MatrixWrapper::ColumnVector
  NonLinearAnalyticConditionalGaussian_Ginac::ExpectedValueGet() const
  {
    MatrixWrapper::ColumnVector u_num   (u_size);
    MatrixWrapper::ColumnVector x_num   (x_size);
    MatrixWrapper::ColumnVector func_num(func_size);
    GiNaC::ex substitute (func_size);
    MatrixWrapper::ColumnVector expected(func_size);

    u_num = ConditionalArgumentGet(1);
    x_num = ConditionalArgumentGet(0);

    // use Mu of additive noise
    if (cond_size!=0)
      for (unsigned int i=0; i<u_size; i++)
	for (unsigned int j=0; j<cond_size; j++)
	  if (u_sym[i] == cond_sym[j])
	      u_num(i+1) += (this->AdditiveNoiseMuGet())(j+1);


    // evaluate func
    for (unsigned int i=0; i<func_size; i++)
      {
	// temp variable to substitute in
	substitute = func_sym(i,0);

	// substitute all u_sym with u_num
	for (unsigned int j=0; j<u_size; j++)
	  substitute = substitute.subs( u_sym[j]==u_num(j+1) );

	// substitute all x_sym with x_num
	for (unsigned int j=0; j<x_size; j++)
	  substitute = substitute.subs( x_sym[j]==x_num(j+1) );

	// build matrix func_num
	func_num(i+1) = GiNaC::ex_to<GiNaC::numeric>( substitute.evalf() ).to_double();
      }
    expected = func_num;

    if (cond_size==0)
      expected += AdditiveNoiseMuGet();

    return expected;
  }
MatrixWrapper::ColumnVector nonLinearAnalyticConditionalGaussian::ExpectedValueGet() const
{
    MatrixWrapper::ColumnVector state = ConditionalArgumentGet(0);
    MatrixWrapper::ColumnVector angVel = ConditionalArgumentGet(1);
    MatrixWrapper::Matrix identity(4,4);
    identity.toIdentity();
    // TODO I need state dimension here instead of hardcoding 4
    MatrixWrapper::Matrix tmpA(4,4);
    OmegaOperator(angVel, tmpA);
    tmpA = tmpA*(0.5*m_threadPeriod);
    // NOTE On 27/07/2015 I changed the sign before AdditiveNoiseMuGet() to a 'minus' according to Choukroun's derivation in Novel Methods for Attitude Determination using Vector Observations
    // NOTE I think this is wrong!! as what I want to add here is noise with 0 mean and covariance Q^w_k!!! 
    MatrixWrapper::ColumnVector noise = AdditiveNoiseMuGet();
    state = state + tmpA*state - noise;
    
    // Normalizing the quaternion
    MatrixWrapper::Quaternion tmpQuat(state);
    tmpQuat.normalize();
    // The other  methods of the library use inputs of type ColumnVector, therefore a copy of the quaternion is necessary
    MatrixWrapper::ColumnVector ret(tmpQuat);
    return ret;
}