/* * Encode an always-primitive type using DER. */ asn_enc_rval_t der_encode_primitive(asn_TYPE_descriptor_t *td, void *sptr, int tag_mode, ber_tlv_tag_t tag, asn_app_consume_bytes_f *cb, void *app_key) { asn_enc_rval_t erval; ASN__PRIMITIVE_TYPE_t *st = (ASN__PRIMITIVE_TYPE_t *)sptr; ASN_DEBUG("%s %s as a primitive type (tm=%d)", cb?"Encoding":"Estimating", td->name, tag_mode); erval.encoded = der_write_tags(td, st->size, tag_mode, 0, tag, cb, app_key); ASN_DEBUG("%s wrote tags %d", td->name, (int)erval.encoded); if(erval.encoded == -1) { erval.failed_type = td; erval.structure_ptr = sptr; return erval; } if(cb && st->buf) { if(cb(st->buf, st->size, app_key) < 0) { erval.encoded = -1; erval.failed_type = td; erval.structure_ptr = sptr; return erval; } } else { assert(st->buf || st->size == 0); } erval.encoded += st->size; _ASN_ENCODED_OK(erval); }
/* * Encode an "open type field". * #10.1, #10.2 */ int uper_open_type_put(asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po) { void *buf; void *bptr; ssize_t size; size_t toGo; ASN_DEBUG("Open type put %s ...", td->name); size = uper_encode_to_new_buffer(td, constraints, sptr, &buf); if(size <= 0) return -1; for(bptr = buf, toGo = size; toGo;) { ssize_t maySave = uper_put_length(po, toGo); ASN_DEBUG("Prepending length %d to %s and allowing to save %d", (int)size, td->name, (int)maySave); if(maySave < 0) break; if(per_put_many_bits(po, bptr, maySave * 8)) break; bptr = (char *)bptr + maySave; toGo -= maySave; } FREEMEM(buf); if(toGo) return -1; ASN_DEBUG("Open type put %s of length %ld + overhead (1byte?)", td->name, (long)size); return 0; }
asn_dec_rval_t NativeInteger_decode_aper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) { asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics; asn_dec_rval_t rval; long *native = (long *)*sptr; INTEGER_t tmpint; void *tmpintptr = &tmpint; (void)opt_codec_ctx; ASN_DEBUG("Decoding NativeInteger %s (APER)", td->name); if(!native) { native = (long *)(*sptr = CALLOC(1, sizeof(*native))); if(!native) _ASN_DECODE_FAILED; } memset(&tmpint, 0, sizeof tmpint); rval = INTEGER_decode_aper(opt_codec_ctx, td, constraints, &tmpintptr, pd); if(rval.code == RC_OK) { if((specs&&specs->field_unsigned) ? asn_INTEGER2ulong(&tmpint, (unsigned long *)native) : asn_INTEGER2long(&tmpint, native)) rval.code = RC_FAIL; else ASN_DEBUG("NativeInteger %s got value %ld", td->name, *native); } ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint); return rval; }
asn_dec_rval_t BOOLEAN_decode_ber(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, void **bool_value, const void *buf_ptr, size_t size, int tag_mode) { _BOOLEANType *st = &static_cast<Type*>(static_cast<AsnAbstractType*>(*bool_value))->value; asn_dec_rval_t rval; ber_tlv_len_t length; ber_tlv_len_t lidx; if(st == NULL) { ASN_DEBUG("No allocated memory for BOOLEAN_decode_ber"); rval.code = RC_FAIL; rval.consumed = 0; return rval; } ASN_DEBUG("Decoding %s as BOOLEAN (tm=%d)", td->name, tag_mode); /* * Check tags. */ rval = ber_check_tags(opt_codec_ctx, td, 0, buf_ptr, size, tag_mode, 0, &length, 0); if(rval.code != RC_OK) return rval; ASN_DEBUG("Boolean length is %d bytes", (int)length); buf_ptr = ((const char *)buf_ptr) + rval.consumed; size -= rval.consumed; if(length > (ber_tlv_len_t)size) { rval.code = RC_WMORE; rval.consumed = 0; return rval; } /* * Compute boolean value. */ for(*st = 0, lidx = 0; (lidx < length) && *st == 0; lidx++) { /* * Very simple approach: read bytes until the end or * value is already TRUE. * BOOLEAN is not supposed to contain meaningful data anyway. */ *st |= ((const uint8_t *)buf_ptr)[lidx]; } rval.code = RC_OK; rval.consumed += length; ASN_DEBUG("Took %ld/%ld bytes to encode %s, value=%d", (long)rval.consumed, (long)length, td->name, *st); return rval; }
asn_dec_rval_t NativeEnumerated_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) { asn_INTEGER_specifics_t *specs = (asn_INTEGER_specifics_t *)td->specifics; asn_dec_rval_t rval = { RC_OK, 0 }; long *native = (long *)*sptr; asn_per_constraint_t *ct; long value; (void)opt_codec_ctx; if(constraints) ct = &constraints->value; else if(td->per_constraints) ct = &td->per_constraints->value; else _ASN_DECODE_FAILED; /* Mandatory! */ if(!specs) _ASN_DECODE_FAILED; if(!native) { native = (long *)(*sptr = CALLOC(1, sizeof(*native))); if(!native) _ASN_DECODE_FAILED; } ASN_DEBUG("Decoding %s as NativeEnumerated", td->name); if(ct->flags & APC_EXTENSIBLE) { int inext = per_get_few_bits(pd, 1); if(inext < 0) _ASN_DECODE_STARVED; if(inext) ct = 0; } if(ct && ct->range_bits >= 0) { value = per_get_few_bits(pd, ct->range_bits); if(value < 0) _ASN_DECODE_STARVED; if(value >= (specs->extension ? specs->extension - 1 : specs->map_count)) _ASN_DECODE_FAILED; } else { if(!specs->extension) _ASN_DECODE_FAILED; /* * X.691, #10.6: normally small non-negative whole number; */ value = uper_get_nsnnwn(pd); if(value < 0) _ASN_DECODE_STARVED; value += specs->extension - 1; if(value >= specs->map_count) _ASN_DECODE_FAILED; } *native = specs->value2enum[value].nat_value; ASN_DEBUG("Decoded %s = %ld", td->name, *native); return rval; }
asn_enc_rval_t NativeInteger_encode_aper( asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po) { asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics; asn_enc_rval_t er; long native; INTEGER_t tmpint; if(!sptr) _ASN_ENCODE_FAILED; native = *(long *)sptr; ASN_DEBUG("Encoding NativeInteger %s %ld (APER)", td->name, native); memset(&tmpint, 0, sizeof(tmpint)); if((specs&&specs->field_unsigned) ? asn_ulong2INTEGER(&tmpint, native) : asn_long2INTEGER(&tmpint, native)) _ASN_ENCODE_FAILED; er = INTEGER_encode_aper(td, constraints, &tmpint, po); ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint); return er; }
void SEQUENCE_free(Allocator * allocator, asn_TYPE_descriptor_t *td, void *sptr, int contents_only) { int edx; if(!td || !sptr) return; ASN_DEBUG("Freeing %s as SEQUENCE", td->name); for(edx = 0; edx < td->elements_count; edx++) { asn_TYPE_member_t *elm = &td->elements[edx]; void *memb_ptr; if(elm->flags & ATF_POINTER) { memb_ptr = *(void **)((char *)sptr + elm->memb_offset); if(memb_ptr) ASN_STRUCT_FREE(allocator, *elm->type, memb_ptr); } else { memb_ptr = (void *)((char *)sptr + elm->memb_offset); ASN_STRUCT_FREE_CONTENTS_ONLY(allocator, *elm->type, memb_ptr); } } if(!contents_only) { CXX_ALLOC_WRAP FREEMEM(sptr); } }
/* * A variant of the oer_encode() which encodes the data into the provided buffer */ asn_enc_rval_t oer_encode_to_buffer(const asn_TYPE_descriptor_t *type_descriptor, const asn_oer_constraints_t *constraints, const void *struct_ptr, /* Structure to be encoded */ void *buffer, /* Pre-allocated buffer */ size_t buffer_size /* Initial buffer size (maximum) */ ) { enc_to_buf_arg arg; asn_enc_rval_t ec; arg.buffer = buffer; arg.left = buffer_size; if(type_descriptor->op->oer_encoder == NULL) { ec.encoded = -1; ec.failed_type = type_descriptor; ec.structure_ptr = struct_ptr; ASN_DEBUG("OER encoder is not defined for %s", type_descriptor->name); } else { ec = type_descriptor->op->oer_encoder( type_descriptor, constraints, struct_ptr, /* Pointer to the destination structure */ encode_to_buffer_cb, &arg); if(ec.encoded != -1) { assert(ec.encoded == (ssize_t)(buffer_size - arg.left)); /* Return the encoded contents size */ } } return ec; }
asn_enc_rval_t oer_encode_primitive(const asn_TYPE_descriptor_t *td, const asn_oer_constraints_t *constraints, const void *sptr, asn_app_consume_bytes_f *cb, void *app_key) { const ASN__PRIMITIVE_TYPE_t *st = (const ASN__PRIMITIVE_TYPE_t *)sptr; asn_enc_rval_t er = {0, 0, 0}; ssize_t ret; (void)constraints; if(!st) ASN__ENCODE_FAILED; ASN_DEBUG("Encoding %s (%" ASN_PRI_SIZE " bytes)", td ? td->name : "", st->size); /* * X.696 (08/2015) #27.2 */ ret = oer_serialize_length(st->size, cb, app_key); if(ret < 0) { ASN__ENCODE_FAILED; } er.encoded += ret; er.encoded += st->size; if(cb(st->buf, st->size, app_key) < 0) { ASN__ENCODE_FAILED; } else { ASN__ENCODED_OK(er); } }
asn_dec_rval_t BOOLEAN_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) { asn_dec_rval_t rv; BOOLEAN_t *st = (BOOLEAN_t *)*sptr; (void)opt_codec_ctx; (void)constraints; if(!st) { st = (BOOLEAN_t *)(*sptr = MALLOC(sizeof(*st))); if(!st) ASN__DECODE_FAILED; } /* * Extract a single bit */ switch(per_get_few_bits(pd, 1)) { case 1: *st = 1; break; case 0: *st = 0; break; case -1: default: ASN__DECODE_STARVED; } ASN_DEBUG("%s decoded as %s", td->name, *st ? "TRUE" : "FALSE"); rv.code = RC_OK; rv.consumed = 1; return rv; }
asn_encode_to_new_buffer_result_t asn_encode_to_new_buffer(const asn_codec_ctx_t *opt_codec_ctx, enum asn_transfer_syntax syntax, const asn_TYPE_descriptor_t *td, const void *sptr) { struct dynamic_encoder_key buf_key; asn_encode_to_new_buffer_result_t res; buf_key.buffer_size = 16; buf_key.buffer = MALLOC(buf_key.buffer_size); buf_key.computed_size = 0; res.result = asn_encode_internal(opt_codec_ctx, syntax, td, sptr, dynamic_encoder_cb, &buf_key); if(res.result.encoded >= 0 && (size_t)res.result.encoded != buf_key.computed_size) { ASN_DEBUG("asn_encode() returned %" ASN_PRI_SSIZE " yet produced %" ASN_PRI_SIZE " bytes", res.result.encoded, buf_key.computed_size); assert(res.result.encoded < 0 || (size_t)res.result.encoded == buf_key.computed_size); } res.buffer = buf_key.buffer; /* 0-terminate just in case. */ if(res.buffer) { assert(buf_key.computed_size < buf_key.buffer_size); ((char *)res.buffer)[buf_key.computed_size] = '\0'; } return res; }
asn_enc_rval_t asn_encode_to_buffer(const asn_codec_ctx_t *opt_codec_ctx, enum asn_transfer_syntax syntax, const asn_TYPE_descriptor_t *td, const void *sptr, void *buffer, size_t buffer_size) { struct overrun_encoder_key buf_key; asn_enc_rval_t er; if(buffer_size > 0 && !buffer) { errno = EINVAL; ASN__ENCODE_FAILED; } buf_key.buffer = buffer; buf_key.buffer_size = buffer_size; buf_key.computed_size = 0; er = asn_encode_internal(opt_codec_ctx, syntax, td, sptr, overrun_encoder_cb, &buf_key); if(er.encoded >= 0 && (size_t)er.encoded != buf_key.computed_size) { ASN_DEBUG("asn_encode() returned %" ASN_PRI_SSIZE " yet produced %" ASN_PRI_SIZE " bytes", er.encoded, buf_key.computed_size); assert(er.encoded < 0 || (size_t)er.encoded == buf_key.computed_size); } return er; }
asn_enc_rval_t NativeEnumerated_encode_xer(asn_TYPE_descriptor_t *td, void *sptr, int ilevel, enum xer_encoder_flags_e flags, asn_app_consume_bytes_f *cb, void *app_key) { asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics; asn_enc_rval_t er; const long *native = (const long *)sptr; const asn_INTEGER_enum_map_t *el; (void)ilevel; (void)flags; if(!native) _ASN_ENCODE_FAILED; el = INTEGER_map_value2enum(specs, *native); if(el) { size_t srcsize = el->enum_len + 5; char *src = (char *)alloca(srcsize); er.encoded = snprintf(src, srcsize, "<%s/>", el->enum_name); assert(er.encoded > 0 && (size_t)er.encoded < srcsize); if(cb(src, er.encoded, app_key) < 0) _ASN_ENCODE_FAILED; _ASN_ENCODED_OK(er); } else { ASN_DEBUG("ASN.1 forbids dealing with " "unknown value of ENUMERATED type"); _ASN_ENCODE_FAILED; } }
/* * X.691-201508 #10.9 General rules for encoding a length determinant. * Get the optionally constrained length "n" from the stream. */ ssize_t uper_get_length(asn_per_data_t *pd, int ebits, size_t lower_bound, int *repeat) { ssize_t value; *repeat = 0; /* #11.9.4.1 Encoding if constrained (according to effective bits) */ if(ebits >= 0 && ebits <= 16) { value = per_get_few_bits(pd, ebits); if(value >= 0) value += lower_bound; return value; } value = per_get_few_bits(pd, 8); if((value & 0x80) == 0) { /* #11.9.3.6 */ return (value & 0x7F); } else if((value & 0x40) == 0) { /* #11.9.3.7 */ /* bit 8 ... set to 1 and bit 7 ... set to zero */ value = ((value & 0x3f) << 8) | per_get_few_bits(pd, 8); return value; /* potential -1 from per_get_few_bits passes through. */ } else if(value < 0) { ASN_DEBUG("END of stream reached for PER"); return -1; } value &= 0x3f; /* this is "m" from X.691, #11.9.3.8 */ if(value < 1 || value > 4) { return -1; /* Prohibited by #11.9.3.8 */ } *repeat = 1; return (16384 * value); }
xer_check_tag_e xer_check_tag(const void *buf_ptr, int size, const char *need_tag) { const char *buf = (const char *)buf_ptr; const char *end; xer_check_tag_e ct = XCT_OPENING; if(size < 2 || buf[0] != LANGLE || buf[size-1] != RANGLE) { if(size >= 2) ASN_DEBUG("Broken XML tag: \"%c...%c\"", buf[0], buf[size - 1]); return XCT_BROKEN; } /* * Determine the tag class. */ if(buf[1] == CSLASH) { buf += 2; /* advance past "</" */ size -= 3; /* strip "</" and ">" */ ct = XCT_CLOSING; if(size > 0 && buf[size-1] == CSLASH) return XCT_BROKEN; /* </abc/> */ } else { buf++; /* advance past "<" */ size -= 2; /* strip "<" and ">" */ if(size > 0 && buf[size-1] == CSLASH) { ct = XCT_BOTH; size--; /* One more, for "/" */ } } /* Sometimes we don't care about the tag */ if(!need_tag || !*need_tag) return (xer_check_tag_e)(XCT__UNK__MASK | ct); /* * Determine the tag name. */ for(end = buf + size; buf < end; buf++, need_tag++) { int b = *buf, n = *need_tag; if(b != n) { if(n == 0) { switch(b) { case 0x09: case 0x0a: case 0x0c: case 0x0d: case 0x20: /* "<abc def/>": whitespace is normal */ return ct; } } return (xer_check_tag_e)(XCT__UNK__MASK | ct); } if(b == 0) return XCT_BROKEN; /* Embedded 0 in buf?! */ } if(*need_tag) return (xer_check_tag_e)(XCT__UNK__MASK | ct); return ct; }
asn_dec_rval_t SEQUENCE_decode_uper(Allocator * allocator, asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) { asn_SEQUENCE_specifics_t *specs = (asn_SEQUENCE_specifics_t *)td->specifics; void *st = *sptr; /* Target structure. */ int extpresent; /* Extension additions are present */ uint8_t *opres; /* Presence of optional root members */ asn_per_data_t opmd; asn_dec_rval_t rv; int edx; (void)constraints; if(_ASN_STACK_OVERFLOW_CHECK(opt_codec_ctx)) _ASN_DECODE_FAILED; if(!st) { st = *sptr = CXX_ALLOC_WRAP CALLOC(1, specs->struct_size); if(!st) _ASN_DECODE_FAILED; } ASN_DEBUG("Decoding %s as SEQUENCE (UPER)", td->name); /* Handle extensions */ if(specs->ext_before >= 0) { extpresent = per_get_few_bits(pd, 1); if(extpresent < 0) _ASN_DECODE_STARVED; } else { extpresent = 0; } /* Prepare a place and read-in the presence bitmap */ memset(&opmd, 0, sizeof(opmd)); if(specs->roms_count) { opres = (uint8_t *)CXX_ALLOC_WRAP MALLOC(((specs->roms_count + 7) >> 3) + 1); if(!opres) _ASN_DECODE_FAILED; /* Get the presence map */ if(per_get_many_bits(pd, opres, 0, specs->roms_count)) { CXX_ALLOC_WRAP FREEMEM(opres); _ASN_DECODE_STARVED; } opmd.buffer = opres; opmd.nbits = specs->roms_count; ASN_DEBUG("Read in presence bitmap for %s of %d bits (%x..)", td->name, specs->roms_count, *opres); } else {
/* * Get the normally small length "n". * This procedure used to decode length of extensions bit-maps * for SET and SEQUENCE types. */ ssize_t uper_get_nslength(asn_per_data_t *pd) { ssize_t length; ASN_DEBUG("Getting normally small length"); if(per_get_few_bits(pd, 1) == 0) { length = per_get_few_bits(pd, 6) + 1; if(length <= 0) return -1; ASN_DEBUG("l=%d", (int)length); return length; } else { int repeat; length = uper_get_length(pd, -1, 0, &repeat); if(length >= 0 && !repeat) return length; return -1; /* Error, or do not support >16K extensions */ } }
/* * Encode INTEGER type using DER. */ asn_enc_rval_t INTEGER_encode_der(asn_TYPE_descriptor_t *td, void *sptr, int tag_mode, ber_tlv_tag_t tag, asn_app_consume_bytes_f *cb, void *app_key) { INTEGER_t *st = (INTEGER_t *)sptr; ASN_DEBUG("%s %s as INTEGER (tm=%d)", cb?"Encoding":"Estimating", td->name, tag_mode); /* * Canonicalize integer in the buffer. * (Remove too long sign extension, remove some first 0x00 bytes) */ if(st->buf) { uint8_t *buf = st->buf; uint8_t *end1 = buf + st->size - 1; int shift; /* Compute the number of superfluous leading bytes */ for(; buf < end1; buf++) { /* * If the contents octets of an integer value encoding * consist of more than one octet, then the bits of the * first octet and bit 8 of the second octet: * a) shall not all be ones; and * b) shall not all be zero. */ switch(*buf) { case 0x00: if((buf[1] & 0x80) == 0) continue; break; case 0xff: if((buf[1] & 0x80)) continue; break; } break; } /* Remove leading superfluous bytes from the integer */ shift = buf - st->buf; if(shift) { uint8_t *nb = st->buf; uint8_t *end; st->size -= shift; /* New size, minus bad bytes */ end = nb + st->size; for(; nb < end; nb++, buf++) *nb = *buf; } } /* if(1) */ return der_encode_primitive(td, sptr, tag_mode, tag, cb, app_key); }
void NativeReal_free(asn_TYPE_descriptor_t *td, void *ptr, int contents_only) { if(!td || !ptr) return; ASN_DEBUG("Freeing %s as REAL (%d, %p, Native)", td->name, contents_only, ptr); if(!contents_only) { FREEMEM(ptr); } }
/* * The OER encoder of any type. */ asn_enc_rval_t oer_encode(const asn_TYPE_descriptor_t *type_descriptor, const void *struct_ptr, asn_app_consume_bytes_f *consume_bytes, void *app_key) { ASN_DEBUG("OER encoder invoked for %s", type_descriptor->name); /* * Invoke type-specific encoder. */ return type_descriptor->op->oer_encoder( type_descriptor, 0, struct_ptr, /* Pointer to the destination structure */ consume_bytes, app_key); }
/* * Encode an "open type field". * #10.1, #10.2 */ int uper_open_type_put(const asn_TYPE_descriptor_t *td, const asn_per_constraints_t *constraints, const void *sptr, asn_per_outp_t *po) { void *buf; void *bptr; ssize_t size; ASN_DEBUG("Open type put %s ...", td->name); size = uper_encode_to_new_buffer(td, constraints, sptr, &buf); if(size <= 0) return -1; ASN_DEBUG("Open type put %s of length %" ASN_PRI_SSIZE " + overhead (1byte?)", td->name, size); bptr = buf; do { int need_eom = 0; ssize_t may_save = uper_put_length(po, size, &need_eom); ASN_DEBUG("Prepending length %" ASN_PRI_SSIZE " to %s and allowing to save %" ASN_PRI_SSIZE, size, td->name, may_save); if(may_save < 0) break; if(per_put_many_bits(po, bptr, may_save * 8)) break; bptr = (char *)bptr + may_save; size -= may_save; if(need_eom && uper_put_length(po, 0, 0)) { FREEMEM(buf); return -1; } } while(size); FREEMEM(buf); if(size) return -1; return 0; }
void ASN__PRIMITIVE_TYPE_free(asn_TYPE_descriptor_t *td, void *sptr, int contents_only) { ASN__PRIMITIVE_TYPE_t *st = (ASN__PRIMITIVE_TYPE_t *)sptr; if(!td || !sptr) return; ASN_DEBUG("Freeing %s as a primitive type", td->name); if(st->buf) FREEMEM(st->buf); if(!contents_only) FREEMEM(st); }
static inline int _ASN_STACK_OVERFLOW_CHECK(asn_codec_ctx_t *ctx) { if(ctx && ctx->max_stack_size) { /* ctx MUST be allocated on the stack */ ptrdiff_t usedstack = ((char *)ctx - (char *)&ctx); if(usedstack > 0) usedstack = -usedstack; /* grows up! */ /* double negative required to avoid int wrap-around */ if(usedstack < -(ptrdiff_t)ctx->max_stack_size) { ASN_DEBUG("Stack limit %ld reached", (long)ctx->max_stack_size); return -1; } } return 0; }
void CHOICE_free(const asn_TYPE_descriptor_t *td, void *ptr, enum asn_struct_free_method method) { const asn_CHOICE_specifics_t *specs = (const asn_CHOICE_specifics_t *)td->specifics; unsigned present; if(!td || !ptr) return; ASN_DEBUG("Freeing %s as CHOICE", td->name); /* * Figure out which CHOICE element is encoded. */ present = _fetch_present_idx(ptr, specs->pres_offset, specs->pres_size); /* * Free that element. */ if(present > 0 && present <= td->elements_count) { asn_TYPE_member_t *elm = &td->elements[present-1]; void *memb_ptr; if(elm->flags & ATF_POINTER) { memb_ptr = *(void **)((char *)ptr + elm->memb_offset); if(memb_ptr) ASN_STRUCT_FREE(*elm->type, memb_ptr); } else { memb_ptr = (void *)((char *)ptr + elm->memb_offset); ASN_STRUCT_FREE_CONTENTS_ONLY(*elm->type, memb_ptr); } } switch(method) { case ASFM_FREE_EVERYTHING: FREEMEM(ptr); break; case ASFM_FREE_UNDERLYING: break; case ASFM_FREE_UNDERLYING_AND_RESET: memset(ptr, 0, specs->struct_size); break; } }
void CHOICE_free(asn_TYPE_descriptor_t *td, void *ptr, int contents_only) { asn_CHOICE_specifics_t *specs; int present; if(!td || !ptr) return; specs = (asn_CHOICE_specifics_t *)td->specifics; ASN_DEBUG("Freeing %s as CHOICE", td->name); /* * Figure out which CHOICE element is encoded. */ present = _fetch_present_idx(ptr, specs->pres_offset, specs->pres_size); /* * Free that element. */ if(present > 0 && present <= td->elements_count) { asn_TYPE_member_t *elm = &td->elements[present-1]; void *memb_ptr; if(elm->flags & ATF_POINTER) { memb_ptr = *(void **)((char *)ptr + elm->memb_offset); if(memb_ptr) ASN_STRUCT_FREE(*elm->type, memb_ptr); } else { memb_ptr = (void *)((char *)ptr + elm->memb_offset); ASN_STRUCT_FREE_CONTENTS_ONLY(*elm->type, memb_ptr); } } if(!contents_only) { FREEMEM(ptr); } }
/* * Extract a small number of bits (<= 31) from the specified PER data pointer. */ int32_t per_get_few_bits(asn_per_data_t *pd, int nbits) { size_t off; /* Next after last bit offset */ ssize_t nleft; /* Number of bits left in this stream */ uint32_t accum; const uint8_t *buf; if(nbits < 0) return -1; nleft = pd->nbits - pd->nboff; if(nbits > nleft) { int32_t tailv, vhead; if(!pd->refill || nbits > 31) return -1; /* Accumulate unused bytes before refill */ ASN_DEBUG("Obtain the rest %d bits (want %d)", (int)nleft, (int)nbits); tailv = per_get_few_bits(pd, nleft); if(tailv < 0) return -1; /* Refill (replace pd contents with new data) */ if(pd->refill(pd)) return -1; nbits -= nleft; vhead = per_get_few_bits(pd, nbits); /* Combine the rest of previous pd with the head of new one */ tailv = (tailv << nbits) | vhead; /* Could == -1 */ return tailv; } /* * Normalize position indicator. */ if(pd->nboff >= 8) { pd->buffer += (pd->nboff >> 3); pd->nbits -= (pd->nboff & ~0x07); pd->nboff &= 0x07; }
/* * Decode REAL type. */ asn_dec_rval_t NativeReal_decode_ber(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, void **dbl_ptr, const void *buf_ptr, size_t size, int tag_mode) { double *Dbl = (double *)*dbl_ptr; asn_dec_rval_t rval; ber_tlv_len_t length; /* * If the structure is not there, allocate it. */ if(Dbl == NULL) { *dbl_ptr = CALLOC(1, sizeof(*Dbl)); Dbl = (double *)*dbl_ptr; if(Dbl == NULL) { rval.code = RC_FAIL; rval.consumed = 0; return rval; } } ASN_DEBUG("Decoding %s as REAL (tm=%d)", td->name, tag_mode); /* * Check tags. */ rval = ber_check_tags(opt_codec_ctx, td, 0, buf_ptr, size, tag_mode, 0, &length, 0); if(rval.code != RC_OK) return rval; ASN_DEBUG("%s length is %d bytes", td->name, (int)length); /* * Make sure we have this length. */ buf_ptr = ((const char *)buf_ptr) + rval.consumed; size -= rval.consumed; if(length > (ber_tlv_len_t)size) { rval.code = RC_WMORE; rval.consumed = 0; return rval; } /* * ASN.1 encoded REAL: buf_ptr, length * Fill the Dbl, at the same time checking for overflow. * If overflow occured, return with RC_FAIL. */ { REAL_t tmp; union { const void *constbuf; void *nonconstbuf; } unconst_buf; double d; unconst_buf.constbuf = buf_ptr; tmp.buf = (uint8_t *)unconst_buf.nonconstbuf; tmp.size = length; if(asn_REAL2double(&tmp, &d)) { rval.code = RC_FAIL; rval.consumed = 0; return rval; } *Dbl = d; } rval.code = RC_OK; rval.consumed += length; ASN_DEBUG("Took %ld/%ld bytes to encode %s (%f)", (long)rval.consumed, (long)length, td->name, *Dbl); return rval; }
asn_dec_rval_t SET_OF_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) { asn_dec_rval_t rv; asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics; asn_TYPE_member_t *elm = td->elements; /* Single one */ void *st = *sptr; asn_anonymous_set_ *list; asn_per_constraint_t *ct; int repeat = 0; ssize_t nelems; if(_ASN_STACK_OVERFLOW_CHECK(opt_codec_ctx)) _ASN_DECODE_FAILED; /* * Create the target structure if it is not present already. */ if(!st) { st = *sptr = CALLOC(1, specs->struct_size); if(!st) _ASN_DECODE_FAILED; } list = _A_SET_FROM_VOID(st); /* Figure out which constraints to use */ if(constraints) ct = &constraints->size; else if(td->per_constraints) ct = &td->per_constraints->size; else ct = 0; if(ct && ct->flags & APC_EXTENSIBLE) { int value = per_get_few_bits(pd, 1); if(value < 0) _ASN_DECODE_STARVED; if(value) ct = 0; /* Not restricted! */ } if(ct && ct->effective_bits >= 0) { /* X.691, #19.5: No length determinant */ nelems = per_get_few_bits(pd, ct->effective_bits); ASN_DEBUG("Preparing to fetch %ld+%ld elements from %s", (long)nelems, ct->lower_bound, td->name); if(nelems < 0) _ASN_DECODE_STARVED; nelems += ct->lower_bound; } else { nelems = -1; } do { int i; if(nelems < 0) { nelems = uper_get_length(pd, ct ? ct->effective_bits : -1, &repeat); ASN_DEBUG("Got to decode %d elements (eff %d)", (int)nelems, (int)ct ? ct->effective_bits : -1); if(nelems < 0) _ASN_DECODE_STARVED; } for(i = 0; i < nelems; i++) { void *ptr = 0; ASN_DEBUG("SET OF %s decoding", elm->type->name); rv = elm->type->uper_decoder(opt_codec_ctx, elm->type, elm->per_constraints, &ptr, pd); ASN_DEBUG("%s SET OF %s decoded %d, %p", td->name, elm->type->name, rv.code, ptr); if(rv.code == RC_OK) { if(ASN_SET_ADD(list, ptr) == 0) continue; ASN_DEBUG("Failed to add element into %s", td->name); /* Fall through */ rv.code = RC_FAIL; } else { ASN_DEBUG("Failed decoding %s of %s (SET OF)", elm->type->name, td->name); } if(ptr) ASN_STRUCT_FREE(*elm->type, ptr); return rv; } nelems = -1; /* Allow uper_get_length() */ } while(repeat); ASN_DEBUG("Decoded %s as SET OF", td->name); rv.code = RC_OK; rv.consumed = 0; return rv; }
/* * The decoder of the SET OF type. */ asn_dec_rval_t SET_OF_decode_ber(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, void **struct_ptr, const void *ptr, size_t size, int tag_mode) { /* * Bring closer parts of structure description. */ asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics; asn_TYPE_member_t *elm = td->elements; /* Single one */ /* * Parts of the structure being constructed. */ void *st = *struct_ptr; /* Target structure. */ asn_struct_ctx_t *ctx; /* Decoder context */ ber_tlv_tag_t tlv_tag; /* T from TLV */ asn_dec_rval_t rval; /* Return code from subparsers */ ssize_t consumed_myself = 0; /* Consumed bytes from ptr */ ASN_DEBUG("Decoding %s as SET OF", td->name); /* * Create the target structure if it is not present already. */ if(st == 0) { st = *struct_ptr = CALLOC(1, specs->struct_size); if(st == 0) { RETURN(RC_FAIL); } } /* * Restore parsing context. */ ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset); /* * Start to parse where left previously */ switch(ctx->phase) { case 0: /* * PHASE 0. * Check that the set of tags associated with given structure * perfectly fits our expectations. */ rval = ber_check_tags(opt_codec_ctx, td, ctx, ptr, size, tag_mode, 1, &ctx->left, 0); if(rval.code != RC_OK) { ASN_DEBUG("%s tagging check failed: %d", td->name, rval.code); return rval; } if(ctx->left >= 0) ctx->left += rval.consumed; /* ?Substracted below! */ ADVANCE(rval.consumed); ASN_DEBUG("Structure consumes %ld bytes, " "buffer %ld", (long)ctx->left, (long)size); NEXT_PHASE(ctx); /* Fall through */ case 1: /* * PHASE 1. * From the place where we've left it previously, * try to decode the next item. */ for(;; ctx->step = 0) { ssize_t tag_len; /* Length of TLV's T */ if(ctx->step & 1) goto microphase2; /* * MICROPHASE 1: Synchronize decoding. */ if(ctx->left == 0) { ASN_DEBUG("End of SET OF %s", td->name); /* * No more things to decode. * Exit out of here. */ PHASE_OUT(ctx); RETURN(RC_OK); } /* * Fetch the T from TLV. */ tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag); switch(tag_len) { case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE); /* Fall through */ case -1: RETURN(RC_FAIL); } if(ctx->left < 0 && ((const uint8_t *)ptr)[0] == 0) { if(LEFT < 2) { if(SIZE_VIOLATION) RETURN(RC_FAIL); else RETURN(RC_WMORE); } else if(((const uint8_t *)ptr)[1] == 0) { /* * Found the terminator of the * indefinite length structure. */ break; } } /* Outmost tag may be unknown and cannot be fetched/compared */ if(elm->tag != (ber_tlv_tag_t)-1) { if(BER_TAGS_EQUAL(tlv_tag, elm->tag)) { /* * The new list member of expected type has arrived. */ } else { ASN_DEBUG("Unexpected tag %s fixed SET OF %s", ber_tlv_tag_string(tlv_tag), td->name); ASN_DEBUG("%s SET OF has tag %s", td->name, ber_tlv_tag_string(elm->tag)); RETURN(RC_FAIL); } } /* * MICROPHASE 2: Invoke the member-specific decoder. */ ctx->step |= 1; /* Confirm entering next microphase */ microphase2: /* * Invoke the member fetch routine according to member's type */ rval = elm->type->ber_decoder(opt_codec_ctx, elm->type, &ctx->ptr, ptr, LEFT, 0); ASN_DEBUG("In %s SET OF %s code %d consumed %d", td->name, elm->type->name, rval.code, (int)rval.consumed); switch(rval.code) { case RC_OK: { asn_anonymous_set_ *list = _A_SET_FROM_VOID(st); if(ASN_SET_ADD(list, ctx->ptr) != 0) RETURN(RC_FAIL); else ctx->ptr = 0; } break; case RC_WMORE: /* More data expected */ if(!SIZE_VIOLATION) { ADVANCE(rval.consumed); RETURN(RC_WMORE); } /* Fall through */ case RC_FAIL: /* Fatal error */ ASN_STRUCT_FREE(*elm->type, ctx->ptr); ctx->ptr = 0; RETURN(RC_FAIL); } /* switch(rval) */ ADVANCE(rval.consumed); } /* for(all list members) */ NEXT_PHASE(ctx); case 2: /* * Read in all "end of content" TLVs. */ while(ctx->left < 0) { if(LEFT < 2) { if(LEFT > 0 && ((const char *)ptr)[0] != 0) { /* Unexpected tag */ RETURN(RC_FAIL); } else { RETURN(RC_WMORE); } } if(((const char *)ptr)[0] == 0 && ((const char *)ptr)[1] == 0) { ADVANCE(2); ctx->left++; } else { RETURN(RC_FAIL); } } PHASE_OUT(ctx); } RETURN(RC_OK); }
/* * Decode the XER (XML) data. */ asn_dec_rval_t SET_OF_decode_xer(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, void **struct_ptr, const char *opt_mname, const void *buf_ptr, size_t size) { /* * Bring closer parts of structure description. */ asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics; asn_TYPE_member_t *element = td->elements; const char *elm_tag; const char *xml_tag = opt_mname ? opt_mname : td->xml_tag; /* * ... and parts of the structure being constructed. */ void *st = *struct_ptr; /* Target structure. */ asn_struct_ctx_t *ctx; /* Decoder context */ asn_dec_rval_t rval; /* Return value from a decoder */ ssize_t consumed_myself = 0; /* Consumed bytes from ptr */ /* * Create the target structure if it is not present already. */ if(st == 0) { st = *struct_ptr = CALLOC(1, specs->struct_size); if(st == 0) RETURN(RC_FAIL); } /* Which tag is expected for the downstream */ if(specs->as_XMLValueList) { elm_tag = (specs->as_XMLValueList == 1) ? 0 : ""; } else { elm_tag = (*element->name) ? element->name : element->type->xml_tag; } /* * Restore parsing context. */ ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset); /* * Phases of XER/XML processing: * Phase 0: Check that the opening tag matches our expectations. * Phase 1: Processing body and reacting on closing tag. * Phase 2: Processing inner type. */ for(; ctx->phase <= 2;) { pxer_chunk_type_e ch_type; /* XER chunk type */ ssize_t ch_size; /* Chunk size */ xer_check_tag_e tcv; /* Tag check value */ /* * Go inside the inner member of a set. */ if(ctx->phase == 2) { asn_dec_rval_t tmprval; /* Invoke the inner type decoder, m.b. multiple times */ ASN_DEBUG("XER/SET OF element [%s]", elm_tag); tmprval = element->type->xer_decoder(opt_codec_ctx, element->type, &ctx->ptr, elm_tag, buf_ptr, size); if(tmprval.code == RC_OK) { asn_anonymous_set_ *list = _A_SET_FROM_VOID(st); if(ASN_SET_ADD(list, ctx->ptr) != 0) RETURN(RC_FAIL); ctx->ptr = 0; XER_ADVANCE(tmprval.consumed); } else { XER_ADVANCE(tmprval.consumed); RETURN(tmprval.code); } ctx->phase = 1; /* Back to body processing */ ASN_DEBUG("XER/SET OF phase => %d", ctx->phase); /* Fall through */ } /* * Get the next part of the XML stream. */ ch_size = xer_next_token(&ctx->context, buf_ptr, size, &ch_type); switch(ch_size) { case -1: RETURN(RC_FAIL); case 0: RETURN(RC_WMORE); default: switch(ch_type) { case PXER_COMMENT: /* Got XML comment */ case PXER_TEXT: /* Ignore free-standing text */ XER_ADVANCE(ch_size); /* Skip silently */ continue; case PXER_TAG: break; /* Check the rest down there */ } } tcv = xer_check_tag(buf_ptr, ch_size, xml_tag); ASN_DEBUG("XER/SET OF: tcv = %d, ph=%d t=%s", tcv, ctx->phase, xml_tag); switch(tcv) { case XCT_CLOSING: if(ctx->phase == 0) break; ctx->phase = 0; /* Fall through */ case XCT_BOTH: if(ctx->phase == 0) { /* No more things to decode */ XER_ADVANCE(ch_size); ctx->phase = 3; /* Phase out */ RETURN(RC_OK); } /* Fall through */ case XCT_OPENING: if(ctx->phase == 0) { XER_ADVANCE(ch_size); ctx->phase = 1; /* Processing body phase */ continue; } /* Fall through */ case XCT_UNKNOWN_OP: case XCT_UNKNOWN_BO: ASN_DEBUG("XER/SET OF: tcv=%d, ph=%d", tcv, ctx->phase); if(ctx->phase == 1) { /* * Process a single possible member. */ ctx->phase = 2; continue; } /* Fall through */ default: break; } ASN_DEBUG("Unexpected XML tag in SET OF"); break; } ctx->phase = 3; /* "Phase out" on hard failure */ RETURN(RC_FAIL); }