void VoxelGrid::inputCloud(typename pcl::PointCloud<PointT>::ConstPtr cloud)
{
    double res = readParameter<double>("resolution");
    Eigen::Vector4f leaf(res, res, res, 0);

    typename pcl::PointCloud<PointT>::Ptr out(new pcl::PointCloud<PointT>);

    typename pcl::PointCloud<PointT>::ConstPtr in;

    if (remove_nan_) {
        typename pcl::PointCloud<PointT>::Ptr tmp(new pcl::PointCloud<PointT>);
        tmp->points.reserve(cloud->points.size());

        for (auto it = cloud->begin(); it != cloud->end(); ++it) {
            if (!std::isnan(it->x)) {
                tmp->points.push_back(*it);
            }
        }
        in = tmp;

    } else {
        in = cloud;
    }

    pcl::VoxelGrid<PointT> voxel_f;
    voxel_f.setInputCloud(in);
    voxel_f.setLeafSize(leaf);
    voxel_f.filter(*out);

    PointCloudMessage::Ptr msg(new PointCloudMessage(cloud->header.frame_id, cloud->header.stamp));
    out->header = cloud->header;
    msg->value = out;

    msg::publish(output_, msg);
}
Beispiel #2
0
template <typename PointT> void
pcl::SupervoxelClustering<PointT>::SupervoxelHelper::getNormals (typename pcl::PointCloud<Normal>::Ptr &normals) const
{
  normals = boost::make_shared<pcl::PointCloud<Normal> > ();
  normals->clear ();
  normals->resize (leaves_.size ());
  typename std::set<LeafContainerT*>::iterator leaf_itr;
  typename pcl::PointCloud<Normal>::iterator normal_itr = normals->begin ();
  for (leaf_itr = leaves_.begin (); leaf_itr != leaves_.end (); ++leaf_itr, ++normal_itr)
  {
    const VoxelData& leaf_data = (*leaf_itr)->getData ();
    leaf_data.getNormal (*normal_itr);
  }
}
Beispiel #3
0
template <typename PointT> void
pcl::SupervoxelClustering<PointT>::SupervoxelHelper::getNormals (typename pcl::PointCloud<Normal>::Ptr &normals) const
{
  normals.reset (new pcl::PointCloud<Normal>);
  normals->clear ();
  normals->resize (leaves_.size ());
  typename SupervoxelHelper::const_iterator leaf_itr;
  typename pcl::PointCloud<Normal>::iterator normal_itr = normals->begin ();
  for (leaf_itr = leaves_.begin (); leaf_itr != leaves_.end (); ++leaf_itr, ++normal_itr)
  {
    const VoxelData& leaf_data = (*leaf_itr)->getData ();
    leaf_data.getNormal (*normal_itr);
  }
}
Beispiel #4
0
template <typename PointT> void
pcl::SupervoxelClustering<PointT>::SupervoxelHelper::getVoxels (typename pcl::PointCloud<PointT>::Ptr &voxels) const
{
  voxels = boost::make_shared<pcl::PointCloud<PointT> > ();
  voxels->clear ();
  voxels->resize (leaves_.size ());
  typename pcl::PointCloud<PointT>::iterator voxel_itr = voxels->begin ();
  //typename std::set<LeafContainerT*>::iterator leaf_itr;
  for (typename std::set<LeafContainerT*>::const_iterator leaf_itr = leaves_.begin (); 
	  leaf_itr != leaves_.end (); 
	  ++leaf_itr, ++voxel_itr)
  {
    const VoxelData& leaf_data = (*leaf_itr)->getData ();
    leaf_data.getPoint (*voxel_itr);
  }
}
Beispiel #5
0
template<typename PointT> void
pcl::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::computeCovariances(typename pcl::PointCloud<PointT>::ConstPtr cloud, 
                                                                                    const typename pcl::search::KdTree<PointT>::Ptr kdtree,
                                                                                    std::vector<Eigen::Matrix3d>& cloud_covariances)
{
  if (k_correspondences_ > int (cloud->size ()))
  {
    PCL_ERROR ("[pcl::GeneralizedIterativeClosestPoint::computeCovariances] Number or points in cloud (%lu) is less than k_correspondences_ (%lu)!\n", cloud->size (), k_correspondences_);
    return;
  }

  Eigen::Vector3d mean;
  std::vector<int> nn_indecies; nn_indecies.reserve (k_correspondences_);
  std::vector<float> nn_dist_sq; nn_dist_sq.reserve (k_correspondences_);

  // We should never get there but who knows
  if(cloud_covariances.size () < cloud->size ())
    cloud_covariances.resize (cloud->size ());

  typename pcl::PointCloud<PointT>::const_iterator points_iterator = cloud->begin ();
  std::vector<Eigen::Matrix3d>::iterator matrices_iterator = cloud_covariances.begin ();
  for(;
      points_iterator != cloud->end ();
      ++points_iterator, ++matrices_iterator)
  {
    const PointT &query_point = *points_iterator;
    Eigen::Matrix3d &cov = *matrices_iterator;
    // Zero out the cov and mean
    cov.setZero ();
    mean.setZero ();

    // Search for the K nearest neighbours
    kdtree->nearestKSearch(query_point, k_correspondences_, nn_indecies, nn_dist_sq);
    
    // Find the covariance matrix
    for(int j = 0; j < k_correspondences_; j++) {
      const PointT &pt = (*cloud)[nn_indecies[j]];
      
      mean[0] += pt.x;
      mean[1] += pt.y;
      mean[2] += pt.z;
      
      cov(0,0) += pt.x*pt.x;
      
      cov(1,0) += pt.y*pt.x;
      cov(1,1) += pt.y*pt.y;
      
      cov(2,0) += pt.z*pt.x;
      cov(2,1) += pt.z*pt.y;
      cov(2,2) += pt.z*pt.z;    
    }
  
    mean /= static_cast<double> (k_correspondences_);
    // Get the actual covariance
    for (int k = 0; k < 3; k++)
      for (int l = 0; l <= k; l++) 
      {
        cov(k,l) /= static_cast<double> (k_correspondences_);
        cov(k,l) -= mean[k]*mean[l];
        cov(l,k) = cov(k,l);
      }
    
    // Compute the SVD (covariance matrix is symmetric so U = V')
    Eigen::JacobiSVD<Eigen::Matrix3d> svd(cov, Eigen::ComputeFullU);
    cov.setZero ();
    Eigen::Matrix3d U = svd.matrixU ();
    // Reconstitute the covariance matrix with modified singular values using the column     // vectors in V.
    for(int k = 0; k < 3; k++) {
      Eigen::Vector3d col = U.col(k);
      double v = 1.; // biggest 2 singular values replaced by 1
      if(k == 2)   // smallest singular value replaced by gicp_epsilon
        v = gicp_epsilon_;
      cov+= v * col * col.transpose(); 
    }
  }
}