Beispiel #1
0
//Analyze a subset of chips in a Domain...
//This is a mini analysis of some of the chips in the Fabric Domain.
int32_t FabricDomain::AnalyzeTheseChips(STEP_CODE_DATA_STRUCT & serviceData,
                                        ATTENTION_TYPE attentionType,
                                        TARGETING::TargetHandleList & i_chips)
{
    using namespace TARGETING ;
    PRDF_DENTER( "FabricDomain::AnalyzeTheseChips" );
    int32_t l_rc = ~SUCCESS;

    PRDF_DTRAC( "FabricDomain::AnalyzeTheseChips:: Domain ID = 0x%X", GetId() );

    if(i_chips.size() != 0)
    {

        for (TargetHandleList::iterator i = i_chips.begin(); i != i_chips.end(); ++i)
        {
            PRDF_DTRAC( "FabricDomain::AnalyzeTheseChips::Before--chip=0x%X",
                        PlatServices::getHuid(*i));
        }

        OrderTheseChips(attentionType, i_chips);

        for (TargetHandleList::iterator i = i_chips.begin(); i != i_chips.end(); ++i)
        {
            PRDF_DTRAC( "FabricDomain::AnalyzeTheseChips::After--chip=0x%X",
                        PlatServices::getHuid(*i) );
        }
        //After the Order function is called the first chip should contain the chip to look at.
        //Look here for the correct LookUp function.  I don't think this is working.
        RuleChip * l_fabChip = FindChipInTheseChips(i_chips[0], i_chips);
        PRDF_DTRAC( "FabricDomain::AnalyzeTheseChips::Analyzing this one: 0x%X",
                    l_fabChip->GetId() );
        if(NULL != l_fabChip)
        {
            l_rc = l_fabChip->Analyze(serviceData, attentionType);
        }
        else
        {
            PRDF_DTRAC( "FabricDomain::AnalyzeTheseChips::l_fabChip is NULL" );
            l_rc = ~SUCCESS;
        }
    }
    else
    {
        PRDF_DTRAC( "FabricDomain::AnalyzeTheseChips::i_chips = %d",
                    i_chips.size() );
    }

    //Get P7 chip Global FIR data for FFDC
    for (TargetHandleList::iterator i = i_chips.begin(); i != i_chips.end(); ++i)
    {
        RuleChip * l_fabChip = FindChipInTheseChips(*i, i_chips);
        l_fabChip->CaptureErrorData(
                                    serviceData.service_data->GetCaptureData(),
                                    Util::hashString("GlobalFIRs"));
    }


    PRDF_DEXIT( "FabricDomain::AnalyzeTheseChips" );
    return l_rc;
}
/**
 * @brief This function updates the NVDIMM firmware code
 */
void call_nvdimm_update()
{
    TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,ENTER_MRK"call_nvdimm_update()");

    TARGETING::TargetHandleList l_nvdimmTargetList;
    TARGETING::TargetHandleList l_procList;
    TARGETING::getAllChips(l_procList, TARGETING::TYPE_PROC, false);

    // grab the NVDIMMs under each processor and add to overall list
    for (auto l_proc : l_procList)
    {
        TARGETING::TargetHandleList tmpList =
            TARGETING::getProcNVDIMMs(l_proc);
        l_nvdimmTargetList.insert(l_nvdimmTargetList.end(),
                                  tmpList.begin(), tmpList.end());
    }

    // Run the nvdimm update function if the list is not empty
    if ( !l_nvdimmTargetList.empty() )
    {
        TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,
            "call_nvdimm_update(): found %d nvdimms to check for update",
            l_nvdimmTargetList.size());
        bool updateWorked = NVDIMM::nvdimm_update(l_nvdimmTargetList);
        if (!updateWorked)
        {
            TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,
                    "call_nvdimm_update(): nvdimm update failed");
        }
    }

    TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,EXIT_MRK"call_nvdimm_update()");
}
Beispiel #3
0
//******************************************************************************
// wrapper function to call proc_build_smp
//******************************************************************************
void*    call_proc_build_smp( void    *io_pArgs )
{

    errlHndl_t  l_errl  =   NULL;
    IStepError l_StepError;

    TRACDCOMP( ISTEPS_TRACE::g_trac_isteps_trace,
               "call_proc_build_smp entry" );

    do
    {
        // Get all functional proc chip targets
        TARGETING::TargetHandleList l_cpuTargetList;
        getAllChips(l_cpuTargetList, TYPE_PROC);

        // Collect all valid abus connections and xbus connections
        TargetPairs_t l_abusConnections;
        TargetPairs_t l_xbusConnections;
        l_errl = PbusLinkSvc::getTheInstance().getPbusConnections(
                                     l_abusConnections, TYPE_ABUS, false );
        if (l_errl)
        {
            // Create IStep error log and cross reference error that occurred
            l_StepError.addErrorDetails( l_errl);
            // Commit error
            errlCommit( l_errl, HWPF_COMP_ID );
        }

        // Get XBUS connections
        l_errl = PbusLinkSvc::getTheInstance().getPbusConnections(
                                 l_xbusConnections, TYPE_XBUS, false );

        if (l_errl)
        {
            // Create IStep error log and cross reference error that occurred
            l_StepError.addErrorDetails( l_errl);
            // Commit error
            errlCommit( l_errl, HWPF_COMP_ID );
        }

        // Populate l_proc_Chips vector for each good processor chip
        //   if a A/X-bus endpoint has a valid connection, then
        //   obtain the proc chip target of the other endpoint of the
        //   connection, build the fapi target to update the corresponding
        //   chip object of this A/X-bus endpoint for the procEntry
        std::vector<proc_build_smp_proc_chip> l_procChips;

        // Get the master proc
        TARGETING::Target * l_masterProc =   NULL;
        (void)TARGETING::targetService().
                   masterProcChipTargetHandle( l_masterProc );

        for (TARGETING::TargetHandleList::const_iterator
             l_cpuIter = l_cpuTargetList.begin();
             l_cpuIter != l_cpuTargetList.end();
             ++l_cpuIter)
        {
            const TARGETING::Target* l_pTarget = *l_cpuIter;
            fapi::Target l_fapiproc_target( TARGET_TYPE_PROC_CHIP,
                 (const_cast<TARGETING::Target*>(l_pTarget)));

            proc_build_smp_proc_chip l_procEntry;
            l_procEntry.this_chip = l_fapiproc_target;
            l_procEntry.enable_f0  = false;
            l_procEntry.enable_f1  = false;

            if (l_pTarget == l_masterProc)
            {
                l_procEntry.master_chip_sys_next = true;
            }
            else
            {
                l_procEntry.master_chip_sys_next = false;
            }

            // Get A-BUS
            //abus connections were found so can get the a-bus
            TARGETING::TargetHandleList l_abuses;
               getChildChiplets( l_abuses, l_pTarget, TYPE_ABUS );

            for (TARGETING::TargetHandleList::const_iterator
                    l_abusIter = l_abuses.begin();
                    l_abusIter != l_abuses.end();
                    ++l_abusIter)
            {
                const TARGETING::Target * l_target = *l_abusIter;
                uint8_t l_srcID = l_target->getAttr<ATTR_CHIP_UNIT>();
                TargetPairs_t::iterator l_itr =
                                        l_abusConnections.find(l_target);
                if ( l_itr == l_abusConnections.end() )
                {
                    continue;
                }

                fapi::Target l_fapiEndpointTarget(TARGET_TYPE_ABUS_ENDPOINT,
                          (const_cast<TARGETING::Target*>(l_itr->second)) );

                switch (l_srcID)
                {
                    case 0:
                        l_procEntry.a0_chip = l_fapiEndpointTarget;
                        break;
                    case 1:
                        l_procEntry.a1_chip = l_fapiEndpointTarget;
                        break;
                    case 2:
                        l_procEntry.a2_chip = l_fapiEndpointTarget;
                        break;
                    default:
                        break;
                }

                const TARGETING::Target *l_pParent =
                           getParentChip(
                             (const_cast<TARGETING::Target*>(l_itr->second)));

                l_procEntry.f0_node_id = static_cast<proc_fab_smp_node_id>(
                        l_pTarget->getAttr<TARGETING::ATTR_FABRIC_NODE_ID>());
                l_procEntry.f1_node_id = static_cast<proc_fab_smp_node_id>(
                        l_pParent->getAttr<TARGETING::ATTR_FABRIC_NODE_ID>());
            }

            // Get X-BUS
            TARGETING::TargetHandleList l_xbuses;
            getChildChiplets( l_xbuses, l_pTarget, TYPE_XBUS );

            for (TARGETING::TargetHandleList::const_iterator
                    l_xbusIter = l_xbuses.begin();
                    l_xbusIter != l_xbuses.end();
                    ++l_xbusIter)
            {
                const TARGETING::Target * l_target = *l_xbusIter;
                uint8_t l_srcID = l_target->getAttr<ATTR_CHIP_UNIT>();
                TargetPairs_t::iterator l_itr =
                                l_xbusConnections.find(l_target);
                if ( l_itr == l_xbusConnections.end() )
                {
                    continue;
                }

                fapi::Target l_fapiEndpointTarget(TARGET_TYPE_XBUS_ENDPOINT,
                            (const_cast<TARGETING::Target*>(l_itr->second)) );

                switch (l_srcID)
                {
                    case 0:
                        l_procEntry.x0_chip = l_fapiEndpointTarget;
                        break;
                    case 1:
                        l_procEntry.x1_chip = l_fapiEndpointTarget;
                        break;
                    case 2:
                        l_procEntry.x2_chip = l_fapiEndpointTarget;
                        break;
                    case 3:
                        l_procEntry.x3_chip = l_fapiEndpointTarget;
                        break;
                    default:
                        break;
                }
            }

            l_procChips.push_back( l_procEntry );
        }

        //  call the HWP with each fapi::Target
        FAPI_INVOKE_HWP( l_errl, proc_build_smp, l_procChips,
                         SMP_ACTIVATE_PHASE1 );

        if(l_errl)
        {
            TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,
                      "ERROR : proc_build_smp" );
            // Create IStep error log and cross reference error that occurred
            l_StepError.addErrorDetails(l_errl);
            // Commit error
            errlCommit( l_errl, HWPF_COMP_ID );
            break;
        }
        else
        {
            TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,
                      "SUCCESS : proc_build_smp" );
        }

        // At the point where we can now change the proc chips to use
        // XSCOM rather than FSISCOM which is the default.

        TARGETING::TargetHandleList procChips;
        getAllChips(procChips, TYPE_PROC);

        TARGETING::TargetHandleList::iterator curproc = procChips.begin();

        // Loop through all proc chips
        while(curproc != procChips.end())
        {
            TARGETING::Target*  l_proc_target = *curproc;

            // If the proc chip supports xscom..
            if (l_proc_target->getAttr<ATTR_PRIMARY_CAPABILITIES>()
                .supportsXscom)
            {
                ScomSwitches l_switches =
                  l_proc_target->getAttr<ATTR_SCOM_SWITCHES>();

                // If Xscom is not already enabled.
                if ((l_switches.useXscom != 1) || (l_switches.useFsiScom != 0))
                {
                    l_switches.useFsiScom = 0;
                    l_switches.useXscom = 1;

                    // Turn off FSI scom and turn on Xscom.
                    l_proc_target->setAttr<ATTR_SCOM_SWITCHES>(l_switches);

                    // Reset the FSI2OPB logic on the new chips
                    l_errl = FSI::resetPib2Opb(l_proc_target);
                    if(l_errl)
                    {
                        TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,
                                  "ERROR : resetPib2Opb on %.8X",
                                  TARGETING::get_huid(l_proc_target));
                        // Create IStep error log and cross reference error that occurred
                        l_StepError.addErrorDetails(l_errl);
                        // Commit error
                        errlCommit( l_errl, HWPF_COMP_ID );
                        break;
                    }
                }
            }

            // Enable PSI interrupts even if can't Xscom as
            // Pbus is up and interrupts can flow
            l_errl = INTR::enablePsiIntr(l_proc_target); 
            if(l_errl)
            {
                // capture the target data in the elog
                ErrlUserDetailsTarget(l_proc_target).addToLog( l_errl );

                break;
            }

            ++curproc;
        }


    } while (0);

    TRACDCOMP( ISTEPS_TRACE::g_trac_isteps_trace,
            "call_proc_build_smp exit" );

    // end task, returning any errorlogs to IStepDisp
    return l_StepError.getErrorHandle();
}
Beispiel #4
0
int32_t FabricDomain::OrderTheseChips(ATTENTION_TYPE attentionType,
                                      TARGETING::TargetHandleList & i_chips)
{
    using namespace PluginDef;
    using namespace TARGETING;
    PRDF_DENTER( "FabricDomain::OrderTheseChips" );

    uint32_t l_internalOnlyCount = 0;
    uint64_t l_externalDrivers[i_chips.size()];
    uint64_t l_wofValues[i_chips.size()];
    bool l_internalCS[i_chips.size()];

    union { uint64_t * u; CPU_WORD * c; } ptr;

    uint32_t l_chip = 0;
    uint32_t l_chipToFront = 0;
    // Get internal setting and external driver list for each chip.
    for (TargetHandleList::iterator i = i_chips.begin(); i != i_chips.end(); ++i)
    {

        RuleChip * l_fabChip = FindChipInTheseChips(*i, i_chips);

        ptr.u = &l_externalDrivers[l_chip];
        BitString l_externalChips(i_chips.size(), ptr.c);
        TargetHandleList l_tmpList;

        if(l_fabChip != NULL)
        {
            // Call "GetCheckstopInfo" plugin.
            ExtensibleChipFunction * l_extFunc
                = l_fabChip->getExtensibleFunction("GetCheckstopInfo");

            (*l_extFunc)(l_fabChip,
                     bindParm<bool &, TargetHandleList &, uint64_t &>
                        (l_internalCS[l_chip],
                         l_tmpList,
                         l_wofValues[l_chip]
                     )
            );
        }
        else
        {
            l_internalCS[l_chip] = false;
            PRDF_DTRAC( "FabricDomain::OrderTheseChips: l_fabChip is NULL" );
        }

        //If we are just checking for internal errors then there is no need for
        //a list of what chips sent checkstops where.
        // Update bit buffer.
        for (TargetHandleList::iterator j = l_tmpList.begin();
             j != l_tmpList.end();
             ++j)
        {
            for (uint32_t k = 0; k < i_chips.size(); k++)
                if ((*j) == LookUp(k)->GetChipHandle())
                    l_externalChips.Set(k);
        };

        // Check if is internal.
        if (l_internalCS[l_chip])
        {
            l_internalOnlyCount++;
            l_chipToFront = l_chip;
        }
        l_chip++;  //Move to next chip in the list.
    }

    // Check if we are done... only one with an internal error.
    if (1 == l_internalOnlyCount)
    {
        MoveToFrontInTheseChips(l_chipToFront, i_chips);
        return(SUCCESS);
    }

    PRDF_DEXIT( "FabricDomain::OrderTheseChips" );
    return(SUCCESS);
}
Beispiel #5
0
void HBVddrMsg::createVddrData(
          VDDR_MSG_TYPE     i_requestType,
          RequestContainer& io_request) const
{
    TRACFCOMP( g_trac_volt, ENTER_MRK "HBVddrMsg::createVddrData" );

    // Go through all the memory buffers and gather their domains, domain
    // specific IDs, and domain specific voltages
    io_request.clear();

    do{

        TARGETING::TargetHandleList membufTargetList;
        //When request is a disable command, disable all present Centaurs
        // in case we go through a reconfigure loop
        if(i_requestType == HB_VDDR_DISABLE)
        {
            getChipResources( membufTargetList, TYPE_MEMBUF,
                              UTIL_FILTER_PRESENT );
        }
        //When the request is an enable command, enable only functional
        // centaurs.
        else
        {
            getAllChips(membufTargetList, TYPE_MEMBUF);
        }

        TARGETING::Target* pMembuf =NULL;
        for (TARGETING::TargetHandleList::const_iterator
                ppMembuf = membufTargetList.begin();
             ppMembuf != membufTargetList.end();
             ++ppMembuf)
        {
            pMembuf = *ppMembuf;

            if(i_requestType == HB_VDDR_ENABLE)
            {
                (void)addMemoryVoltageDomains<
                    TARGETING::ATTR_MSS_CENT_VDD_OFFSET_DISABLE,
                    TARGETING::ATTR_MEM_VDD_OFFSET_MILLIVOLTS,
                    TARGETING::ATTR_MEM_VDD_OFFSET_MILLIVOLTS,
                    TARGETING::ATTR_VDD_ID>(
                        pMembuf,
                        io_request);

                (void)addMemoryVoltageDomains<
                    TARGETING::ATTR_MSS_CENT_AVDD_OFFSET_DISABLE,
                    TARGETING::ATTR_MEM_AVDD_OFFSET_MILLIVOLTS,
                    TARGETING::ATTR_MEM_AVDD_OFFSET_MILLIVOLTS,
                    TARGETING::ATTR_AVDD_ID>(
                        pMembuf,
                        io_request);

                (void)addMemoryVoltageDomains<
                    TARGETING::ATTR_MSS_CENT_VCS_OFFSET_DISABLE,
                    TARGETING::ATTR_MEM_VCS_OFFSET_MILLIVOLTS,
                    TARGETING::ATTR_MEM_VCS_OFFSET_MILLIVOLTS,
                    TARGETING::ATTR_VCS_ID>(
                        pMembuf,
                        io_request);

                (void)addMemoryVoltageDomains<
                    TARGETING::ATTR_MSS_VOLT_VPP_OFFSET_DISABLE,
                    TARGETING::ATTR_MEM_VPP_OFFSET_MILLIVOLTS,
                    TARGETING::ATTR_VPP_BASE,
                    TARGETING::ATTR_VPP_ID>(
                        pMembuf,
                        io_request);
            }

            (void)addMemoryVoltageDomains<
                TARGETING::ATTR_MSS_VOLT_VDDR_OFFSET_DISABLE,
                TARGETING::ATTR_MEM_VDDR_OFFSET_MILLIVOLTS,
                TARGETING::ATTR_MSS_VOLT,
                TARGETING::ATTR_VMEM_ID>(
                    pMembuf,
                    io_request);
        }

        if (membufTargetList.size() > 1)
        {
            // Take out the duplicate records in io_request by first
            // sorting and then removing the duplicates
            std::sort(io_request.begin(), io_request.end(), compareVids);
            std::vector<hwsvPowrMemVoltDomainRequest_t>::iterator
                pInvalidEntries = std::unique(
                    io_request.begin(),
                    io_request.end(),
                    areVidsEqual);
            io_request.erase(pInvalidEntries,io_request.end());
        }

        if( ( (i_requestType == HB_VDDR_ENABLE) ||
              (i_requestType == HB_VDDR_POST_DRAM_INIT_ENABLE) )
           && (!membufTargetList.empty())      )
        {
            // Inhibit sending any request to turn on a domain with no voltage.
            // When disabling we don't need to do this because the voltage is
            // ignored.
            io_request.erase(
                std::remove_if(io_request.begin(), io_request.end(),
                    isUnusedVoltageDomain),io_request.end());
        }

    } while(0);

    TRACFCOMP( g_trac_volt, EXIT_MRK "HBVddrMsg::createVddrData" );
    return;
}
Beispiel #6
0
//******************************************************************************
// fenceAttachedMembufs - helper function for hwp proc_cen_ref_clk_enable
//******************************************************************************
void fenceAttachedMembufs( TARGETING::Target * i_procTarget  )
{
     errlHndl_t  l_errl = NULL;

    TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,
            "Fencing attached (present) membuf chips downstream from "
            "proc chip with HUID of 0x%08X",
            i_procTarget->getAttr<TARGETING::ATTR_HUID>());


    // Get list of membuf chips downstream from the given proc chip
    TARGETING::TargetHandleList MembufChipList;

    getChildAffinityTargetsByState( MembufChipList,
                      const_cast<TARGETING::Target*>(i_procTarget ),
                      TARGETING::CLASS_CHIP,
                      TARGETING::TYPE_MEMBUF,
                      TARGETING::UTIL_FILTER_PRESENT);

    // loop through the membufs
    for(TARGETING::TargetHandleList::const_iterator pTargetItr
                            = MembufChipList.begin();
                            pTargetItr != MembufChipList.end();
                            pTargetItr++)
    {
        //Get CFAM "1012" -- FSI GP3 and set bits 23-27 (various fence bits)
        //Note 1012 is ecmd addressing, real address is 0x1048 (byte)
        uint64_t l_addr = 0x1048;
        const uint32_t l_fence_bits= 0x000001F0;
        uint32_t l_data = 0;
        size_t l_size = sizeof(uint32_t);
        l_errl = deviceRead(*pTargetItr,
                         &l_data,
                         l_size,
                         DEVICE_FSI_ADDRESS(l_addr));
        if (l_errl)
        {
            TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,
             "Failed getcfam 1012 to HUID 0x%08X, ignoring, skipping",
             (*pTargetItr)->getAttr<TARGETING::ATTR_HUID>());
            delete l_errl;
            l_errl = NULL;
            continue;
        }

        l_data |= l_fence_bits;

        l_errl = deviceWrite(*pTargetItr,
                         &l_data,
                         l_size,
                         DEVICE_FSI_ADDRESS(l_addr));
        if (l_errl)
        {
            TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,
                      "Failed putcfam 1012 to HUID 0x%08X, ignoring, skipping",
                      (*pTargetItr)->getAttr<TARGETING::ATTR_HUID>());
            delete l_errl;
            l_errl = NULL;
            continue;
        }
    }

}
Beispiel #7
0
//******************************************************************************
// getMembufsAttachedBitMask - helper function for hwp proc_cen_ref_clk_enable
//******************************************************************************
uint8_t getMembufsAttachedBitMask( TARGETING::Target * i_procTarget  )
{
    const uint8_t MCS_WITH_ATTACHED_CENTAUR_MASK = 0x80;

    TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,
            "Finding functional membuf chips downstream from "
            "proc chip with HUID of 0x%08X",
            i_procTarget->getAttr<TARGETING::ATTR_HUID>());

    uint8_t l_attachedMembufs = 0;

    // Get list of functional membuf chips downstream from the given
    // proc chip
    TARGETING::TargetHandleList functionalMembufChipList;

    getChildAffinityTargets( functionalMembufChipList,
                      const_cast<TARGETING::Target*>(i_procTarget ),
                      TARGETING::CLASS_CHIP,
                      TARGETING::TYPE_MEMBUF,
                      true);

    // loop through the functional membufs
    for(TARGETING::TargetHandleList::const_iterator pTargetItr
                            = functionalMembufChipList.begin();
                            pTargetItr != functionalMembufChipList.end();
                            pTargetItr++)
    {
        // Find each functional membuf chip's upstream functional MCS
        // unit, if any, and accumulate it into the attached membuf
        // chips mask
        TARGETING::TargetHandleList functionalMcsUnitList;

        getParentAffinityTargets( functionalMcsUnitList, *pTargetItr,
                                  TARGETING::CLASS_UNIT, TARGETING::TYPE_MCS,
                                  true );

        if(functionalMcsUnitList.empty())
        {
            TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,
                    "Functional membuf chip with HUID of 0x%08X "
                    "is not attached to an upstream functional MCS",
                    (*pTargetItr)->getAttr<
                    TARGETING::ATTR_HUID>());
            continue;
        }

        TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,
                "Found functional MCS unit with HUID of 0x%08X "
                "upstream from functional membuf chip with HUID of 0x%08X",
                ((*functionalMcsUnitList.begin())->getAttr<
                 TARGETING::ATTR_CHIP_UNIT>()),
                (*pTargetItr)->getAttr<
                TARGETING::ATTR_HUID>());
        l_attachedMembufs |=
            ((MCS_WITH_ATTACHED_CENTAUR_MASK) >>
             ((*functionalMcsUnitList.begin())->getAttr<
              TARGETING::ATTR_CHIP_UNIT>()));
    }

    TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,
            "Proc chip with HUID of 0x%08X has attached membuf "
            "mask (l_attachedMembufs) of 0x%02X",
            i_procTarget->getAttr<TARGETING::ATTR_HUID>(),
            l_attachedMembufs);

    // return the bitmask
    return l_attachedMembufs;

}
Beispiel #8
0
//******************************************************************************
// call_proc_cen_ref_clock_enable
//******************************************************************************
void* call_proc_cen_ref_clk_enable(void *io_pArgs )
{
    errlHndl_t  l_errl = NULL;

    IStepError  l_stepError;

    TRACDCOMP( ISTEPS_TRACE::g_trac_isteps_trace,
               "call_proc_cen_ref_clock_enable enter" );

    TARGETING::TargetHandleList functionalProcChipList;

    getAllChips(functionalProcChipList, TYPE_PROC, true);

    // loop thru the list of processors
    for (TargetHandleList::const_iterator
            l_proc_iter = functionalProcChipList.begin();
            l_proc_iter != functionalProcChipList.end();
            ++l_proc_iter)
    {
        TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,
                "target HUID %.8X",
                TARGETING::get_huid( *l_proc_iter ));

        uint8_t l_membufsAttached = 0;
        // get a bit mask of present/functional dimms assocated with
        // this processor
        l_membufsAttached = getMembufsAttachedBitMask( *l_proc_iter );

        //Perform a workaround for GA1 to raise fences on centaurs
        //to prevent FSP from analyzing if HB TIs for recoverable
        //errors
        //RTC 106276
        fenceAttachedMembufs( *l_proc_iter );

        TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,
                "passing target HUID %.8X and 0x%x mask",
                TARGETING::get_huid( *l_proc_iter ), l_membufsAttached );

        if( l_membufsAttached )
        {

            fapi::Target l_fapiProcTarget( fapi::TARGET_TYPE_PROC_CHIP,
                                       *l_proc_iter );

            // Invoke the HWP passing in the proc target and
            // a bit mask indicating connected centaurs
            FAPI_INVOKE_HWP(l_errl,
                    proc_cen_ref_clk_enable,
                    l_fapiProcTarget, l_membufsAttached );

            if (l_errl)
            {
                TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,
                        "ERROR : proc_cen_ref_clk_enable",
                        "failed, returning errorlog" );

                // capture the target data in the elog
                ErrlUserDetailsTarget( *l_proc_iter ).addToLog( l_errl );

                // Create IStep error log and cross ref error that occurred
                l_stepError.addErrorDetails( l_errl );

                // Commit error log
                errlCommit( l_errl, HWPF_COMP_ID );
            }
            else
            {
                TRACFCOMP(ISTEPS_TRACE::g_trac_isteps_trace,
                        "SUCCESS : proc_cen_ref_clk_enable",
                        "completed ok");
            }
        }
    }   // endfor

    TRACDCOMP( ISTEPS_TRACE::g_trac_isteps_trace,
               "call_proc_cen_ref_clock_enable exit" );

    // end task, returning any errorlogs to IStepDisp
    return l_stepError.getErrorHandle();
}
Beispiel #9
0
errlHndl_t initiateDrtm()
{
    SB_ENTER("initiateDrtm");

    errlHndl_t pError = nullptr;

    // For DRTM, the thread has to be pinned to a core (and therefore pinned to
    // a chip)
    task_affinity_pin();

    void* drtmPayloadVirtAddr = nullptr;

    do
    {
        const std::vector<SECUREBOOT::ProcSecurity> LLP {
            SECUREBOOT::ProcSecurity::LLPBit,
        };

        const std::vector<SECUREBOOT::ProcSecurity> LLS {
            SECUREBOOT::ProcSecurity::LLSBit,
        };

        // Determine which fabric group and chip this task is executing on and
        // create a filter to find the matching chip target
        auto cpuId = task_getcpuid();
        auto groupId = PIR_t::groupFromPir(cpuId);
        auto chipId = PIR_t::chipFromPir(cpuId);
        TARGETING::PredicateAttrVal<TARGETING::ATTR_FABRIC_GROUP_ID>
            matchesGroup(groupId);
        TARGETING::PredicateAttrVal<TARGETING::ATTR_FABRIC_CHIP_ID>
            matchesChip(chipId);
        TARGETING::PredicatePostfixExpr matchesGroupAndChip;
        matchesGroupAndChip.push(&matchesGroup).push(&matchesChip).And();

        // Get all the functional proc chips and find the chip we're running on
        TARGETING::TargetHandleList funcProcChips;
        TARGETING::getAllChips(funcProcChips,
                               TARGETING::TYPE_PROC);
        if(funcProcChips.empty())
        {
            // TODO: RTC 167205: GA error handling
            assert(false,"initiateDrtm: BUG! Functional proc chips is empty, "
                "yet this code is running on a functional chip!");
            break;
        }

        // NOTE: std::find_if requires predicates to be copy constructable, but
        // predicates are not; hence use a wrapper lambda function to bypass
        // that limitation
        auto pMatch =
            std::find_if(funcProcChips.begin(),funcProcChips.end(),
                [&matchesGroupAndChip] ( TARGETING::Target* pTarget )
                {
                    return matchesGroupAndChip(pTarget);
                } );

        if(pMatch == funcProcChips.end())
        {
            // TODO: RTC 167205: GA error handling
            assert(false, "initiateDrtm: BUG! No functional chip found "
                "to be running this code");
            break;
        }

        // Move the matching target to the end of the list.
        // NOTE: If reverse iterators were supported, we could have verified the
        // last element of the container is not the match, and done a
        // std::iter_swap of the match and the last element
        TARGETING::Target* const pMatchTarget = *pMatch;
        funcProcChips.erase(pMatch);
        funcProcChips.push_back(pMatchTarget);

        // Map to the DRTM payload area in mainstore
        const uint32_t drtmPayloadPhysAddrMb = DRTM_RIT_PAYLOAD_PHYS_ADDR_MB;
        drtmPayloadVirtAddr = mm_block_map(
            reinterpret_cast<void*>(drtmPayloadPhysAddrMb*BYTES_PER_MEGABYTE),
            PAGESIZE);
        if(drtmPayloadVirtAddr == nullptr)
        {
            // TODO: RTC 167205: GA error handling
            assert(false, "initiateDrtm: BUG! Failed in call to mm_block_map "
                "to map the DRTM payload.");
            break;
        }

        // Copy the DRTM payload to the DRTM payload area
        memcpy(
            reinterpret_cast<uint32_t*>(drtmPayloadVirtAddr),
            DRTM_RIT_PAYLOAD,
            sizeof(DRTM_RIT_PAYLOAD));

        // The required generic sequencing to initiate DRTM is as follows:
        // 1) Initiating task must pin itself to a core (to ensure it
        //     will not be accidentally queisced by SBE)
        // 2) It must set the DRTM payload information in the master processor
        //     mailbox scratch registers (registers 7 and 8) before it goes
        //     offline
        // 3) It must determine the processor it's currently running on
        // 4) It must set the late launch bit (LL) on all other processors
        //     4a) If the given processor is an active master, it must set
        //         late launch primary (LLP) bit
        //     4b) Otherwise it must set late launch secondary (LLS) bit
        // 5) Finally, it must its own processor's LL bit last, according to the
        //     rules of step 4.
        for(auto &pFuncProc :funcProcChips)
        {
            const auto procMasterType = pFuncProc->getAttr<
                TARGETING::ATTR_PROC_MASTER_TYPE>();

            // If master chip, set the DRTM payload address and validity
            if(procMasterType == TARGETING::PROC_MASTER_TYPE_ACTING_MASTER)
            {
                (void)setDrtmPayloadPhysAddrMb(drtmPayloadPhysAddrMb);
            }

            pError = SECUREBOOT::setSecuritySwitchBits(procMasterType ==
                         TARGETING::PROC_MASTER_TYPE_ACTING_MASTER ?
                            LLP : LLS,
                         pFuncProc);
            if(pError)
            {
                SB_ERR("initiateDrtm: setSecuritySwitchBits() failed for proc "
                    "= 0x%08X. Tried to set LLP or LLS.",
                    get_huid(pFuncProc));
                break;
            }
        }

        if(pError)
        {
            break;
        }


        SB_INF("initiateDrtm: SBE should eventually quiesce all cores; until "
            "then, endlessly yield the task");
        while(1)
        {
            task_yield();
        }

    } while(0);

    // If we -do- come back from this function (on error path only), then we
    // should unpin
    task_affinity_unpin();

    if(drtmPayloadVirtAddr)
    {
        auto rc = mm_block_unmap(const_cast<void*>(drtmPayloadVirtAddr));
        if(rc != 0)
        {
            // TODO: RTC 167205: GA error handling
            assert(false,"initiateDrtm: BUG! mm_block_unmap failed for virtual "
                "address 0x%16llX.",
                drtmPayloadVirtAddr);
        }
    }

    if(pError)
    {
        SB_ERR("initiateDrtm: plid=0x%08X, eid=0x%08X, reason=0x%04X",
               ERRL_GETPLID_SAFE(pError),
               ERRL_GETEID_SAFE(pError),
               ERRL_GETRC_SAFE(pError));
    }

    SB_EXIT("initiateDrtm");

    return pError;
}