinearTIDS))
    {
      SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (ds);
      accFree = d->workspace(DynamicalSystem::free); /* POINTER CONSTRUCTOR : will contain
                                                       * the acceleration without contact force */
      accFree->zero();

      // get left state from memory
      SP::SiconosVector qold = d->qMemory()->getSiconosVector(0);
      SP::SiconosVector vold = d->velocityMemory()->getSiconosVector(0); // right limit
      Mold = d->mass();

      DEBUG_EXPR(accFree->display());
      DEBUG_EXPR(qold->display());
      DEBUG_EXPR(vold->display());
      DEBUG_EXPR(Mold->display());

      if (! d->workspace(DynamicalSystem::free_tdg))
      {
        d->allocateWorkVector(DynamicalSystem::free_tdg, d->dimension()) ;
      }
      work_tdg = d->workspace(DynamicalSystem::free_tdg);
      work_tdg->zero();
      DEBUG_EXPR(work_tdg->display());

      if (d->forces())
      {
        d->computeForces(told, qold, vold);
        DEBUG_EXPR(d->forces()->display());

        *accFree += *(d->forces());
      }
      Mold->PLUForwardBackwardInPlace(*accFree); // contains left (right limit) acceleration without contact force
      d->addWorkVector(accFree,DynamicalSystem::free_tdg); // store the value in WorkFreeFree
    }
    else if(dsType == Type::NewtonEulerDS)
    {
      SP::NewtonEulerDS d = std11::static_pointer_cast<NewtonEulerDS> (ds);
      accFree = d->workspace(DynamicalSystem::free); // POINTER CONSTRUCTOR : contains acceleration without contact force
      accFree->zero();

      // get left state from memory
      SP::SiconosVector qold = d->qMemory()->getSiconosVector(0);
      SP::SiconosVector vold = d->velocityMemory()->getSiconosVector(0); // right limit
      //Mold = d->mass();
      assert(!d->mass()->isPLUInversed());
      Mold.reset(new SimpleMatrix(*(d->mass()))); // we copy the mass matrix to avoid its factorization
      DEBUG_EXPR(accFree->display());
      DEBUG_EXPR(qold->display());
      DEBUG_EXPR(vold->display());
      DEBUG_EXPR(Mold->display());

      if (! d->workspace(DynamicalSystem::free_tdg))
      {
        d->allocateWorkVector(DynamicalSystem::free_tdg, d->dimension()) ;
      }

      work_tdg = d->workspace(DynamicalSystem::free_tdg);
      work_tdg->zero();
      DEBUG_EXPR(work_tdg->display());

      if (d->forces())
      {
        d->computeForces(told, qold, vold);
        DEBUG_EXPR(d->forces()->display());

        *accFree += *(d->forces());
      }
      Mold->PLUForwardBackwardInPlace(*accFree); // contains left (right limit) acceleration without contact force

      d->addWorkVector(accFree,DynamicalSystem::free_tdg); // store the value in WorkFreeFree

    }
    else
    {
      RuntimeException::selfThrow("D1MinusLinearOSI::computeResidu - not yet implemented for Dynamical system type: " + dsType);
    }


    DEBUG_PRINT("accFree contains right limit acceleration at  t^+_k with contact force :\n");
    DEBUG_EXPR(accFree->display());
    DEBUG_PRINT("work_tdg contains right limit acceleration at t^+_k without contact force :\n");
    DEBUG_EXPR(work_tdg->display());

  }


  if (!allOSNS->empty())
  {
    if (indexSet2->size() >0)
    {
      InteractionsGraph::VIterator ui, uiend;
      SP::Interaction inter;
      for (std11::tie(ui, uiend) = indexSet2->vertices(); ui != uiend; ++ui)
      {
        inter = indexSet2->bundle(*ui);
        inter->relation()->computeJach(t, *inter, indexSet2->properties(*ui));
        inter->relation()->computeJacg(told, *inter, indexSet2->properties(*ui));
      }

      if (_simulation->nonSmoothDynamicalSystem()->topology()->hasChanged())
      {
        for (OSNSIterator itOsns = allOSNS->begin(); itOsns != allOSNS->end(); ++itOsns)
        {
          (*itOsns)->setHasBeenUpdated(false);
        }
      }
      assert((*allOSNS)[SICONOS_OSNSP_TS_VELOCITY + 1]);

      if (((*allOSNS)[SICONOS_OSNSP_TS_VELOCITY + 1]->hasInteractions())) // it should be equivalent to indexSet2
      {
        DEBUG_PRINT("We compute lambda^+_{k} \n");
        (*allOSNS)[SICONOS_OSNSP_TS_VELOCITY + 1]->compute(told);
        DEBUG_EXPR((*allOSNS)[SICONOS_OSNSP_TS_VELOCITY + 1]->display());
      }


      // Note Franck : at the time this results in a call to swapInMem of all Interactions of the NSDS
      // So let the simu do this.
      //(*allOSNS)[SICONOS_OSNSP_TS_VELOCITY + 1]->saveInMemory(); // we push y and lambda in Memories
      _simulation->nonSmoothDynamicalSystem()->pushInteractionsInMemory();
      _simulation->nonSmoothDynamicalSystem()->updateInput(_simulation->nextTime(),2);

      for (std11::tie(dsi, dsend) = _dynamicalSystemsGraph->vertices(); dsi != dsend; ++dsi)
      {
        if (!checkOSI(dsi)) continue;
        SP::DynamicalSystem ds = _dynamicalSystemsGraph->bundle(*dsi);

        Type::Siconos dsType = Type::value(*ds);
        if ((dsType == Type::LagrangianDS) || (dsType == Type::LagrangianLinearTIDS))
        {
          SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (ds);
          SP::SiconosVector accFree = d->workspace(DynamicalSystem::free); // POINTER CONSTRUCTOR : contains acceleration without contact force

          SP::SiconosVector dummy(new SiconosVector(*(d->p(2)))); // value = contact force
          SP::SiconosMatrix Mold = d->mass();
          Mold->PLUForwardBackwardInPlace(*dummy);
          *accFree  += *(dummy);

          DEBUG_EXPR(d->p(2)->display());
        }
        else if (dsType == Type::NewtonEulerDS)
        {
          SP::NewtonEulerDS d = std11::static_pointer_cast<NewtonEulerDS> (ds);
          SP::SiconosVector accFree = d->workspace(DynamicalSystem::free); // POINTER CONSTRUCTOR : contains acceleration without contact force

          SP::SiconosVector dummy(new SiconosVector(*(d->p(2)))); // value = contact force
          SP::SiconosMatrix Mold(new SimpleMatrix(*(d->mass())));  // we copy the mass matrix to avoid its factorization
          DEBUG_EXPR(Mold->display());
          Mold->PLUForwardBackwardInPlace(*dummy);
          *accFree  += *(dummy);

          DEBUG_EXPR(d->p(2)->display());

        }
        else
          RuntimeException::selfThrow("D1MinusLinearOSI::computeResidu - not yet implemented for Dynamical system type: " + dsType);

      }
    }
  }

  /**************************************************************************************************************
   *  Step 2 -  compute v_{k,1}
   **************************************************************************************************************/


  DEBUG_PRINT("\n PREDICT RIGHT HAND SIDE\n");

  for (std11::tie(dsi, dsend) = _dynamicalSystemsGraph->vertices(); dsi != dsend; ++dsi)
  {
    if (!checkOSI(dsi)) continue;
    SP::DynamicalSystem ds = _dynamicalSystemsGraph->bundle(*dsi);


    // type of the current DS
    Type::Siconos dsType = Type::value(*ds);
    /* \warning the following conditional statement should be removed with a MechanicalDS class */
    if ((dsType == Type::LagrangianDS) || (dsType == Type::LagrangianLinearTIDS))
    {
      SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (ds);
      SP::SiconosVector accFree = d->workspace(DynamicalSystem::free); // contains acceleration without contact force

      // get left state from memory
      SP::SiconosVector qold = d->qMemory()->getSiconosVector(0);
      SP::SiconosVector vold = d->velocityMemory()->getSiconosVector(0);

      // initialize *it->residuFree and predicted right velocity (left limit)
      SP::SiconosVector residuFree = ds->workspace(DynamicalSystem::freeresidu); // contains residu without nonsmooth effect
      SP::SiconosVector v = d->velocity(); //contains velocity v_{k+1}^- and not free velocity
      residuFree->zero();
      v->zero();

      DEBUG_EXPR(accFree->display());
      DEBUG_EXPR(qold->display());
      DEBUG_EXPR(vold->display());


      *residuFree -= 0.5 * h**accFree;

      *v += h**accFree;
      *v += *vold;

      DEBUG_EXPR(residuFree->display());
      DEBUG_EXPR(v->display());

      SP::SiconosVector q = d->q(); // POINTER CONSTRUCTOR : contains position q_{k+1}
      *q = *qold;

      scal(0.5 * h, *vold + *v, *q, false);
      DEBUG_EXPR(q->display());
    }
    else if (dsType == Type::NewtonEulerDS)
    {
      SP::NewtonEulerDS d = std11::static_pointer_cast<NewtonEulerDS> (ds);
      SP::SiconosVector accFree = d->workspace(DynamicalSystem::free);

      // get left state from memory
      SP::SiconosVector qold = d->qMemory()->getSiconosVector(0);
      SP::SiconosVector vold = d->velocityMemory()->getSiconosVector(0);

      // initialize *it->residuFree and predicted right velocity (left limit)
      SP::SiconosVector residuFree = ds->workspace(DynamicalSystem::freeresidu); // contains residu without nonsmooth effect
      SP::SiconosVector v = d->velocity(); //contains velocity v_{k+1}^- and not free velocity
      residuFree->zero();
      v->zero();

      DEBUG_EXPR(accFree->display());
      DEBUG_EXPR(qold->display());
      DEBUG_EXPR(vold->display());


      *residuFree -= 0.5 * h**accFree;

      *v += h**accFree;
      *v += *vold;

      DEBUG_EXPR(residuFree->display());
      DEBUG_EXPR(v->display());

      //first step consists in computing  \dot q.
      //second step consists in updating q.
      //
      SP::SiconosMatrix T = d->T();
      SP::SiconosVector dotq = d->dotq();
      prod(*T, *v, *dotq, true);

      SP::SiconosVector dotqold = d->dotqMemory()->getSiconosVector(0);

      SP::SiconosVector q = d->q(); // POINTER CONSTRUCTOR : contains position q_{k+1}
      *q = *qold;

      scal(0.5 * h, *dotqold + *dotq, *q, false);
      DEBUG_PRINT("new q before normalizing\n");
      DEBUG_EXPR(q->display());
      //q[3:6] must be normalized
      d->normalizeq();
      d->computeT();
      DEBUG_PRINT("new q after normalizing\n");
      DEBUG_EXPR(q->display());



    }
    else
      RuntimeException::selfThrow("D1MinusLinearOSI::computeResidu - not yet implemented for Dynamical system type: " + dsType);


    /** At this step, we obtain
     * \f[
     * \begin{cases}
     * v_{k,0} = \mbox{\tt vold} \\
     * q_{k,0} = qold \\
     * F_{k,+} = F(told,qold,vold) \\
     * Work_{freefree} =  M^{-1}_k (F^+_{k})  \mbox{stored in work_tdg} \\
     * Work_{free} =  M^{-1}_k (P^+_{2,k}+F^+_{k})  \mbox{stored in accFree} \\
     * R_{free} = -h/2 * M^{-1}_k (P^+_{2,k}+F^+_{k})  \mbox{stored in ResiduFree} \\
     * v_{k,1} = v_{k,0} + h * M^{-1}_k (P^+_{2,k}+F^+_{k})  \mbox{stored in v} \\
     * q_{k,1} = q_{k,0} + \frac{h}{2} (v_{k,0} + v_{k,1}) \mbox{stored in q} \\
     * \end{cases}
     * \f]
     **/
  }

  DEBUG_PRINT("\n DECIDE STRATEGY\n");
  /** Decide of the strategy impact or smooth multiplier.
   *  Compute _isThereImpactInTheTimeStep
   */
  _isThereImpactInTheTimeStep = false;
  if (!allOSNS->empty())
  {

    for (unsigned int level = _simulation->levelMinForOutput();
         level < _simulation->levelMaxForOutput(); level++)
    {
      _simulation->nonSmoothDynamicalSystem()->updateOutput(_simulation->nextTime(),level);
    }
    _simulation->updateIndexSets();

    SP::Topology topo =  _simulation->nonSmoothDynamicalSystem()->topology();
    SP::InteractionsGraph indexSet3 = topo->indexSet(3);

    if (indexSet3->size() > 0)
    {
      _isThereImpactInTheTimeStep = true;
      DEBUG_PRINT("There is an impact in the step. indexSet3->size() > 0. _isThereImpactInTheTimeStep = true;\n");
    }
    else
    {
      _isThereImpactInTheTimeStep = false;
      DEBUG_PRINT("There is no  impact in the step. indexSet3->size() = 0. _isThereImpactInTheTimeStep = false;\n");
    }
  }


  /* If _isThereImpactInTheTimeStep = true;
   * we recompute residuFree by removing the contribution of the nonimpulsive contact forces.
   * We add the contribution of the external forces at the end
   * of the time--step
   * If _isThereImpactInTheTimeStep = false;
   * we recompute residuFree by adding   the contribution of the external forces at the end
   * and the contribution of the nonimpulsive contact forces that are computed by solving the osnsp.
   */
  if (_isThereImpactInTheTimeStep)
  {

    DEBUG_PRINT("There is an impact in the step. indexSet3->size() > 0.  _isThereImpactInTheTimeStep = true\n");
    for (std11::tie(dsi, dsend) = _dynamicalSystemsGraph->vertices(); dsi != dsend; ++dsi)
    {
      if (!checkOSI(dsi)) continue;
      SP::DynamicalSystem ds = _dynamicalSystemsGraph->bundle(*dsi);

      // type of the current DS
      Type::Siconos dsType = Type::value(*ds);
      /* \warning the following conditional statement should be removed with a MechanicalDS class */
      if ((dsType == Type::LagrangianDS) || (dsType == Type::LagrangianLinearTIDS))
      {
        SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (ds);
        SP::SiconosVector residuFree = d->workspace(DynamicalSystem::freeresidu);
        SP::SiconosVector v = d->velocity();
        SP::SiconosVector q = d->q();
        SP::SiconosVector qold = d->qMemory()->getSiconosVector(0);
        SP::SiconosVector vold = d->velocityMemory()->getSiconosVector(0); // right limit

        SP::SiconosMatrix M = d->mass(); // POINTER CONSTRUCTOR : contains mass matrix

        //residuFree->zero();
        //v->zero();
        SP::SiconosVector work_tdg = d->workspace(DynamicalSystem::free_tdg);
        assert(work_tdg);
        *residuFree =  - 0.5 * h**work_tdg;


        d->computeMass();
        DEBUG_EXPR(M->display());
        if (d->forces())
        {
          d->computeForces(t, q, v);
          *work_tdg = *(d->forces());
          DEBUG_EXPR(d->forces()->display());
        }

        M->PLUForwardBackwardInPlace(*work_tdg); // contains right (left limit) acceleration without contact force
        *residuFree -= 0.5 * h**work_tdg;
        DEBUG_EXPR(residuFree->display());
      }
      else if (dsType == Type::NewtonEulerDS)
      {
        SP::NewtonEulerDS d = std11::static_pointer_cast<NewtonEulerDS> (ds);
        SP::SiconosVector residuFree = d->workspace(DynamicalSystem::freeresidu);
        SP::SiconosVector v = d->velocity();
        SP::SiconosVector q = d->q();
        SP::SiconosVector qold = d->qMemory()->getSiconosVector(0);
        SP::SiconosVector vold = d->velocityMemory()->getSiconosVector(0); // right limit

        SP::SiconosMatrix M(new SimpleMatrix(*(d->mass()))); // we copy the mass matrix to avoid its factorization;
        DEBUG_EXPR(M->display());

        //residuFree->zero();
        v->zero();
        SP::SiconosVector work_tdg = d->workspace(DynamicalSystem::free_tdg);
        assert(work_tdg);
        *residuFree = 0.5 * h**work_tdg;
        work_tdg->zero();

        if (d->forces())
        {
          d->computeForces(t, q, v);
          *work_tdg += *(d->forces());
        }

        M->PLUForwardBackwardInPlace(*work_tdg); // contains right (left limit) acceleration without contact force
        *residuFree -= 0.5 * h**work_tdg;
        DEBUG_EXPR(residuFree->display());
      }
      else
        RuntimeException::selfThrow("D1MinusLinearOSI::computeResidu - not yet implemented for Dynamical system type: " + dsType);
    }
  }
  else
  {
    DEBUG_PRINT("There is no  impact in the step. indexSet3->size() = 0. _isThereImpactInTheTimeStep = false;\n");
    // -- RIGHT SIDE --
    // calculate acceleration without contact force

    for (std11::tie(dsi, dsend) = _dynamicalSystemsGraph->vertices(); dsi != dsend; ++dsi)
    {
      if (!checkOSI(dsi)) continue;
      SP::DynamicalSystem ds = _dynamicalSystemsGraph->bundle(*dsi);

    
      // type of the current DS
      Type::Siconos dsType = Type::value(*ds);
      /* \warning the following conditional statement should be removed with a MechanicalDS class */
      if ((dsType == Type::LagrangianDS) || (dsType == Type::LagrangianLinearTIDS))
      {

        SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (ds);
        SP::SiconosVector accFree = d->workspace(DynamicalSystem::free); // POINTER CONSTRUCTOR : contains acceleration without contact force
        accFree->zero();
        // get right state from memory
        SP::SiconosVector q = d->q(); // contains position q_{k+1}
        SP::SiconosVector v = d->velocity(); // contains velocity v_{k+1}^- and not free velocity
        SP::SiconosMatrix M = d->mass(); // POINTER CONSTRUCTOR : contains mass matrix

        DEBUG_EXPR(accFree->display());
        DEBUG_EXPR(q->display());
        DEBUG_EXPR(v->display());
        // Lagrangian Nonlinear Systems
        if (dsType == Type::LagrangianDS || dsType == Type::LagrangianLinearTIDS)
        {
          d->computeMass();

          DEBUG_EXPR(M->display());
          if (d->forces())
          {
            d->computeForces(t, q, v);
            *accFree += *(d->forces());
          }
        }
        else
          RuntimeException::selfThrow
          ("D1MinusLinearOSI::computeResidu - not yet implemented for Dynamical system type: " + dsType);

        M->PLUForwardBackwardInPlace(*accFree); // contains right (left limit) acceleration without contact force
        DEBUG_PRINT("accFree contains left limit acceleration at  t^-_{k+1} without contact force :\n");
        DEBUG_EXPR(accFree->display());
       }
      else if (dsType == Type::NewtonEulerDS)
      {
        SP::NewtonEulerDS d = std11::static_pointer_cast<NewtonEulerDS> (ds);
        SP::SiconosVector accFree = d->workspace(DynamicalSystem::free); // POINTER CONSTRUCTOR : contains acceleration without contact force
        accFree->zero();
        // get right state from memory
        SP::SiconosVector q = d->q(); // contains position q_{k+1}
        SP::SiconosVector v = d->velocity(); // contains velocity v_{k+1}^- and not free velocity
        SP::SiconosMatrix M(new SimpleMatrix(*(d->mass()))); // we copy the mass matrix to avoid its factorization;

        DEBUG_EXPR(accFree->display());
        DEBUG_EXPR(q->display());
        DEBUG_EXPR(v->display());

        if (d->forces())
        {
          d->computeForces(t, q, v);
          *accFree += *(d->forces());
        }

        M->PLUForwardBackwardInPlace(*accFree); // contains right (left limit) acceleration without contact force
        DEBUG_PRINT("accFree contains left limit acceleration at  t^-_{k+1} without contact force :\n");
        DEBUG_EXPR(accFree->display());
      }
      else
        RuntimeException::selfThrow("D1MinusLinearOSI::computeResidu - not yet implemented for Dynamical system type: " + dsType);

    }

    // solve a LCP at acceleration level only for contacts which have been active at the beginning of the time-step
    if (!allOSNS->empty())
    {
      // for (unsigned int level = _simulation->levelMinForOutput(); level < _simulation->levelMaxForOutput(); level++)
      // {
      //   _simulation->updateOutput(level);
      // }
      // _simulation->updateIndexSets();
      DEBUG_PRINT("We compute lambda^-_{k+1} \n");
      InteractionsGraph::VIterator ui, uiend;
      SP::Interaction inter;
      for (std11::tie(ui, uiend) = indexSet2->vertices(); ui != uiend; ++ui)
      {
        inter = indexSet2->bundle(*ui);
        inter->relation()->computeJach(t, *inter, indexSet2->properties(*ui));
        inter->relation()->computeJacg(t, *inter, indexSet2->properties(*ui));
      }
      if (_simulation->nonSmoothDynamicalSystem()->topology()->hasChanged())
      {
        for (OSNSIterator itOsns = allOSNS->begin(); itOsns != allOSNS->end(); ++itOsns)
        {
          (*itOsns)->setHasBeenUpdated(false);
        }
      }

      if (((*allOSNS)[SICONOS_OSNSP_TS_VELOCITY + 1]->hasInteractions()))
      {
        (*allOSNS)[SICONOS_OSNSP_TS_VELOCITY + 1]->compute(t);
        DEBUG_EXPR((*allOSNS)[SICONOS_OSNSP_TS_VELOCITY + 1]->display(););
        _simulation->nonSmoothDynamicalSystem()->updateInput(_simulation->nextTime(),2);
      }
Beispiel #8
0
void SchatzmanPaoliOSI::computeFreeOutput(InteractionsGraph::VDescriptor& vertex_inter, OneStepNSProblem* osnsp)
{
  /** \warning: ensures that it can also work with two different osi for two different ds ?
   */

  SP::InteractionsGraph indexSet = osnsp->simulation()->indexSet(osnsp->indexSetLevel());
  SP::Interaction inter = indexSet->bundle(vertex_inter);
  SP::OneStepNSProblems  allOSNS  = simulationLink->oneStepNSProblems();

  VectorOfBlockVectors& DSlink = *indexSet->properties(vertex_inter).DSlink;
  // Get relation and non smooth law types
  RELATION::TYPES relationType = inter->relation()->getType();
  RELATION::SUBTYPES relationSubType = inter->relation()->getSubType();
  unsigned int sizeY = inter->nonSmoothLaw()->size();

  unsigned int relativePosition = 0;



  Index coord(8);
  coord[0] = relativePosition;
  coord[1] = relativePosition + sizeY;
  coord[2] = 0;
  coord[4] = 0;
  coord[6] = 0;
  coord[7] = sizeY;
  SP::SiconosMatrix  C;
  SP::SiconosMatrix  D;
  SP::SiconosMatrix  F;
  SP::BlockVector deltax;
  SiconosVector& yForNSsolver = *inter->yForNSsolver();
  SP::SiconosVector e;
  SP::BlockVector Xfree;

  if (relationType == NewtonEuler)
  {
    Xfree = DSlink[NewtonEulerR::xfree];
  }
  else if (relationType == Lagrangian)
  {
    Xfree = DSlink[LagrangianR::xfree];
  }

  assert(Xfree);

  assert(Xfree);


  SP::Interaction mainInteraction = inter;
  assert(mainInteraction);
  assert(mainInteraction->relation());

  if (relationSubType == LinearTIR)
  {

    if (((*allOSNS)[SICONOS_OSNSP_TS_VELOCITY]).get() != osnsp)
      RuntimeException::selfThrow("SchatzmanPaoliOSI::computeFreeOutput not yet implemented for SICONOS_OSNSP ");

    C = mainInteraction->relation()->C();

    if (C)
    {

      assert(Xfree);

      coord[3] = C->size(1);
      coord[5] = C->size(1);
      // creates a POINTER link between workX[ds] (xfree) and the
      // corresponding interactionBlock in each Interactionfor each ds of the
      // current Interaction.

      if (_useGammaForRelation)
      {
        assert(deltax);
        subprod(*C, *deltax, yForNSsolver, coord, true);
      }
      else
      {
        subprod(*C, *Xfree, yForNSsolver, coord, true);
        //        subprod(*C,*(*(mainInteraction->dynamicalSystemsBegin()))->workspace(DynamicalSystem::free),*Yp,coord,true);
        //        if (mainInteraction->dynamicalSystems()->size() == 2)
        //        {
        //          subprod(*C,*(*++(mainInteraction->dynamicalSystemsBegin()))->workspace(DynamicalSystem::free),*Yp,coord,false);
        //        }
      }

    }
    SP::LagrangianLinearTIR ltir = std11::static_pointer_cast<LagrangianLinearTIR> (mainInteraction->relation());
    e = ltir->e();
    if (e)
    {
      yForNSsolver += *e;
    }

  }
  else
    RuntimeException::selfThrow("SchatzmanPaoliOSI::ComputeFreeOutput not yet implemented  for relation of Type : " + relationType);



  if (inter->relation()->getSubType() == LinearTIR)
  {
    SP::SiconosVisitor nslEffectOnFreeOutput(new _NSLEffectOnFreeOutput(osnsp, inter));
    inter->nonSmoothLaw()->accept(*nslEffectOnFreeOutput);
  }


}
void MLCPProjectOnConstraints::computeDiagonalInteractionBlock(const InteractionsGraph::VDescriptor& vd)
{
  SP::InteractionsGraph indexSet = simulation()->indexSet(indexSetLevel());

  SP::DynamicalSystem DS1 = indexSet->properties(vd).source;
  SP::DynamicalSystem DS2 = indexSet->properties(vd).target;
  SP::Interaction inter = indexSet->bundle(vd);
  SP::OneStepIntegrator Osi = indexSet->properties(vd).osi;
  unsigned int pos1, pos2;
  pos1 = indexSet->properties(vd).source_pos;
  pos2 = indexSet->properties(vd).target_pos;

  unsigned int sizeY = 0;
  sizeY = std11::static_pointer_cast<OSNSMatrixProjectOnConstraints>
    (_M)->computeSizeForProjection(inter);


#ifdef MLCPPROJ_DEBUG
  std::cout << "\nMLCPProjectOnConstraints::computeDiagonalInteractionBlock" <<std::endl;
  std::cout << "indexSetLevel()" << indexSetLevel() << std::endl;
  //   std::cout << "indexSet :"<< indexSet << std::endl;
  //   std::cout << "vd :"<< vd << std::endl;
  //  indexSet->display();
  //  std::cout << "DS1 :" << std::endl;
  // DS1->display();
  //  std::cout << "DS2 :" << std::endl;
  // DS2->display();
#endif
  assert(indexSet->blockProj[vd]);
  SP::SiconosMatrix currentInteractionBlock = indexSet->blockProj[vd];

#ifdef MLCPPROJ_DEBUG
  //     std::cout<<"MLCPProjectOnConstraints::computeDiagonalInteractionBlock  "<<std::endl;
  //    currentInteractionBlock->display();
  std::cout << "sizeY " << sizeY  << std::endl;
  std::cout <<  "blockProj " <<  indexSet->blockProj[vd].get() << " of edge " << vd << " of size " << currentInteractionBlock->size(0) << " x " << currentInteractionBlock->size(0) << " for interaction " << inter->number() <<  std::endl;
  // std::cout<<"inter1->display() "<< inter1->number()<< std::endl;
  //inter1->display();
  // std::cout<<"inter2->display() "<< inter2->number()<< std::endl;
  //inter2->display();

#endif

  assert(currentInteractionBlock->size(0) == sizeY);
  assert(currentInteractionBlock->size(1) == sizeY);

  if (!_hasBeenUpdated)
    computeOptions(inter, inter);
  // Computes matrix _interactionBlocks[inter1][inter2] (and allocates memory if
  // necessary) if inter1 and inter2 have commond DynamicalSystem.  How
  // _interactionBlocks are computed depends explicitely on the type of
  // Relation of each Interaction.

  // Warning: we suppose that at this point, all non linear
  // operators (G for lagrangian relation for example) have been
  // computed through plug-in mechanism.

  // Get the W and Theta maps of one of the Interaction -
  // Warning: in the current version, if OSI!=MoreauJeanOSI, this fails.
  // If OSI = MOREAU, centralInteractionBlocks = W if OSI = LSODAR,
  // centralInteractionBlocks = M (mass matrices)
  SP::SiconosMatrix leftInteractionBlock, rightInteractionBlock, leftInteractionBlock1;


  // General form of the interactionBlock is : interactionBlock =
  // a*extraInteractionBlock + b * leftInteractionBlock * centralInteractionBlocks
  // * rightInteractionBlock a and b are scalars, centralInteractionBlocks a
  // matrix depending on the integrator (and on the DS), the
  // simulation type ...  left, right and extra depend on the relation
  // type and the non smooth law.


  VectorOfSMatrices& workMInter = *indexSet->properties(vd).workMatrices;

  currentInteractionBlock->zero();

  // loop over the common DS
  bool endl = false;
  unsigned int pos = pos1;
  for (SP::DynamicalSystem ds = DS1; !endl; ds = DS2)
  {
    assert(ds == DS1 || ds == DS2);
    endl = (ds == DS2);

    if (Type::value(*ds) == Type::LagrangianLinearTIDS ||
        Type::value(*ds) == Type::LagrangianDS)
    {
      if (inter->relation()->getType() != Lagrangian)
      {
        RuntimeException::selfThrow(
          "MLCPProjectOnConstraints::computeDiagonalInteractionBlock - relation is not of type Lagrangian with a LagrangianDS.");
      }


      SP::LagrangianDS lds = (std11::static_pointer_cast<LagrangianDS>(ds));
      unsigned int sizeDS = lds->getDim();
      leftInteractionBlock.reset(new SimpleMatrix(sizeY, sizeDS));
      inter->getLeftInteractionBlockForDS(pos, leftInteractionBlock, workMInter);

      if (lds->boundaryConditions()) // V.A. Should we do that ?
      {
        for (std::vector<unsigned int>::iterator itindex =
               lds->boundaryConditions()->velocityIndices()->begin() ;
             itindex != lds->boundaryConditions()->velocityIndices()->end();
             ++itindex)
        {
          // (sizeY,sizeDS));
          SP::SiconosVector coltmp(new SiconosVector(sizeY));
          coltmp->zero();
          leftInteractionBlock->setCol(*itindex, *coltmp);
        }
      }
      // (inter1 == inter2)
      SP::SiconosMatrix work(new SimpleMatrix(*leftInteractionBlock));
      //
      //        std::cout<<"LinearOSNS : leftUBlock\n";
      //        work->display();
      work->trans();
      //        std::cout<<"LinearOSNS::computeInteractionBlock leftInteractionBlock"<<endl;
      //        leftInteractionBlock->display();



      if (_useMassNormalization)
      {
        SP::SiconosMatrix centralInteractionBlock = getOSIMatrix(Osi, ds);
        centralInteractionBlock->PLUForwardBackwardInPlace(*work);
        prod(*leftInteractionBlock, *work, *currentInteractionBlock, false);
        //      gemm(CblasNoTrans,CblasNoTrans,1.0,*leftInteractionBlock,*work,1.0,*currentInteractionBlock);
      }
      else
      {
        prod(*leftInteractionBlock, *work, *currentInteractionBlock, false);
      }


      //*currentInteractionBlock *=h;
    }
    else if (Type::value(*ds) == Type::NewtonEulerDS)
    {

      if (inter->relation()->getType() != NewtonEuler)
      {
        RuntimeException::selfThrow("MLCPProjectOnConstraints::computeDiagonalInteractionBlock - relation is not from NewtonEulerR.");
      }
      SP::NewtonEulerDS neds = (std11::static_pointer_cast<NewtonEulerDS>(ds));
#ifdef MLCPPROJ_WITH_CT
      unsigned int sizeDS = neds->getDim();
      SP::SimpleMatrix T = neds->T();
      SP::SimpleMatrix workT(new SimpleMatrix(*T));
      workT->trans();
      SP::SimpleMatrix workT2(new SimpleMatrix(6, 6));
      prod(*workT, *T, *workT2, true);
      leftInteractionBlock.reset(new SimpleMatrix(sizeY, sizeDS));
      inter->getLeftInteractionBlockForDS(pos, leftInteractionBlock);
      SP::SiconosMatrix work(new SimpleMatrix(*leftInteractionBlock));
      std::cout << "LinearOSNS : leftUBlock\n";
      work->display();
      work->trans();
      std::cout << "LinearOSNS::computeInteractionBlock workT2" <<std::endl;
      workT2->display();
      workT2->PLUForwardBackwardInPlace(*work);
      prod(*leftInteractionBlock, *work, *currentInteractionBlock, false);
#else
      if (0) //(std11::static_pointer_cast<NewtonEulerR> inter->relation())->_isConstact){
      {
//        unsigned int sizeDS = neds->getDim();
//        SP::SimpleMatrix T = neds->T();
//        SP::SimpleMatrix workT(new SimpleMatrix(*T));
//        workT->trans();
//        SP::SimpleMatrix workT2(new SimpleMatrix(6, 6));
//        prod(*workT, *T, *workT2, true);
//        leftInteractionBlock1.reset(new SimpleMatrix(sizeY, sizeDS));
//        inter->getLeftInteractionBlockForDS(pos, leftInteractionBlock);
//        leftInteractionBlock.reset(new SimpleMatrix(1, sizeDS));
//        for (unsigned int ii = 0; ii < sizeDS; ii++)
//          leftInteractionBlock->setValue(1, ii, leftInteractionBlock1->getValue(1, ii));
//
//        SP::SiconosMatrix work(new SimpleMatrix(*leftInteractionBlock));
//        //cout<<"LinearOSNS : leftUBlock\n";
//        //work->display();
//        work->trans();
//        //cout<<"LinearOSNS::computeInteractionBlock workT2"<<endl;
//        //workT2->display();
//        workT2->PLUForwardBackwardInPlace(*work);
//        prod(*leftInteractionBlock, *work, *currentInteractionBlock, false);
      }
      else
      {
        unsigned int sizeDS = (std11::static_pointer_cast<NewtonEulerDS>(ds))->getqDim();
        leftInteractionBlock.reset(new SimpleMatrix(sizeY, sizeDS));
        inter->getLeftInteractionBlockForDSProjectOnConstraints(pos, leftInteractionBlock);
        // #ifdef MLCPPROJ_DEBUG
        //          std::cout << "MLCPProjectOnConstraints::computeDiagonalInteractionBlock - NewtonEuler case leftInteractionBlock : " << std::endl;
        //         leftInteractionBlock->display();
        // #endif

        SP::SiconosMatrix work(new SimpleMatrix(*leftInteractionBlock));
        //cout<<"LinearOSNS sizeY="<<sizeY<<": leftUBlock\n";
        //work->display();
        work->trans();
        prod(*leftInteractionBlock, *work, *currentInteractionBlock, false);
        // #ifdef MLCPPROJ_DEBUG
        //          std::cout << "MLCPProjectOnConstraints::computeDiagonalInteractionBlock - NewtonEuler case currentInteractionBlock : "<< std::endl;
        //         currentInteractionBlock->display();
        // #endif


      }
      
    }
    else
      RuntimeException::selfThrow("MLCPProjectOnConstraints::computeDiagonalInteractionBlock - ds is not from NewtonEulerDS neither a LagrangianDS.");



#endif
#ifdef MLCPPROJ_DEBUG
    std::cout << "MLCPProjectOnConstraints::computeDiagonalInteractionBlock DiaginteractionBlock " << std::endl;
    currentInteractionBlock->display();
#endif
    // Set pos for next loop. 
    pos = pos2;
     
  }
  
}
void MLCPProjectOnConstraints::computeOptions(SP::Interaction inter1, SP::Interaction inter2)
{
  //  printf("MLCPProjectOnConstraints::computeOptions\n");
  // Get dimension of the NonSmoothLaw (ie dim of the interactionBlock)
  RELATION::TYPES relationType1;
  relationType1 = inter1->relation()->getType();
  // Retrieve size of Y (projected variable)
  unsigned int sizeY1;
  sizeY1 = std11::static_pointer_cast<OSNSMatrixProjectOnConstraints>
    (_M)->computeSizeForProjection(inter1);

  // Compute the number of equalities
  unsigned int equalitySize1 =  sizeY1; //default behavior

  if (Type::value(*(inter1->nonSmoothLaw())) == Type::NewtonImpactFrictionNSL ||
      Type::value(*(inter1->nonSmoothLaw())) == Type::NewtonImpactNSL)
  {
    if (_doProjOnEquality)
    {
      equalitySize1 = sizeY1;
    }
    else
    {
      equalitySize1 = 0;
    }
  }
  else if (Type::value(*(inter1->nonSmoothLaw()))
           == Type::MixedComplementarityConditionNSL)
  {
    equalitySize1 = std11::static_pointer_cast<MixedComplementarityConditionNSL>(inter1->nonSmoothLaw())->getEqualitySize();
  }

  // Compute the number of inequalities
  unsigned int inequalitySize1 =  sizeY1 - equalitySize1;



  if (inter1 == inter2)
  {
    //inter1->getExtraInteractionBlock(currentInteractionBlock);
    _m += inequalitySize1;
    _n += equalitySize1;
    //    _m=0;
    //_n=6;
    if (_curBlock > MLCP_NB_BLOCKS - 2)
      printf("MLCP.cpp : number of block to small, memory crach below!!!\n");
    /*add an equality block.*/

    // #ifdef MLCPPROJ_DEBUG
    //   printf("MLCPProjectOnConstraints::computeOptions()\n");
    // #endif

    if (equalitySize1 > 0)
    {
      _numerics_problem.blocksRows[_curBlock + 1] = _numerics_problem.blocksRows[_curBlock] + equalitySize1;
      _numerics_problem.blocksIsComp[_curBlock] = 0;
      // #ifdef MLCPPROJ_DEBUG
      //        std::cout << "_curBlock : " << _curBlock <<std::endl;
      //        std::cout << "_numerics_problem.blocksRows["<<_curBlock+1 <<" ] : " << _numerics_problem.blocksRows[_curBlock+1] <<std::endl;
      //        std::cout << "_numerics_problem.blocksIsComp["<<_curBlock <<" ] : " << _numerics_problem.blocksIsComp[_curBlock] <<std::endl;
      // #endif

      _curBlock++;
    }
    /*add a complementarity block.*/
    if (inequalitySize1 > 0)
    {
      _numerics_problem.blocksRows[_curBlock + 1] = _numerics_problem.blocksRows[_curBlock] + inequalitySize1;
      _numerics_problem.blocksIsComp[_curBlock] = 1;
      // #ifdef MLCPPROJ_DEBUG
      //        std::cout << "_curBlock : " << _curBlock <<std::endl;
      //        std::cout << "_numerics_problem.blocksRows["<<_curBlock+1<< "] : " << _numerics_problem.blocksRows[_curBlock+1] <<std::endl;
      //        std::cout << "_numerics_problem.blocksIsComp["<<_curBlock<< "] : " << _numerics_problem.blocksIsComp[_curBlock] <<std::endl;
      // #endif

      _curBlock++;

    }
  }
  // #ifdef MLCPPROJ_DEBUG
  //    std::cout << "_m : " << _m <<std::endl;
  //    std::cout << "_n : " << _n <<std::endl;
  // #endif
}
void MLCPProjectOnConstraints::postComputeLagrangianR(SP::Interaction inter, unsigned int pos)
{
  SP::LagrangianR  lr = std11::static_pointer_cast<LagrangianR>(inter->relation());
#ifdef MLCPPROJ_DEBUG
  printf("MLCPProjectOnConstraints::postComputeLagrangian inter->y(0)\n");
  inter->y(0)->display();
  printf("MLCPProjectOnConstraints::postComputeLagrangian lr->jachq \n");
  lr->jachq()->display();
  printf("MLCPProjectOnConstraints::postComputeLagrangianR q before update\n");

  
  SP::InteractionsGraph indexSet = simulation()->indexSet(indexSetLevel());
  InteractionsGraph::VDescriptor ui = indexSet->descriptor(inter);
  InteractionsGraph::OEIterator oei, oeiend;
    for(std11::tie(oei, oeiend) = indexSet->out_edges(ui);
        oei != oeiend; ++oei)
    {
      
      SP::LagrangianDS lds =  std11::static_pointer_cast<LagrangianDS>(indexSet->bundle(*oei));
      lds->q()->display();
  }
#endif



  //unsigned int sizeY = inter->nonSmoothLaw()->size();

  // y and lambda vectors
  SP::SiconosVector lambda = inter->lambda(0);
  SP::SiconosVector y = inter->y(0);
  unsigned int sizeY = std11::static_pointer_cast<OSNSMatrixProjectOnConstraints>
    (_M)->computeSizeForProjection(inter);
  // Copy _w/_z values, starting from index pos into y/lambda.

  //setBlock(*_w, y, sizeY, pos, 0);
  setBlock(*_z, lambda, sizeY, pos, 0);

#ifdef MLCPPROJ_DEBUG
  printf("MLCPP lambda of Interaction is pos =%i :\n", pos);
  //  aBuff->display();
  lambda->display();
  unsigned int nslawsize = inter->nonSmoothLaw()->size();
  SP::SiconosVector aBuff(new SiconosVector(nslawsize));
  setBlock(*_z, aBuff, sizeY, pos, 0);
  SP::SiconosMatrix J = lr->jachq();
  SP::SimpleMatrix aux(new SimpleMatrix(*J));
  aux->trans();
  // SP::SiconosVector tmp(new SiconosVector(*(lr->q())));
  // prod(*aux, *aBuff, *(tmp), false);
  // //prod(*aux,*lambda,*(lr->q()),false);
  // std:: std::cout << " tmp =  tmp + J^T * lambda" << std::endl;
  // tmp->display();
#endif



  // // WARNING : Must not be done here. and should be called with the correct time.
  // // compute p(0)
  // inter->computeInput(0.0 ,0);

  // // \warning aBuff should normally be in lambda[0]
  // // The update of the position in DS should be made
  // //  in MoreauJeanOSI::upateState or ProjectedMoreauJeanOSI::updateState
  // SP::SiconosMatrix J=lr->jachq();
  // SP::SimpleMatrix aux(new SimpleMatrix(*J));
  // aux->trans();

  // SP::SiconosVector tmp (new SiconosVector(*(lr->q())));
  // std:: std::cout << " tmp ="<<std::endl;
  // tmp->display();
  // std:: std::cout << " lr->q() ="<<std::endl;
  // lr->q()->display();

  // //prod(*aux,*lambda,*(lr->q()),false);
  // prod(*aux,*aBuff,*(tmp),false);
  // std:: std::cout << " tmp =  tmp + J * lambda"<<std::endl;
  // tmp->display();


  // // The following step should be done on MoreauJeanOSI::upateState or ProjectedMoreauJeanOSI::updateState
  // DSIterator itDS = inter->dynamicalSystemsBegin();
  // while(itDS!=inter->dynamicalSystemsEnd())
  // {
  //   Type::Siconos dsType = Type::value(**itDS);
  //   if((dsType !=Type::LagrangianDS) and
  //      (dsType !=Type::LagrangianLinearTIDS) )
  //   {
  //     RuntimeException::selfThrow("MLCPProjectOnConstraint::postCompute- ds is not of Lagrangian DS type.");
  //   }

  //   SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (*itDS);
  //   SP::SiconosVector q = d->q();

  //   *q +=  *d->p(0);
  //    std::cout << " q=" << std::endl;
  //   q->display();
  //   itDS++;
  // }

  // if ((*lr->q() - *tmp).normInf() > 1e-12)
  // {
  //   RuntimeException::selfThrow("youyou");
  // }

#ifdef MLCPPROJ_DEBUG
  printf("MLCPProjectOnConstraints::postComputeLagrangianR _z\n");
  _z->display();
  printf("MLCPProjectOnConstraints::postComputeLagrangianR updated\n");
  
  VectorOfBlockVectors& DSlink = *(indexSet->properties(ui)).DSlink;
//  (*DSlink[LagrangianR::q0]).display();
//  (lr->q())->display();
#endif



  //RuntimeException::selfThrow("MLCPProjectOnConstraints::postComputeLagrangianR() - not yet implemented");
}
Beispiel #12
0
void DisksViewer::draw()
{

  int i;

  char qs[6];

  float lbd, w;

  float lbdmax = 0.;

  DSIterator itDS;
  SP::DynamicalSystemsSet involvedDS;
  SP::InteractionsGraph I1;
  SP::Interaction interaction;
  SP::Relation relation;

  if (Siconos_->model()->nonSmoothDynamicalSystem()->topology()->numberOfIndexSet() > 1)
  {
    I1 = Siconos_->model()->simulation()->indexSet(1);

    // calibration
    InteractionsGraph::VIterator ui, uiend;
    for (boost::tie(ui, uiend) = I1->vertices(); ui != uiend; ++ui)
    {
      lbdmax = fmax(I1->bundle(*ui)->lambdaOld(1)->getValue(0), lbdmax);
    }

    for (boost::tie(ui, uiend) = I1->vertices(); ui != uiend; ++ui)
    {
      interaction = I1->bundle(*ui);
      relation = interaction->relation();
      
      lbd = interaction->lambdaOld(1)->getValue(0);

      // screen width of interaction
      w = lbd / (2 * fmax(lbdmax, 1.)) + .03;
   
      // disk/disk
      
      SP::DynamicalSystem d1 = I1->properties(*ui).source;
      SP::DynamicalSystem d2 = I1->properties(*ui).target;

      SP::SiconosVector q1 = ask<ForPosition>(*d1);

      float x1 = (*q1)(0);
      float y1 = (*q1)(1);
      float r1 = ask<ForRadius>(*d1);


      if (d1 != d2)
      {
        SP::SiconosVector q2 = ask<ForPosition>(*d2);
        float x2 = (*q2)(0);
        float y2 = (*q2)(1);
        float r2 = ask<ForRadius>(*d2);

        float d = hypotf(x1 - x2, y1 - y2);

        glPushMatrix();

        glColor3f(.0f, .0f, .0f);
        drawRec(x1, y1, x1 + (x2 - x1)*r1 / d, y1 + (y2 - y1)*r1 / d, w);
        drawRec(x2, y2, x2 + (x1 - x2)*r2 / d, y2 + (y1 - y2)*r2 / d, w);

        glPopMatrix();
      }

      else
      {
        SP::SiconosMatrix jachq = ask<ForJachq>(*relation);
        double jx = jachq->getValue(0, 0);
        double jy = jachq->getValue(0, 1);
        double dj = hypot(jx, jy);

        glPushMatrix();

        glColor3f(.0f, .0f, .0f);
        drawRec(x1, y1, x1 - r1 * jx / dj, y1 - r1 * jy / dj, w);
        glPopMatrix();
      }
    }
  }


  for (unsigned int i = 0; i < GETNDS(Siconos_); i++)
  {
    if (shapes_[i]->selected())
    {
      drawSelectedQGLShape(*shapes_[i]);
    }
    else
    {
      drawQGLShape(*shapes_[i]);
    }
  }

  glColor3f(.45, .45, .45);
  glLineWidth(1.);
  drawGrid(100, 200);
  setGridIsDrawn();

  glColor3f(.1, .1, .3);
  drawVec(-100, 0, 100, 0);
  drawVec(0, -100, 0, 100);

  glColor3f(0, 0, 1);
  glLineWidth(4.);

  if (Siconos_->plans())
  {
    for (unsigned int i = 0 ; i < Siconos_->plans()->size(0) ; ++i)
    {
      double A = (*Siconos_->plans())(i, 0);
      double B = (*Siconos_->plans())(i, 1);
      //double C = (*Siconos_->plans())(i,2);
      double xc = (*Siconos_->plans())(i, 3);
      double yc = (*Siconos_->plans())(i, 4);
      double w = fmin(1e10, (*Siconos_->plans())(i, 5));
      double H = hypot(A, B);

      if (w == 0) w = 1e10;

      //      assert ( fabs(A*xc + B*yc + C) <= std::numeric_limits<double>::epsilon() );

      drawVec(xc, yc, xc - 0.5 * w * B / H, yc + 0.5 * w * A / H);
      drawVec(xc, yc, xc + 0.5 * w * B / H, yc - 0.5 * w * A / H);
    }
  }


  if (Siconos_->movingPlans())
  {
    double time = Siconos_->model()->currentTime();
    for (unsigned int i = 0 ; i < Siconos_->movingPlans()->size1() ; ++i)
    {
      double A = (*Siconos_->movingPlans())(i, 0)(time);
      double B = (*Siconos_->movingPlans())(i, 1)(time);
      double C = (*Siconos_->movingPlans())(i, 2)(time);
      double w = 1e10;
      double H = hypot(A, B);
      double xc = 0.;
      double yc = 0.;

      if (fabs(C) > std::numeric_limits<double>::epsilon())
      {
        if (A == 0)
          // By+C=0
        {
          yc = -C / B;
        }
        else if (B == 0)
          // Ax+C=0
        {
          xc = -C / A;
        }
        else
          // Ax+By+C=0
        {
          if (xc != 0)
            yc = - (A * xc + C) / B;
          else
            xc = - (B * yc + C) / A;
        }
      }

      drawVec(xc, yc, xc - 0.5 * w * B / H, yc + 0.5 * w * A / H);
      drawVec(xc, yc, xc + 0.5 * w * B / H, yc - 0.5 * w * A / H);
    }
  }
  glColor3f(.1, .1, .1);
  glLineWidth(4.);
  QGLViewer::drawArrow(qglviewer::Vec(0, 0, .1), qglviewer::Vec(1, 0, .1), .01, 3);
  QGLViewer::drawArrow(qglviewer::Vec(0, 0, .1), qglviewer::Vec(0, 1, .1), .01, 3);

  glLineWidth(1.);
  for (i = -100; i <= 100; i += 5)
  {
    sprintf(qs, "%d", i);
    //    print((float)i,-.8,qs,small_text);
    //print(-.8,(float)i,qs,small_text);
    drawVec((float)i, -.2, (float)i, .2);
    drawVec(-.2, (float)i, .2, (float)i);
  }
  for (i = -100; i <= 100; i++)
  {
    drawVec((float)i, -.1, (float)i, .1);
    drawVec(-.1, (float)i, .1, (float)i);
  }
}