Beispiel #1
0
TR_DominatorVerifier::TR_DominatorVerifier(TR_Dominators &findDominators)
   : _compilation(findDominators.comp())
   {
   TR::StackMemoryRegion stackMemoryRegion(*trMemory());

   _dominators = &findDominators;

   TR::CFG *cfg = comp()->getFlowGraph();
   _visitCount = comp()->incVisitCount();
   _numBlocks = cfg->getNumberOfNodes()+1;

   if (debug("traceVER"))
      {
      dumpOptDetails(comp(), "Printing out the TreeTops from DominatorVerifier\n");

      TR::TreeTop *currentTree = comp()->getStartTree();

      while (!(currentTree == NULL))
         {
         comp()->getDebug()->print(comp()->getOutFile(), currentTree);
         currentTree = currentTree->getNextTreeTop();
         }

      dumpOptDetails(comp(), "Printing out the CFG from DominatorVerifier\n");
      if (cfg != NULL)
         comp()->getDebug()->print(comp()->getOutFile(), cfg);
      }

   TR_DominatorsChk expensiveAlgorithm(comp());
   expensiveAlgorithmCorrect = isExpensiveAlgorithmCorrect(expensiveAlgorithm);

   if (expensiveAlgorithmCorrect)
      {
      if (debug("traceVER"))
         dumpOptDetails(comp(), "Dominators computed by the expensive algorithm are correct\n");
      }
   else
      {
      if (debug("traceVER"))
         dumpOptDetails(comp(), "Dominators computed by the expensive algorithm are NOT correct\n");
      TR_ASSERT(0, "Dominators computed by the expensive algorithm are NOT correct\n");
      }


   bothImplementationsConsistent = areBothImplementationsConsistent(expensiveAlgorithm, findDominators);

   if (bothImplementationsConsistent)
      {
      if (debug("traceVER"))
         dumpOptDetails(comp(), "Dominators computed by the two implementations are consistent\n");
      }
   else
      {
      if (debug("traceVER"))
         dumpOptDetails(comp(), "Dominators computed by the two implementations are NOT consistent\n");
      TR_ASSERT(0, "Dominators computed by the two implementations are NOT consistent\n");
      }
   }
Beispiel #2
0
void
TR_ReachabilityAnalysis::perform(TR_BitVector *result)
   {
   TR::CFG *cfg = comp()->getFlowGraph();
   int32_t numBlockIndexes = cfg->getNextNodeNumber();
   int32_t numBlocks       = cfg->getNumberOfNodes();

   _blocks = cfg->createArrayOfBlocks();

   blocknum_t *stack    = (blocknum_t*)comp()->trMemory()->allocateStackMemory(numBlockIndexes * sizeof(stack[0]));
   blocknum_t *depthMap = (blocknum_t*)comp()->trMemory()->allocateStackMemory(numBlockIndexes * sizeof(depthMap[0]));
   memset(depthMap, 0, numBlockIndexes * sizeof(depthMap[0]));

   bool trace = comp()->getOption(TR_TraceReachability);

   if (trace)
      traceMsg(comp(), "BEGIN REACHABILITY: %d blocks\n", numBlocks);

   for (TR::Block *block = comp()->getStartBlock(); block; block = block->getNextBlock())
      {
      blocknum_t blockNum = block->getNumber();
      if (trace)
         traceMsg(comp(), "Visit block_%d\n", blockNum);
      if (depthMap[blockNum] == 0)
         traverse(blockNum, 0, stack, depthMap, result);
      else
         traceMsg(comp(), "  depth is already %d; skip\n", depthMap[blockNum]);
      }

   if (comp()->getOption(TR_TraceReachability))
      {
      traceMsg(comp(), "END REACHABILITY.  Result:\n");
      result->print(comp(), comp()->getOutFile());
      traceMsg(comp(), "\n");
      }
   }
Beispiel #3
0
int32_t TR_CatchBlockRemover::perform()
   {
   TR::CFG *cfg = comp()->getFlowGraph();
   if (cfg == NULL)
      {
      if (trace())
         traceMsg(comp(), "Can't do Catch Block Removal, no CFG\n");
      return 0;
      }

   if (trace())
      traceMsg(comp(), "Starting Catch Block Removal\n");

   bool thereMayBeRemovableCatchBlocks = false;

   {
   TR::StackMemoryRegion stackMemoryRegion(*trMemory());

   TR::Block *block;
   ListIterator<TR::CFGEdge> edgeIterator;

   // Go through all blocks that have exception successors and see if any of them
   // are not reached. Mark each of these edges with a visit count so they can
   // be identified later.
   //
   vcount_t visitCount = comp()->incOrResetVisitCount();

   TR::CFGNode *cfgNode;
   for (cfgNode = cfg->getFirstNode(); cfgNode; cfgNode = cfgNode->getNext())
      {
      if (cfgNode->getExceptionSuccessors().empty())
         continue;

      block = toBlock(cfgNode);
      uint32_t reachedExceptions = 0;
      TR::TreeTop *treeTop;
      for (treeTop = block->getEntry(); treeTop != block->getExit(); treeTop = treeTop->getNextTreeTop())
         {
         reachedExceptions |= treeTop->getNode()->exceptionsRaised();

         if (treeTop->getNode()->getOpCodeValue() == TR::monexitfence) // for live monitor metadata
            reachedExceptions |= TR::Block::CanCatchMonitorExit;
         }

      if (reachedExceptions & TR::Block::CanCatchUserThrows)
         continue;

      for (auto edge = block->getExceptionSuccessors().begin(); edge != block->getExceptionSuccessors().end();)
         {
         TR::CFGEdge * current = *(edge++);
         TR::Block *catchBlock = toBlock(current->getTo());
         if (catchBlock->isOSRCodeBlock() || catchBlock->isOSRCatchBlock()) continue;
         if (!reachedExceptions &&
             performTransformation(comp(), "%sRemove redundant exception edge from block_%d at [%p] to catch block_%d at [%p]\n", optDetailString(), block->getNumber(), block, catchBlock->getNumber(), catchBlock))
            {
            cfg->removeEdge(block, catchBlock);
            thereMayBeRemovableCatchBlocks = true;
            }
         else
            {
            if (!catchBlock->canCatchExceptions(reachedExceptions))
               {
               current->setVisitCount(visitCount);
               thereMayBeRemovableCatchBlocks = true;
               }
            }
         }
      }

   bool edgesRemoved = false;

   // Now look to see if there are any catch blocks for which all exception
   // predecessors have the visit count set. If so, the block is unreachable and
   // can be removed.
   // If only some of the exception predecessors are marked, these edges are
   // left in place to identify the try/catch structure properly.
   //
   while (thereMayBeRemovableCatchBlocks)
      {
      thereMayBeRemovableCatchBlocks = false;
      for (cfgNode = cfg->getFirstNode(); cfgNode; cfgNode = cfgNode->getNext())
         {
         if (cfgNode->getExceptionPredecessors().empty())
            continue;
         auto edgeIt = cfgNode->getExceptionPredecessors().begin();
         for (; edgeIt != cfgNode->getExceptionPredecessors().end(); ++edgeIt)
            {
            if ((*edgeIt)->getVisitCount() != visitCount)
               break;
            }

         if (edgeIt == cfgNode->getExceptionPredecessors().end() && performTransformation(comp(), "%sRemove redundant catch block_%d at [%p]\n", optDetailString(), cfgNode->getNumber(), cfgNode))
            {
            while (!cfgNode->getExceptionPredecessors().empty())
               {
               cfg->removeEdge(cfgNode->getExceptionPredecessors().front());
               }
            edgesRemoved = true;
            thereMayBeRemovableCatchBlocks = true;
            }
         }
      }


   // Any transformations invalidate use/def and value number information
   //
   if (edgesRemoved)
      {
      optimizer()->setUseDefInfo(NULL);
      optimizer()->setValueNumberInfo(NULL);
      requestOpt(OMR::treeSimplification, true);
      }

   } // scope of the stack memory region

   if (trace())
      traceMsg(comp(), "\nEnding Catch Block Removal\n");

   return 1; // actual cost
   }
Beispiel #4
0
// This function splits a single succeesor block following an guard and is used to
// do the following transform
//    block - cold1         block - cold1
//      \     /        =>     |       |
//     nextBlock           nextBlock nextBlock' (called tailSplitBlock below)
//         |                  \      /
//        ...                   ...
void TR_VirtualGuardHeadMerger::tailSplitBlock(TR::Block * block, TR::Block * cold1)
   {
   TR::CFG *cfg = comp()->getFlowGraph();
   cfg->setStructure(NULL);
   TR_BlockCloner cloner(cfg);
   TR::Block *tailSplitBlock = cloner.cloneBlocks(block->getNextBlock(), block->getNextBlock());
   tailSplitBlock->setFrequency(cold1->getFrequency());
   if (cold1->isCold())
      tailSplitBlock->setIsCold();

   // physically put the block after cold1 since we want cold1 to fall through
   tailSplitBlock->getExit()->join(cold1->getExit()->getNextTreeTop());
   cold1->getExit()->join(tailSplitBlock->getEntry());

   // remove cold1's goto
   TR::TransformUtil::removeTree(comp(), cold1->getExit()->getPrevRealTreeTop());

   // copy the exception edges
   for (auto e = block->getNextBlock()->getExceptionSuccessors().begin(); e != block->getNextBlock()->getExceptionSuccessors().end(); ++e)
      cfg->addExceptionEdge(tailSplitBlock, (*e)->getTo());

   cfg->addEdge(cold1, tailSplitBlock);
   // lastly fix up the exit of tailSplitBlock
   TR::Node *tailSplitEnd = tailSplitBlock->getExit()->getPrevRealTreeTop()->getNode();
   if (tailSplitEnd->getOpCode().isGoto())
      {
      tailSplitEnd->setBranchDestination(block->getNextBlock()->getLastRealTreeTop()->getNode()->getBranchDestination());
      cfg->addEdge(tailSplitBlock, block->getNextBlock()->getSuccessors().front()->getTo());
      }
   else if (tailSplitEnd->getOpCode().isBranch())
      {
      TR::Block *gotoBlock = TR::Block::createEmptyBlock(tailSplitEnd, comp(), cold1->getFrequency());
      if (cold1->isCold())
          gotoBlock->setIsCold(true);
      gotoBlock->getExit()->join(tailSplitBlock->getExit()->getNextTreeTop());
      tailSplitBlock->getExit()->join(gotoBlock->getEntry());
      cfg->addNode(gotoBlock);

      gotoBlock->append(TR::TreeTop::create(comp(), TR::Node::create(tailSplitEnd, TR::Goto, 0, block->getNextBlock()->getExit()->getNextTreeTop())));
      cfg->addEdge(tailSplitBlock, gotoBlock);
      cfg->addEdge(tailSplitBlock, tailSplitBlock->getLastRealTreeTop()->getNode()->getBranchDestination()->getEnclosingBlock());
      cfg->addEdge(gotoBlock, block->getNextBlock()->getNextBlock());
      }
   else if (
            !tailSplitEnd->getOpCode().isReturn() &&
            !tailSplitEnd->getOpCode().isJumpWithMultipleTargets() &&
             tailSplitEnd->getOpCodeValue() != TR::athrow &&
            !(tailSplitEnd->getNumChildren() >= 1 && tailSplitEnd->getFirstChild()->getOpCodeValue() == TR::athrow)
           )
      {
      tailSplitBlock->append(TR::TreeTop::create(comp(), TR::Node::create(tailSplitEnd, TR::Goto, 0, block->getNextBlock()->getExit()->getNextTreeTop())));
      cfg->addEdge(tailSplitBlock, block->getNextBlock()->getNextBlock());
      }
   else
      {
      for (auto e = block->getNextBlock()->getSuccessors().begin(); e != block->getNextBlock()->getSuccessors().end(); ++e)
         cfg->addEdge(tailSplitBlock, (*e)->getTo());
      }
   cfg->removeEdge(cold1, block->getNextBlock());

   optimizer()->setUseDefInfo(NULL);
   optimizer()->setValueNumberInfo(NULL);
   }
Beispiel #5
0
// This opt tries to reduce merge backs from cold code that are the result of inliner
// gnerated nopable virtual guards
// It looks for one basic pattern
//
// guard1 -> cold1
// BBEND
// BBSTART
// guard2 -> cold2
// if guard1 is the guard for a method which calls the method guard2 protects or cold1 is
// a predecessor of cold2 (a situation commonly greated by virtual guard tail splitter) we
// can transform the guards as follows when guard1 and guard2 a
// guard1 -> cold1
// BBEND
// BBSTART
// guard2 -> cold1
// This is safe because there are no trees between the guards and calling the caller will
// result in the call to the callee if we need to patch guard2. cold2 and its mergebacks
// can then be eliminated
//
// In addition this opt will try to move guard2 up from the end of a block to the
// start of the block. We can do this if guard2 is an HCR guard and there is no GC point
// between BBSTART and guard2 since HCR is a stop-the-world event.
//
// Finally, there is a simple tail splitting step run before the analysis of a guard if we
// detect that the taken side of the guard merges back in the next block - this happens
// for some empty methods and is common for Object.<init> at the top of constructors.
int32_t TR_VirtualGuardHeadMerger::perform() {
   static char *disableVGHeadMergerTailSplitting = feGetEnv("TR_DisableVGHeadMergerTailSplitting");
   TR::CFG *cfg = comp()->getFlowGraph();

   // Cache the loads for the outer guard's cold path
   TR_BitVector coldPathLoads(comp()->trMemory()->currentStackRegion());
   TR_BitVector privArgSymRefs(comp()->trMemory()->currentStackRegion());
   bool evaluatedColdPathLoads = false;

   for (TR::Block *block = optimizer()->getMethodSymbol()->getFirstTreeTop()->getNode()->getBlock();
        block; block = block->getNextBlock())
      {
      TR::Node *guard1 = block->getLastRealTreeTop()->getNode();

      if (isMergeableGuard(guard1))
         {
         if (trace())
            traceMsg(comp(), "Found mergeable guard in block_%d\n", block->getNumber());
         TR::Block *cold1 = guard1->getBranchDestination()->getEnclosingBlock();

         // check for an immediate merge back from the cold block and
         // tail split one block if we can - we only handle splitting a block
         // ending in a fallthrough, a branch or a goto for now for simplicity
         if (!disableVGHeadMergerTailSplitting &&
             (cold1->getSuccessors().size() == 1) &&
             cold1->hasSuccessor(block->getNextBlock()) &&
             cold1->getLastRealTreeTop()->getNode()->getOpCode().isGoto())
            {
            // TODO handle moving code earlier in the block down below the guard
            // tail split
            if ((block->getNextBlock()->getSuccessors().size() == 1) ||
                ((block->getNextBlock()->getSuccessors().size() == 2) &&
                 block->getNextBlock()->getLastRealTreeTop()->getNode()->getOpCode().isBranch()) &&
                performTransformation(comp(), "%sCloning block_%d and placing clone after block_%d to reduce HCR guard nops\n", OPT_DETAILS, block->getNextBlock()->getNumber(), cold1->getNumber()))
               tailSplitBlock(block, cold1);
            }

         // guard motion is fairly complex but what we want to achieve around guard1 is a sequence
         // of relocated privarg blocks, followed by a sequence of runtime patchable guards going to
         // guard1's cold block, followed by a sequence of stop-the-world guards going to guard1's
         // cold block
         //
         // The following code is to setup the various insert points based on the following diagrams
         // of basic blocks:
         //
         // start:               setup:                          end result after moving runtime guard'
         //                       |       |                        +-------+ <-- privargIns
         //                       |       | <-- privargIns             |
         //                       +-------+ <-- runtimeIns         +-------+
         //   |       |               |                            | Guard'|
         //   |       |               V                            +-------+ <-- runtimeIns
         //   +-------+           +-------+                            |
         //   | Guard |           | Guard |                            V
         //   +-------+           +-------+ <-- HCRIns             +-------+
         //       |        ===>       |                    ===>    | Guard |
         //       V                   V                            +-------+ <-- HCRIns
         //   +-------+           +-------+                            |
         //   |       |           |       |                            V
         //   |       |           |       |                        +-------+
         //
         // Note we always split the block - this may create an empty block but preserves the incoming
         // control flow we leave the rest to block extension to fix later

         block = block->split(block->getLastRealTreeTop(), cfg, true, false);
         TR::Block *privargIns = block->getPrevBlock();
         TR::Block *runtimeIns = block->getPrevBlock();
         TR::Block *HCRIns = block;

         // New outer guard so cold paths must be evaluated
         evaluatedColdPathLoads = false;

         // scan for candidate guards to merge with guard1 identified above
         for (TR::Block *nextBlock = block->getNextBlock(); nextBlock; nextBlock = nextBlock->getNextBlock())
            {
            if (!(nextBlock->getPredecessors().size() == 1) ||
                !nextBlock->hasPredecessor(block))
               {
               break;
               }

            TR::TreeTop *guard2Tree = NULL;
            if (isMergeableGuard(nextBlock->getFirstRealTreeTop()->getNode()))
               {
               guard2Tree = nextBlock->getFirstRealTreeTop();
               }
            else if (isMergeableGuard(nextBlock->getLastRealTreeTop()->getNode()))
               {
               guard2Tree = nextBlock->getLastRealTreeTop();
               }
            else
               break;

            TR::Node *guard2 = guard2Tree->getNode();
            TR::Block *guard2Block = nextBlock;

            // It is not possible to shift an OSR guard unless the destination is already an OSR point
            // as the necessary OSR state will not be available
            if (guard2->isOSRGuard() && !guard1->isOSRGuard())
               break;

            TR::Block *insertPoint = isStopTheWorldGuard(guard2) ? HCRIns : runtimeIns;
            if (!safeToMoveGuard(insertPoint, guard2Tree, guard1->getBranchDestination(), privArgSymRefs))
               break;

            // now we figure out if we can redirect guard2 to guard1's cold block
            // ie can we do the head merge
            TR::Block *cold2 = guard2->getBranchDestination()->getEnclosingBlock();
            if (guard1->getInlinedSiteIndex() == guard2->getInlinedSiteIndex())
               {
               if (trace())
                  traceMsg(comp(), "  Guard1 [%p] is guarding the same call as Guard2 [%p] - proceeding with guard merging\n", guard1, guard2);
               }
            else if (guard2->getInlinedSiteIndex() > -1 &&
                guard1->getInlinedSiteIndex() == TR::comp()->getInlinedCallSite(guard2->getInlinedSiteIndex())._byteCodeInfo.getCallerIndex())
               {
               if (trace())
                  traceMsg(comp(), "  Guard1 [%p] is the caller of Guard2 [%p] - proceeding with guard merging\n", guard1, guard2);
               }
            else if ((cold1->getSuccessors().size() == 1) &&
                     cold1->hasSuccessor(cold2))
               {
               if (trace())
                  traceMsg(comp(), "  Guard1 cold destination block_%d has guard2 cold destination block_%d as its only successor - proceeding with guard merging\n", cold1->getNumber(), cold2->getNumber());
               }
            else
               {
               if (trace())
                  traceMsg(comp(), "  Cold1 block_%d and cold2 block_%d of guard2 [%p] in unknown relationship - abandon the merge attempt\n", cold1->getNumber(), cold2->getNumber(), guard2);
               break;
               }

            // Runtime guards will shift their privargs, so it is necessary to check such a move is safe
            // This is possible if a privarg temp was recycled for the inner call site, with a prior use as an
            // argument for the outer call site. As the privargs for the inner call site must be evaluated before
            // both guards, this would result in the recycled temp holding the incorrect value if the guard is ever
            // taken.
            if (!isStopTheWorldGuard(guard2))
               {
               if (!evaluatedColdPathLoads)
                  {
                  collectColdPathLoads(cold1, coldPathLoads);
                  evaluatedColdPathLoads = true;
                  }

               if (coldPathLoads.intersects(privArgSymRefs))
                  {
                  if (trace())
                     traceMsg(comp(), "  Recycled temp live in cold1 block_%d and used as privarg before guard2 [%p] - stop guard merging", cold1->getNumber(), guard2);
                  break;
                  }
               }

            if (!performTransformation(comp(), "%sRedirecting %s guard [%p] in block_%d to parent guard cold block_%d\n", OPT_DETAILS, isStopTheWorldGuard(guard2) ? "stop the world" : "runtime", guard2, guard2Block->getNumber(), cold1->getNumber()))
                  continue;

            if (guard2->getBranchDestination() != guard1->getBranchDestination())
               guard2Block->changeBranchDestination(guard1->getBranchDestination(), cfg);

            if (guard2Tree != guard2Block->getFirstRealTreeTop())
               {
               cfg->setStructure(NULL);

               // We should leave code ahead of an HCR guard in place because:
               // 1, it might have side effect to runtime guards after it, moving it up might cause us to falsely merge
               //    the subsequent runtime guards
               // 2, it might contain live monitor, moving it up above a guard can affect the monitor's live range
               if (!isStopTheWorldGuard(guard2))
                  {
	          // the block created above guard2 contains only privarg treetops or monitor stores if
                  // guard2 is a runtime-patchable guard and is safe to merge. We need to move the priv
                  // args up to the runtime insert point and leave the monitor stores in place
                  // It's safe to do so because there is no data dependency between the monitor store and
                  // the priv arg store, because the priv arg store does not load the value from the temp
                  // holding the monitored object

                  // Split priv arg stores from monitor stores
                  // Monitor store is generated for the caller of the method guard2 protects, so should appear before
                  // priv arg stores for the method guard2 protects
                  TR::Block *privargBlock = guard2Block;
                  guard2Block = splitRuntimeGuardBlock(comp(), guard2Block, cfg);
                  if (privargBlock != guard2Block)
                     {
                     if (trace())
                        traceMsg(comp(), "  Moving privarg block_%d after block_%d\n", privargBlock->getNumber(), privargIns->getNumber());

                     moveBlockAfterDest(cfg, privargBlock, privargIns);

                     if (HCRIns == privargIns)
                        HCRIns = privargBlock;
                     if (runtimeIns == privargIns)
                        runtimeIns = privargBlock;
                     privargIns = privargBlock;

                     // refresh the insertPoint since it could be stale after the above updates
                     insertPoint = runtimeIns;
                     }
                  }

               guard2Block = guard2Block->split(guard2Tree, cfg, true, false);
               if (trace())
                  traceMsg(comp(), "  Created new block_%d to hold guard [%p] from block_%d\n", guard2Block->getNumber(), guard2, guard2Block->getNumber());
               }

            if (insertPoint != guard2Block->getPrevBlock())
               {
               TR::DebugCounter::incStaticDebugCounter(comp(), TR::DebugCounter::debugCounterName(comp(), "headMerger/%s_%s/(%s)", isStopTheWorldGuard(guard1) ? "stop the world" : "runtime", isStopTheWorldGuard(guard2) ? "stop the world" : "runtime", comp()->signature()));
               cfg->setStructure(NULL);

               block = nextBlock = guard2Block->getPrevBlock();
               if (trace())
                  traceMsg(comp(), "  Moving guard2 block block_%d after block_%d\n", guard2Block->getNumber(), insertPoint->getNumber());

               moveBlockAfterDest(cfg, guard2Block, insertPoint);

               if (HCRIns == insertPoint)
                  HCRIns = guard2Block;
               if (runtimeIns == insertPoint)
                  runtimeIns = guard2Block;
               }
            else
               {
               block = guard2Block;
               }
            guard1 = guard2;
            }
         }
      }
   return 1;
}
Beispiel #6
0
TR_Latestness::TR_Latestness(TR::Compilation *comp, TR::Optimizer *optimizer, TR_Structure *rootStructure, bool trace)
   : TR_BackwardIntersectionBitVectorAnalysis(comp, comp->getFlowGraph(), optimizer, trace)
   {
   _delayedness = new (comp->allocator()) TR_Delayedness(comp, optimizer, rootStructure, trace);

   _supportedNodesAsArray = _delayedness->_supportedNodesAsArray;

   if (trace)
      traceMsg(comp, "Starting Latestness\n");

   TR::CFG *cfg = comp->getFlowGraph();
   _numberOfNodes = cfg->getNextNodeNumber();
   TR_ASSERT(_numberOfNodes > 0, "Latestness, node numbers not assigned");

   _numberOfBits = getNumberOfBits();

   _inSetInfo = (ContainerType **)trMemory()->allocateStackMemory(_numberOfNodes*sizeof(ContainerType *));
   for (int32_t i=0;i<_numberOfNodes;i++)
      allocateContainer(_inSetInfo+i);

   // Allocate temp bit vectors from block info, since it is local to this analysis
   ContainerType *intersection, *negation;
   allocateBlockInfoContainer(&intersection);
   allocateBlockInfoContainer(&negation);

   TR::CFGNode *nextNode;
   for (nextNode = cfg->getFirstNode(); nextNode; nextNode = nextNode->getNext())
      {
      TR_BlockStructure *blockStructure = (toBlock(nextNode))->getStructureOf();
      if ((blockStructure == NULL) || (blockStructure->getBlock()->getSuccessors().empty() && blockStructure->getBlock()->getExceptionSuccessors().empty()))
         continue;

      /////analyzeTreeTopsInBlockStructure(blockStructure);
      /////analysisInfo->_containsExceptionTreeTop = _containsExceptionTreeTop;
      initializeInfo(intersection);
      for (auto succ = nextNode->getSuccessors().begin(); succ != nextNode->getSuccessors().end(); ++succ)
         {
         TR::CFGNode *succBlock = (*succ)->getTo();
         compose(intersection, _delayedness->_inSetInfo[succBlock->getNumber()]);
         }

      /////if (getAnalysisInfo(blockStructure)->_containsExceptionTreeTop)
         {
         for (auto succ = nextNode->getExceptionSuccessors().begin(); succ != nextNode->getExceptionSuccessors().end(); ++succ)
            {
            TR::CFGNode *succBlock = (*succ)->getTo();
            compose(intersection, _delayedness->_inSetInfo[succBlock->getNumber()]);
            }
         }

      negation->setAll(_numberOfBits);
      *negation -= *intersection;
      copyFromInto(negation, _inSetInfo[blockStructure->getNumber()]);
      *(_inSetInfo[blockStructure->getNumber()]) |= *(_delayedness->_earliestness->_globalAnticipatability->_localAnticipatability.getDownwardExposedAnalysisInfo(blockStructure->getBlock()->getNumber()));
      *(_inSetInfo[blockStructure->getNumber()]) &= *(_delayedness->_inSetInfo[blockStructure->getNumber()]);

      if (trace)
         {
         traceMsg(comp, "\nIn Set of Block : %d\n", blockStructure->getNumber());
         _inSetInfo[blockStructure->getNumber()]->print(comp);
         }
      }

   if (trace)
      traceMsg(comp, "\nEnding Latestness\n");

   // Null out info that will not be used by callers
   _delayedness->_inSetInfo = NULL;
   _blockAnalysisInfo = NULL;
   }
Beispiel #7
0
TR_LocalAnalysisInfo::TR_LocalAnalysisInfo(TR::Compilation *c, bool t)
   : _compilation(c), _trace(t), _trMemory(c->trMemory())
   {
   _numNodes = -1;

#if 0  // somehow stops PRE from happening
   // We are going to increment visit count for every tree so can reach max
   // for big methods quickly. Perhaps can improve containsCall() in the future.
   comp()->resetVisitCounts(0);
#endif
   if (comp()->getVisitCount() > HIGH_VISIT_COUNT)
      {
      _compilation->resetVisitCounts(1);
      dumpOptDetails(comp(), "\nResetting visit counts for this method before LocalAnalysisInfo\n");
      }

   TR::CFG *cfg = comp()->getFlowGraph();
   _numBlocks = cfg->getNextNodeNumber();
   TR_ASSERT(_numBlocks > 0, "Local analysis, node numbers not assigned");

   // Allocate information on the stack. It is the responsibility of the user
   // of this class to determine the life of the information by using jitStackMark
   // and jitStackRelease.
   //
   //_blocksInfo = (TR::Block **) trMemory()->allocateStackMemory(_numBlocks*sizeof(TR::Block *));
   //memset(_blocksInfo, 0, _numBlocks*sizeof(TR::Block *));

   TR::TreeTop *currentTree = comp()->getStartTree();

   // Only do this if not done before; typically this would be done in the
   // first call to this method through LocalTransparency and would NOT
   // need to be re-done by LocalAnticipatability.
   //
   if (_numNodes < 0)
      {
      _optimizer = comp()->getOptimizer();

      int32_t numBuckets;
      int32_t numNodes = comp()->getNodeCount();
      if (numNodes < 10)
         numBuckets = 1;
      else if (numNodes < 100)
         numBuckets = 7;
      else if (numNodes < 500)
         numBuckets = 31;
      else if (numNodes < 3000)
         numBuckets = 127;
      else if (numNodes < 6000)
         numBuckets = 511;
      else
         numBuckets = 1023;

      // Allocate hash table for matching expressions
      //
      HashTable hashTable(numBuckets, comp());
      _hashTable = &hashTable;

      // Null checks are handled differently as the criterion for
      // commoning a null check is different than that used for
      // other nodes; for a null check, the null check reference is
      // important (and not the actual indirect access itself)
      //
      _numNullChecks = 0;
      while (currentTree)
         {
         if (currentTree->getNode()->getOpCodeValue() == TR::NULLCHK)
         //////if (currentTree->getNode()->getOpCode().isNullCheck())
            _numNullChecks++;

         currentTree = currentTree->getNextTreeTop();
         }

      if (_numNullChecks == 0)
         _nullCheckNodesAsArray = NULL;
      else
         {
         _nullCheckNodesAsArray = (TR::Node**)trMemory()->allocateStackMemory(_numNullChecks*sizeof(TR::Node*));
         memset(_nullCheckNodesAsArray, 0, _numNullChecks*sizeof(TR::Node*));
         }

      currentTree = comp()->getStartTree();
      int32_t symRefCount = comp()->getSymRefCount();
      _checkSymbolReferences = new (trStackMemory()) TR_BitVector(symRefCount, trMemory(), stackAlloc);

      _numNodes = 1;
      _numNullChecks = 0;

      // This loop counts all the nodes that are going to take part in PRE.
      // This is a computation intensive loop as we check if the node that
      // is syntactically equivalent to a given node has been seen before
      // and if so we use the local index of the original node (that
      // is syntactically equivalent to the given node). Could be improved
      // in complexity with value numbering at some stage.
      //
      _visitCount = comp()->incVisitCount();
      while (currentTree)
         {
         TR::Node *firstNodeInTree = currentTree->getNode();
         TR::ILOpCode *opCode = &firstNodeInTree->getOpCode();

         if (((firstNodeInTree->getOpCodeValue() == TR::treetop) ||
              (comp()->useAnchors() && firstNodeInTree->getOpCode().isAnchor())) &&
             (firstNodeInTree->getFirstChild()->getOpCode().isStore()))
            {
            firstNodeInTree->setLocalIndex(-1);
            if (comp()->useAnchors() && firstNodeInTree->getOpCode().isAnchor())
               firstNodeInTree->getSecondChild()->setLocalIndex(-1);

            firstNodeInTree = firstNodeInTree->getFirstChild();
            opCode = &firstNodeInTree->getOpCode();
            }

         // This call finds nodes with opcodes that are supported by PRE
         // in this subtree; this accounts for all opcodes other than stores/checks
         // which are handled later on below
         //
         bool firstNodeInTreeHasCallsInStoreLhs = false;
         countSupportedNodes(firstNodeInTree, NULL, firstNodeInTreeHasCallsInStoreLhs);

         if ((opCode->isStore() && !firstNodeInTree->getSymbolReference()->getSymbol()->isAutoOrParm()) ||
             opCode->isCheck())
            {
            int32_t oldExpressionOnRhs = hasOldExpressionOnRhs(firstNodeInTree);

            //
            // Return value 0 denotes that the node contains some sub-expression
            // that cannot participate in PRE; e.g. a call or a new
            //
            // Return value -1 denotes that the node can participate in PRE
            // but did not match with any existing expression seen so far
            //
            // Any other return value (should be positive always) denotes that
            // the node can participate in PRE and has been matched with a seen
            // expression having local index == return value
            //
            if (oldExpressionOnRhs == -1)
               {
               if (trace())
                  {
                  traceMsg(comp(), "\nExpression #%d is : \n", _numNodes);
                  comp()->getDebug()->print(comp()->getOutFile(), firstNodeInTree, 6, true);
                  }

               firstNodeInTree->setLocalIndex(_numNodes++);
               }
            else
               firstNodeInTree->setLocalIndex(oldExpressionOnRhs);

            if (opCode->isCheck() &&
                (firstNodeInTree->getFirstChild()->getOpCode().isStore() &&
                 !firstNodeInTree->getFirstChild()->getSymbolReference()->getSymbol()->isAutoOrParm()))
               {
               int oldExpressionOnRhs = hasOldExpressionOnRhs(firstNodeInTree->getFirstChild());

               if (oldExpressionOnRhs == -1)
                  {
                  if (trace())
                     {
                     traceMsg(comp(), "\nExpression #%d is : \n", _numNodes);
                     comp()->getDebug()->print(comp()->getOutFile(), firstNodeInTree->getFirstChild(), 6, true);
                     }

                  firstNodeInTree->getFirstChild()->setLocalIndex(_numNodes++);
                  }
               else
                  firstNodeInTree->getFirstChild()->setLocalIndex(oldExpressionOnRhs);
               }
            }
         else
            firstNodeInTree->setLocalIndex(-1);

         currentTree = currentTree->getNextTreeTop();
         }
      }

   _supportedNodesAsArray = (TR::Node**)trMemory()->allocateStackMemory(_numNodes*sizeof(TR::Node*));
   memset(_supportedNodesAsArray, 0, _numNodes*sizeof(TR::Node*));
   _checkExpressions = new (trStackMemory()) TR_BitVector(_numNodes, trMemory(), stackAlloc);

   //_checkExpressions.init(_numNodes, trMemory(), stackAlloc);

   // This loop goes through the trees and collects the nodes
   // that would take part in PRE. Each node has its local index set to
   // the bit position that it occupies in the bit vector analyses.
   //
   currentTree = comp()->getStartTree();
   _visitCount = comp()->incVisitCount();
   while (currentTree)
      {
      TR::Node *firstNodeInTree = currentTree->getNode();
      TR::ILOpCode *opCode = &firstNodeInTree->getOpCode();

      if (((firstNodeInTree->getOpCodeValue() == TR::treetop) ||
           (comp()->useAnchors() && firstNodeInTree->getOpCode().isAnchor())) &&
          (firstNodeInTree->getFirstChild()->getOpCode().isStore()))
         {
         firstNodeInTree = firstNodeInTree->getFirstChild();
         opCode = &firstNodeInTree->getOpCode();
         }

      collectSupportedNodes(firstNodeInTree, NULL);

      if ((opCode->isStore() && !firstNodeInTree->getSymbolReference()->getSymbol()->isAutoOrParm()) ||
          opCode->isCheck())
         {
        if (opCode->isCheck())
            {
            _checkSymbolReferences->set(firstNodeInTree->getSymbolReference()->getReferenceNumber());
            _checkExpressions->set(firstNodeInTree->getLocalIndex());
            }

         if (!_supportedNodesAsArray[firstNodeInTree->getLocalIndex()])
            _supportedNodesAsArray[firstNodeInTree->getLocalIndex()] = firstNodeInTree;

         if (opCode->isCheck() &&
             firstNodeInTree->getFirstChild()->getOpCode().isStore() &&
             !firstNodeInTree->getFirstChild()->getSymbolReference()->getSymbol()->isAutoOrParm() &&
             !_supportedNodesAsArray[firstNodeInTree->getFirstChild()->getLocalIndex()])
            _supportedNodesAsArray[firstNodeInTree->getFirstChild()->getLocalIndex()] = firstNodeInTree->getFirstChild();
         }

      currentTree = currentTree->getNextTreeTop();
      }

   //initialize(toBlock(cfg->getStart()));
   }