Ejemplo n.º 1
0
/* Enables the PGA and sets the gain
*   Use only for signals lower than 1.2 V
*   \param gain can be 1, 2, 4, 8, 16 32 or 64
*
*/
void ADC_Module::enablePGA(uint8_t gain) {
    #if defined(__MK20DX256__)

    if (calibrating) wait_for_cal();

    uint8_t setting;
    if(gain <= 1) {
        setting = 0;
    } else if(gain<=2){
        setting = 1;
    } else if(gain<=4){
        setting = 2;
    } else if(gain<=8){
        setting = 3;
    } else if(gain<=16){
        setting = 4;
    } else if(gain<=32){
        setting = 5;
    } else { // 64
        setting = 6;
    }

    *ADC_PGA = ADC_PGA_PGAEN | ADC_PGA_PGAG(setting);
    pga_value=1<<setting;
    #endif
}
Ejemplo n.º 2
0
void BSP_BatterCheckInit (void)
{
	unsigned short cal_var;
	SIM->SCGC5 |= SIM_SCGC5_PORTB_MASK;
	SIM->SCGC6 |= SIM_SCGC6_ADC0_MASK;
	BAT_PORT->PCR[BAT_PORT_Pin] &= ~PORT_PCR_MUX_MASK;
	BAT_PORT->PCR[BAT_PORT_Pin] |= PORT_PCR_MUX(0);
	BAT_ADC->CFG1 &= ~(ADC_CFG1_MODE_MASK);
	BAT_ADC->CFG1 |= ADC_CFG1_MODE (3);					//
	BAT_ADC->CFG1 &= ~(ADC_CFG1_ADICLK_MASK);
	BAT_ADC->CFG1 |= (ADC_CFG1_ADICLK (0));				//
	BAT_ADC->CFG1 &= ~(ADC_CFG1_ADLSMP_MASK);			//
	BAT_ADC->CFG1 &= ~(ADC_CFG1_ADIV_MASK);
	BAT_ADC->CFG1 |= ADC_CFG1_ADIV (3);					//
	BAT_ADC->CFG2 = 0;									//
	BAT_ADC->CFG2 |= (ADACKEN_DISABLED|ADHSC_HISPEED
			|ADC_CFG2_ADLSTS(ADLSTS_20));
	BAT_ADC->CV1 = 0x1234u; 
	BAT_ADC->CV2 = 0x5678u;
	BAT_ADC->SC2 = (ACFE_DISABLED|ACFGT_GREATER
			|ACREN_ENABLED|DMAEN_DISABLED
			|ADC_SC2_REFSEL(REFSEL_EXT));
	BAT_ADC->SC3 = (CAL_OFF|ADCO_SINGLE|AVGE_ENABLED
			|ADC_SC3_AVGS(AVGS_32));
	BAT_ADC->PGA = (PGAEN_DISABLED|PGACHP_NOCHOP|PGALP_NORMAL
			|ADC_PGA_PGAG(PGAG_64));
	BAT_ADC->SC1[0] &= ~ADC_SC1_DIFF_MASK;//
	
	BAT_ADC->SC2 &= ~ADC_SC2_ADTRG_MASK;
	BAT_ADC->SC3 &= ( ~ADC_SC3_ADCO_MASK & ~ADC_SC3_AVGS_MASK ); 
	BAT_ADC->SC3 |= ( ADC_SC3_AVGE_MASK | ADC_SC3_AVGS(AVGS_32) );
	BAT_ADC->SC3 |= ADC_SC3_CAL_MASK ;
	while((BAT_ADC->SC1[0] & ADC_SC1_COCO_MASK) == 0);
	if((BAT_ADC->SC3 & ADC_SC3_CALF_MASK) == CALF_FAIL){		
	}else{
		cal_var = 0x00;
		cal_var =  BAT_ADC->CLP0; 
		cal_var += BAT_ADC->CLP1; 
		cal_var += BAT_ADC->CLP2; 
		cal_var += BAT_ADC->CLP3; 
		cal_var += BAT_ADC->CLP4; 
		cal_var += BAT_ADC->CLPS; 
		cal_var = cal_var/2;
		cal_var |= 0x8000; // Set MSB
		BAT_ADC->PG =  ADC_PG_PG(cal_var);
		// Calculate minus-side calibration
		cal_var = 0x00;
		cal_var =  BAT_ADC->CLM0; 
		cal_var += BAT_ADC->CLM1; 
		cal_var += BAT_ADC->CLM2; 
		cal_var += BAT_ADC->CLM3; 
		cal_var += BAT_ADC->CLM4; 
		cal_var += BAT_ADC->CLMS; 
		cal_var = cal_var/2;
		cal_var |= 0x8000; // Set MSB
		BAT_ADC->MG = ADC_MG_MG(cal_var); 
		BAT_ADC->SC3 &= ~ADC_SC3_CAL_MASK;
	}
}
Ejemplo n.º 3
0
int adc_init() {
	adc_pixelIndex = 0;
	
	// disable ADC irq - not ready yet
	disable_irq(ADC_IRQ_NUM);
	
	// turn on clock to ADC0
	SIM_SCGC6 |= (SIM_SCGC6_ADC0_MASK);
	
	// to setup SW trigger on FTM2
	SIM_SOPT7 = SIM_SOPT7_ADC0TRGSEL(10);
	
	// to calibrate the ADC module
	unsigned short cal_var;
	cal_var = 0x0000;

	// add the plus-side calibration results
	cal_var += ADC_CLP0_REG(ADC0_BASE_PTR);
	cal_var += ADC_CLP1_REG(ADC0_BASE_PTR);
	cal_var += ADC_CLP2_REG(ADC0_BASE_PTR);
	cal_var += ADC_CLP3_REG(ADC0_BASE_PTR);
	cal_var += ADC_CLP4_REG(ADC0_BASE_PTR);
	cal_var += ADC_CLPS_REG(ADC0_BASE_PTR);

	cal_var /= 2;
	cal_var |= 0x8000;
	
	// store value in plus-side gain calibration register (PG)
	ADC_PG_REG(ADC0_BASE_PTR) = ADC_PG_PG(cal_var);

	cal_var = 0x0000;
		
	// add the minus-side calibration results
	cal_var += ADC_CLM0_REG(ADC0_BASE_PTR);
	cal_var += ADC_CLM1_REG(ADC0_BASE_PTR);
	cal_var += ADC_CLM2_REG(ADC0_BASE_PTR);
	cal_var += ADC_CLM3_REG(ADC0_BASE_PTR);
	cal_var += ADC_CLM4_REG(ADC0_BASE_PTR);
	cal_var += ADC_CLMS_REG(ADC0_BASE_PTR);

	cal_var /= 2;
	cal_var |= 0x8000;

	// store value in minus-side gain calibration register (MG)
	ADC_MG_REG(ADC0_BASE_PTR) = ADC_MG_MG(cal_var);

	ADC_SC3_REG(ADC0_BASE_PTR) &= ~ADC_SC3_CAL_MASK;

	// to set the configuration register 1 (CFG1) to select the mode of
	// operation, clock source, clock divide, and configuration for low
	// power or long sample time
	ADC_CFG1_REG(ADC0_BASE_PTR) = ADLPC_NORMAL
		| ADC_CFG1_ADIV(ADIV_1)
		| ADLSMP_SHORT
		| ADC_CFG1_MODE(MODE_8)
		| ADC_CFG1_ADICLK(ADICLK_BUS);
	
	// to set the configuration register 2 (CFG2) to select the special
	// high-speed configuration for very high speed conversions and 
	// select the long sample time duration during long sample mode
	ADC_CFG2_REG(ADC0_BASE_PTR) = MUXSEL_ADCA
		| ADACKEN_DISABLED
		| ADHSC_HISPEED
		| ADC_CFG2_ADLSTS(ADLSTS_2);

	// to configure the status and control register 2 (SC2)
	ADC_SC2_REG(ADC0_BASE_PTR) = ADTRG_SW
		| ACFE_DISABLED
		| ACFGT_GREATER
		| ACREN_DISABLED
		| DMAEN_DISABLED
		| ADC_SC2_REFSEL(REFSEL_EXT);

	// to configure the status and control register 3 (SC3)
	// enable hw averaging, 16 samples taken
	ADC_SC3_REG(ADC0_BASE_PTR) = CAL_OFF
		| ADCO_SINGLE
		| AVGE_ENABLED
		| ADC_SC3_AVGS(AVGS_16);

	// to configure the status and control register 1 (SC1)
	//     enable the interrupt, single-ended conversion, on AD18

	ADC_SC1_REG(ADC0_BASE_PTR, A)= AIEN_ON 
		| DIFF_SINGLE 
		| ADC_SC1_ADCH(18);

	// to configure the PGA register
	ADC_PGA_REG(ADC0_BASE_PTR) = PGAEN_DISABLED
		| PGACHP_NOCHOP
		| PGALP_NORMAL
		| ADC_PGA_PGAG(PGAG_64);
	
	// enable ADC irq
	enable_irq(ADC_IRQ_NUM);
	
	return ADC_RET_SUCCESS;
}
Ejemplo n.º 4
0
uint8_t Hw_Trig_Test(void)
{
  // Notes:

  //      PDB settings : continous mode, started by sotware trigger.
  //      This means that once the software "pulls the trigger" by setting a certain bit, the PDB starts counting
  //      and handing out four triggers per cycle of its counter.

  //      PDB settings: CH0_DLY0, CH0_DLY1 , CH1_DLY0, CH1_DLY1
  //      set to different values to distinguish effect on ADCx_Ry register
  //      need to provide 4 different voltages to convert at two ADC0 and two ADC1 input channels
  //      PDB counter clock prescaled to allow time for printf's and slow down things to they are visible, each trigger.

  //      Using adiclk= BUS ,  and adidiv/4 to get  12,5MHz on Tower demonstration.
  //      visibility of PDB start trigger is obtained by generating a toggling edge on
  //      GPIOxx with PDBisr set to trigger immediatly at zero value of PDB counter.

  //      Conversion end of each ADC and channel within the ADC ( A,B ) will be done by
  //      toggling second GPIO pin inside ADCisr  ( this pin is also reset by PDB isr )



// GPIO PIN to low voltage .. this macro sets the PIN low.
 PIN_LOW

// Initialize PIN1 and PIN2 GPIO outputs
 Init_Gpio2();

// Disable ADC and PDB interrupts
 disable_irq(ADC0_irq_no) ;   // not ready for this interrupt yet. Plug vector first.
 disable_irq(ADC1_irq_no) ;   // not ready for this interrupt yet. Plug vector first.
 disable_irq(PDB_irq_no) ;    // not ready for this interrupt yet. Plug vector first.

// Dynamic interrupt vector modification whilst those interruts are disabled
 __VECTOR_RAM[73] = (uint32)adc0_isr;  // plug isr into vector table in case not there already
 __VECTOR_RAM[74] = (uint32)adc1_isr;  // plug isr into vector table in case not there already
 __VECTOR_RAM[88] = (uint32)pdb_isr;   // plug isr into vector table in case not there already

// The System Integration Module largely determines the role of the different ball map locations on Kinetis.
// When an external pin is used, the System Integration Module should be consulted and invoked as needed.
// System integration module registers start with SIM_

// Turn on the ADC0 and ADC1 clocks as well as the PDB clocks to test ADC triggered by PDB
 SIM_SCGC6 |= (SIM_SCGC6_ADC0_MASK );
 SIM_SCGC3 |= (SIM_SCGC3_ADC1_MASK );
 SIM_SCGC6 |= SIM_SCGC6_PDB_MASK ;

// Configure System Integration Module for defaults as far as ADC
 SIM_SOPT7 &= ~(SIM_SOPT7_ADC1ALTTRGEN_MASK  | // selects PDB not ALT trigger
                SIM_SOPT7_ADC1PRETRGSEL_MASK |
                SIM_SOPT7_ADC0ALTTRGEN_MASK  | // selects PDB not ALT trigger
                SIM_SOPT7_ADC0ALTTRGEN_MASK) ;
 SIM_SOPT7 = SIM_SOPT7_ADC0TRGSEL(0);       // applies only in case of ALT trigger, in which case
                                             // PDB external pin input trigger for ADC
 SIM_SOPT7 = SIM_SOPT7_ADC1TRGSEL(0);       // same for both ADCs




/////////////////////////////////////////////////////////////////////////////////////////
//PDB configured below  以下是PDB配置



// Configure the Peripheral Delay Block (PDB):
// enable PDB, pdb counter clock = busclock / 20 , continous triggers, sw trigger , and use prescaler too
 PDB0_SC =  PDB_SC_CONT_MASK       // Contintuous, rather than one-shot, mode
         | PDB_SC_PDBEN_MASK      // PDB enabled
         | PDB_SC_PDBIE_MASK      // PDB Interrupt Enable
         | PDB_SC_PRESCALER(0x5)  // Slow down the period of the PDB for testing
         | PDB_SC_TRGSEL(0xf)     // Trigger source is Software Trigger to be invoked in this file
         | PDB_SC_MULT(2);        // Multiplication factor 20 for the prescale divider for the counter clock
                                  // the software trigger, PDB_SC_SWTRIG_MASK is not triggered at this time.

 PDB0_IDLY = 0x0000;   // need to trigger interrupt every counter reset which happens when modulus reached

 PDB0_MOD = 0xffff;    // largest period possible with the slections above, so slow you can see each conversion.

// channel 0 pretrigger 0 and 1 enabled and delayed
 PDB0_CH0C1 = PDB_C1_EN(0x01)
           | PDB_C1_TOS(0x01)
           | PDB_C1_EN(0x02)
           | PDB_C1_TOS(0x02) ;

 PDB0_CH0DLY0 = ADC0_DLYA ;
 PDB0_CH0DLY1 = ADC0_DLYB ;

// channel 1 pretrigger 0 and 1 enabled and delayed
 PDB0_CH1C1 = PDB_C1_EN(0x01)
           | PDB_C1_TOS(0x01)
           | PDB_C1_EN(0x02)
           | PDB_C1_TOS(0x02) ;

 PDB0_CH1DLY0 = ADC1_DLYA ;
 PDB0_CH1DLY1 = ADC1_DLYB ;

 PDB0_SC =  PDB_SC_CONT_MASK        // Contintuous, rather than one-shot, mode
         | PDB_SC_PDBEN_MASK       // PDB enabled
         | PDB_SC_PDBIE_MASK       // PDB Interrupt Enable
         | PDB_SC_PRESCALER(0x5)   // Slow down the period of the PDB for testing
         | PDB_SC_TRGSEL(0xf)      // Trigger source is Software Trigger to be invoked in this file
         | PDB_SC_MULT(2)          // Multiplication factor 20 for the prescale divider for the counter clock
         | PDB_SC_LDOK_MASK;       // Need to ok the loading or it will not load certain regsiters!
                                   // the software trigger, PDB_SC_SWTRIG_MASK is not triggered at this time.



//PDB configured above  以上是PDB配置
/////////////////////////////////////////////////////////////////////////////////////////
//ADC configured below  以下是ADC配置

// setup the initial ADC default configuration
 Master_Adc_Config.CONFIG1  = ADLPC_NORMAL
                            | ADC_CFG1_ADIV(ADIV_4)
                            | ADLSMP_LONG
                            | ADC_CFG1_MODE(MODE_16)
                            | ADC_CFG1_ADICLK(ADICLK_BUS);
 Master_Adc_Config.CONFIG2  = MUXSEL_ADCA
                            | ADACKEN_DISABLED
                            | ADHSC_HISPEED
                            | ADC_CFG2_ADLSTS(ADLSTS_20) ;
 Master_Adc_Config.COMPARE1 = 0x1234u ;                 // can be anything
 Master_Adc_Config.COMPARE2 = 0x5678u ;                 // can be anything
                                                        // since not using
                                                        // compare feature
 Master_Adc_Config.STATUS2  = ADTRG_HW
                            | ACFE_DISABLED
                            | ACFGT_GREATER
                            | ACREN_ENABLED
                            | DMAEN_DISABLED
                            | ADC_SC2_REFSEL(REFSEL_EXT);

 Master_Adc_Config.STATUS3  = CAL_OFF
                            | ADCO_SINGLE
                            | AVGE_ENABLED
                            | ADC_SC3_AVGS(AVGS_32);

 Master_Adc_Config.PGA      = PGAEN_DISABLED
                            | PGACHP_NOCHOP
                            | PGALP_NORMAL
                            | ADC_PGA_PGAG(PGAG_64);
 Master_Adc_Config.STATUS1A = AIEN_OFF | DIFF_SINGLE | ADC_SC1_ADCH(31);
 Master_Adc_Config.STATUS1B = AIEN_OFF | DIFF_SINGLE | ADC_SC1_ADCH(31);


// Configure ADC as it will be used, but becuase ADC_SC1_ADCH is 31,
// the ADC will be inactive.  Channel 31 is just disable function.
// There really is no channel 31.

 ADC_Config_Alt(ADC0_BASE_PTR, &Master_Adc_Config);  // config ADC

// Calibrate the ADC in the configuration in which it will be used:
 ADC_Cal(ADC0_BASE_PTR);                    // do the calibration

// The structure still has the desired configuration.  So restore it.
// Why restore it?  The calibration makes some adjustments to the
// configuration of the ADC.  The are now undone:

// config the ADC again to desired conditions
 ADC_Config_Alt(ADC0_BASE_PTR, &Master_Adc_Config);

// REPEAT for BOTH ADC's.  However we will only 'use' the results from
// the ADC wired to the Potentiometer on the Kinetis Tower Card.

// Repeating for ADC1:
  ADC_Config_Alt(ADC1_BASE_PTR, &Master_Adc_Config);  // config ADC
  ADC_Cal(ADC1_BASE_PTR);                    // do the calibration
//  ADC_Read_Cal(ADC1_BASE_PTR,&CalibrationStore[0]);   // store the cal


// config the ADC again to default conditions
 ADC_Config_Alt(ADC1_BASE_PTR, &Master_Adc_Config);

// *****************************************************************************
//      ADC0 and ADC1 using the PDB trigger in ping pong
// *****************************************************************************

// use interrupts, single ended mode, and real channel numbers now:

 Master_Adc_Config.STATUS1A = AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(ADC0_CHANA);
 Master_Adc_Config.STATUS1B = AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(ADC0_CHANB);
 ADC_Config_Alt(ADC0_BASE_PTR, &Master_Adc_Config);  // config ADC0

 Master_Adc_Config.STATUS1A = AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(ADC1_CHANA);
 Master_Adc_Config.STATUS1B = AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(ADC1_CHANB);
 ADC_Config_Alt(ADC1_BASE_PTR, &Master_Adc_Config);  // config ADC1

 // Note that three different balls are being sampled:
 // ADC0_CHANA not used in this demo, but readings are shown
 // ADC0_CHANB not used in this demo, but readings are shown
 // ADC1_CHANA POT channel set the same as the following for demo: 20
 // ADC1_CHANB POT channel set the same as the above for demo: 20

 // The potentiometer is only on ADC1.  That is the one used
 // to calculate the change of the potentiometer below.


 while(char_present()) in_char();                     // flush terminal buffer

 printf ("\n\n\n");
 printf("********************************************************\n");
 printf("* Running ADC0 & ADC1 HARDWARE TRIGGER by PDB          *\n");
 printf("* The one PDB is triggering both ADC0 and ADC1         *\n");
 printf("* ADC1 A,B is the POT.   Vary the POT setting.         *\n");
 printf("* Hit any key to exit   (ADC0 readings not used)       *\n");
 printf("********************************************************\n");
 printf ("\n\n");

// Enable the ADC and PDB interrupts in NVIC
 enable_irq(ADC0_irq_no) ;   // ready for this interrupt.
 enable_irq(ADC1_irq_no) ;   // ready for this interrupt.
 enable_irq(PDB_irq_no) ;    // ready for this interrupt.

// In case previous test did not end with interrupts enabled, enable used ones.
 EnableInterrupts ;

 cycle_flags=0;
 PDB0_SC |= PDB_SC_SWTRIG_MASK ;    // kick off the PDB  - just once

 //The system is now working!!!!  The PDB is *continuously* triggering ADC
 // conversions.  Now, to display the results!  The line above
 // was the SOFTWARE TRIGGER...

 // The demo will continue as long as no character is pressed on the terminal.

 while(!char_present()) // as long as no operater intervention, keep running this:
 {
  while( cycle_flags != ( ADC0A_DONE | ADC0B_DONE | ADC1A_DONE | ADC1B_DONE ));  // wait for one complete cycle
  printf("R0A=%6d  R0B=%6d  R1A=%6d  R1B=%6d   POT=%6d\r",
          result0A,result0B,result1A,result1B, exponentially_filtered_result1);
 }

// disable the PDB

  PDB0_SC = 0 ;

// Disable the ADC and PDB interrupts in NVIC
  disable_irq(ADC0_irq_no) ;   // through with this interrupt.
  disable_irq(ADC1_irq_no) ;   // through with this interrupt.
  disable_irq(PDB_irq_no) ;    // through with this interrupt.


 printf ("\n\n\n");
 printf("********************************************************\n");
 printf("* Demonstration ended at operator request              *\n");
 printf("* ADC0 & ADC1 PDB      TRIGGER DEMO COMPLETE           *\n");
 printf("********************************************************\n");
 printf ("\n\n");


return 0;
}
Ejemplo n.º 5
0
////Initialize ADC Function. Needs to be placed somewhere??
void AnalogInputPin::InitADCs()
{
    // setup the initial ADC default configuration
         Master_Adc_Config.CONFIG1  = ADLPC_NORMAL                   // Normal power, (not low power)
                                    | ADC_CFG1_ADIV(ADIV_4)          // Clock divider
                                    | ADLSMP_LONG                    // Take a long time to sample
                                    | ADC_CFG1_MODE(MODE_16)         // 16 bit mode
                                    | ADC_CFG1_ADICLK(ADICLK_BUS);   // use the bus clock
         Master_Adc_Config.CONFIG2  = MUXSEL_ADCB                    // use channel A
                                    | ADACKEN_DISABLED               // Asynch clock disabled?
                                    | ADHSC_NORMAL                   // Asynch clock setting
                                    | ADC_CFG2_ADLSTS(ADLSTS_20) ;
         Master_Adc_Config.COMPARE1 = 0x1234u ;                 // can be anything
         Master_Adc_Config.COMPARE2 = 0x5678u ;                 // can be anything
                                                                // since not using
                                                                // compare feature
         Master_Adc_Config.STATUS2  = ADTRG_SW                  // Software triggered conversion
                                    | ACFE_DISABLED             // Disable comparator (if enabled only registers as an anlog reading if it is greater than a certain value)
                                    | ACFGT_GREATER             // comparator setting
                                    | ACREN_DISABLED            // Compare Function Range disabled
                                    | DMAEN_DISABLED               // Disable DMA
                                    | ADC_SC2_REFSEL(REFSEL_EXT); // external voltage reference

         Master_Adc_Config.STATUS3  = CAL_OFF                     // Calibration begins off
                                    | ADCO_SINGLE                 // Take a single reading
                                    | AVGE_ENABLED                // Enable averaging
                                    | ADC_SC3_AVGS(AVGS_32);      // Average 32 samples

         Master_Adc_Config.PGA      = PGAEN_DISABLED             // PGA disabled
                                    | PGACHP_NOCHOP              // no chopping for PGA?
                                    | PGALP_NORMAL               // Normal (not low power mode)
                                    | ADC_PGA_PGAG(PGAG_64);     // PGA gain of 64

         // Set up channel as all ones for configuration
         Master_Adc_Config.STATUS1A = AIEN_OFF | DIFF_SINGLE | ADC_SC1_ADCH(31);

         Master_Adc_Config.STATUS1B = AIEN_OFF | DIFF_SINGLE | ADC_SC1_ADCH(31);


        // Configure ADC as it will be used, but becuase ADC_SC1_ADCH is 31,
        // the ADC will be inactive.  Channel 31 is just disable function.
        // There really is no channel 31.

         ADC_Config_Alt(ADC0_BASE_PTR, &Master_Adc_Config);  // config ADC
         ADC_Config_Alt(ADC1_BASE_PTR, &Master_Adc_Config);  // config ADC

        // Calibrate the ADC in the configuration in which it will be used:
         ADC_Cal(ADC1_BASE_PTR);                    // do the calibration
         ADC_Cal(ADC0_BASE_PTR);                    // do the calibration

        // The structure still has the desired configuration.  So restore it.
        // Why restore it?  The calibration makes some adjustments to the
        // configuration of the ADC.  The are now undone:

        // config the ADC again to desired conditions
         ADC_Config_Alt(ADC1_BASE_PTR, &Master_Adc_Config);
         ADC_Config_Alt(ADC0_BASE_PTR, &Master_Adc_Config);

         //Load Encoder ADC Config (A bit different from Master)
         Encoder_Adc_Config = Master_Adc_Config;

         Encoder_Adc_Config.CONFIG1  = ADLPC_NORMAL                   // Normal power, (not low power)
                                    | ADC_CFG1_ADIV(ADIV_4)          // Clock divider
                                    | ADLSMP_LONG                    // Take a long time to sample
                                    | ADC_CFG1_MODE(MODE_16)         // 16 bit mode
                                    | ADC_CFG1_ADICLK(ADICLK_BUS);   // use the bus clock

         Encoder_Adc_Config.STATUS3  = CAL_OFF                     // Calibration begins off
                                    | ADCO_SINGLE                 // Take a single reading
                                    | AVGE_ENABLED                // Enable averaging
                                    | ADC_SC3_AVGS(AVGS_4);      // Average 4 samples
}