Ejemplo n.º 1
0
int main(int argc, char** argv)
{
  Matrix<int,ColMajor> Ai(rows,cols); // a column-major integer matrix
  Matrix<float>        Af(rows,cols); // a row-major single precision floating point matrix
  Matrix<double>       Ad(rows,cols); // a row-major double precision floating point matrix

  // grab seed from the current timestamp
  unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
  // instance a random number generator
  std::default_random_engine generator (seed);

  // instance a uniform distribution
  std::uniform_real_distribution<double> random(0.0, 1.0);

  // note that the loop order is not optimal for the integer matrix
  size_t k=1;
  for (size_t i=0;i<rows;++i) {
    for (size_t j=0;j<cols;++j, k++) {
      Ai(i,j) = k;
      Af(i,j) = k+random(generator); // add some random stuff for fun
      Ad(i,j) = k+random(generator); // add some random stuff for fun
    }
  }

  // print matrices to screen
  std::cout << "== Integer matrix ==" << std::endl;
  Ai.print();
  std::cout << "== Float matrix ==" << std::endl;
  Af.print(7);
  std::cout << "== Double matrix ==" << std::endl;
  Ad.print(16);

  return 0;
}
Ejemplo n.º 2
0
static void fontPrintTextImpl(FT_Bitmap* bitmap, int xofs, int yofs, u32 text_color, u32* framebuffer, int width, int height, int lineSize){
	int x, y;
	
	u8* line = bitmap->buffer;
	u32* fbLine = framebuffer + xofs + yofs * lineSize;
	for (y = 0; y < bitmap->rows; y++) {
		u8* column = line;
		u32* fbColumn = fbLine;
		for (x = 0; x < bitmap->width; x++) {
			if (x + xofs < width && x + xofs >= 0 && y + yofs < height && y + yofs >= 0) {
				u8 val = *column;
				u32 color = *fbColumn;

				float f_val = ((float)val) / 255.0;
				f_val *= Af(text_color);

				float r = min(1.0, Rf(text_color) * f_val + Rf(color) * (1.0 - f_val));
				float g = min(1.0, Gf(text_color) * f_val + Gf(color) * (1.0 - f_val));
				float b = min(1.0, Bf(text_color) * f_val + Bf(color) * (1.0 - f_val));
				float a = min(1.0, Af(color) + f_val);

				*fbColumn = RGBAf(r, g, b, a);
			}
			column++;
			fbColumn++;
		}
		line += bitmap->pitch;
		fbLine += lineSize;
	}

//	gePrintDebug(0x100, "fontPrintTextImpl(bitmap, %d, %d, 0x%8.8X, framebuffer, %d, %d, %d)\n", xofs, yofs, color, width, height, lineSize);
	/*
	u8* line = bitmap->buffer;
	u32* fbLine = framebuffer + xofs + yofs * lineSize;
	for (y = 0; y < bitmap->rows; y++) {
		u8* column = line;
		u32* fbColumn = fbLine;
		for (x = 0; x < bitmap->width; x++) {
			if (x + xofs < width && x + xofs >= 0 && y + yofs < height && y + yofs >= 0) {
				u8 val = *column;
				color = *fbColumn;
				u8 r = color & 0xff;
				u8 g = (color >> 8) & 0xff;
				u8 b = (color >> 16) & 0xff;
				u8 a = (color >> 24) & 0xff;
				r = rf * val / 255 + (255 - val) * r / 255;
				g = gf * val / 255 + (255 - val) * g / 255;
				b = bf * val / 255 + (255 - val) * b / 255;
				a = af * val / 255 + (255 - val) * a / 255;
				*fbColumn = RGBA(r, g, b, a);
			//	*fbColumn = RGBA(255, 255, 255, val);
			}
			column++;
			fbColumn++;
		}
		line += bitmap->pitch;
		fbLine += lineSize;
	}
	*/
}
Ejemplo n.º 3
0
void RpalParser::At()
{
  pushProc("At()");
  Af();
  string temp = _nt;
  while (_nt == "*" || _nt == "/")
  {
    read_token(_nt);
    Af();
    build(temp, 2);
    temp = _nt;
  }
  popProc("At()");
}
Ejemplo n.º 4
0
float AffineTransformerImpl::applyTransformation(InputArray inPts, OutputArray outPts)
{
    Mat pts1 = inPts.getMat();
    CV_Assert((pts1.channels()==2) && (pts1.cols>0));

    //Apply transformation in the complete set of points
    Mat fAffine;
    transform(pts1, fAffine, affineMat);

    // Ensambling output //
    if (outPts.needed())
    {
        outPts.create(1,fAffine.cols, CV_32FC2);
        Mat outMat = outPts.getMat();
        for (int i=0; i<fAffine.cols; i++)
            outMat.at<Point2f>(0,i)=fAffine.at<Point2f>(0,i);
    }

    // Updating Transform Cost //
    Mat Af(2, 2, CV_32F);
    Af.at<float>(0,0)=affineMat.at<float>(0,0);
    Af.at<float>(0,1)=affineMat.at<float>(1,0);
    Af.at<float>(1,0)=affineMat.at<float>(0,1);
    Af.at<float>(1,1)=affineMat.at<float>(1,1);
    SVD mysvd(Af, SVD::NO_UV);
    Mat singVals=mysvd.w;
    transformCost=std::log((singVals.at<float>(0,0)+FLT_MIN)/(singVals.at<float>(1,0)+FLT_MIN));

    return transformCost;
}
Ejemplo n.º 5
0
void RpalParser::Af()
{
  pushProc("Af()");
  Ap();
  while (_nt == "**")
  {
    read_token(_nt);
    Af();
    build("**", 2);
  }
  popProc("Af()");
}
Ejemplo n.º 6
0
  void DenseLinearEigenSystem<double>::eigensolve_lapack_without_vectors()
  {
#ifndef LAPACK
    std::string problem;
    problem = "The DenseLinearEigenSystem::eigensolve_lapack_without_vectors method has been called\n";
    problem += "but the compiler option -DLAPACK was not provided when\n";
    problem += "the library was built.";
    throw ExceptionExternal( problem );
#else

    std::size_t N = p_A -> nrows();
    // Cache issues of varying significance plague problems of size 2^j + 2^k + ...
    // when LDA = N, so this is my shameless 'tweak' to maintain predictable
    // performance, at least for N <=1024 or so.
    int padding( 0 );
    if ( ( N % 2 == 0 ) && ( N > 127 ) )
    {
      padding = 1;
    }
#ifdef PARANOID
    if ( ( p_A -> nrows() != p_B -> nrows() ) ||
         ( p_A -> ncols() != p_B -> ncols() ) )
    {
      std::string problem( "The DenseLinearEigenSystem::eigensolve_lapack_without_vectors method has detected a failure \n" );
      throw ExceptionGeom( problem, p_A -> nrows(), p_A -> ncols(),
                           p_B -> nrows(), p_B -> ncols() );
    }
#endif
    FortranData Af( *p_A, true, padding );
    FortranData Bf( *p_B, true, padding );
    // eigenvalue storage
    DenseVector<double> alpha_r( N, 0.0 );
    DenseVector<double> alpha_i( N, 0.0 );
    DenseVector<double> beta( N, 0.0 );
    // eigenvector storage
    DenseVector<double> vec_left( 1, 0.0 );
    DenseVector<double> vec_right( 1, 0.0 );
    // some workspace for the LAPACK routine
    DenseVector<double> work( 1, 0.0 );
    int info( 0 );
    // Call FORTRAN LAPACK to get the required workspace
    LAPACK_DGGEV( ( char* ) "N", ( char* ) "N", N, Af.base(), N + padding, Bf.base(), N + padding, &alpha_r[ 0 ], &alpha_i[ 0 ], &beta[ 0 ], &vec_left[ 0 ], 1, &vec_right[ 0 ], 1, &work[ 0 ], -1, info );
    int required_workspace = ( int ) work[ 0 ];
#ifdef DEBUG

    std::cout << " [DEBUG] DenseLinearEigenSystem::eigensolve_lapack_without_vectors is requesting \n";
    std::cout << " [DEBUG] a workspace vector of size " << required_workspace << "\n";
#endif

    work.resize( required_workspace );
    // call FORTRAN LAPACK again with the optimum workspace
    LAPACK_DGGEV( ( char* ) "N", ( char* ) "N", N, Af.base(), N + padding, Bf.base(), N + padding, &alpha_r[ 0 ], &alpha_i[ 0 ], &beta[ 0 ], &vec_left[ 0 ], 1, &vec_right[ 0 ], 1, &work[ 0 ], required_workspace, info );
    if ( 0 != info )
    {
      std::string problem( "The DenseLinearEigenSystem::eigensolve_lapack_without_vectors method has detected a failure. \n" );
      throw ExceptionExternal( problem, info );
    }
    // create a complex eigenvalue vector
    EIGENVALUES_ALPHA = DenseVector<D_complex>( N, 0.0 );
    for ( std::size_t i = 0; i < N; ++i )
    {
      const D_complex eye( 0.0, 1.0 );
      EIGENVALUES_ALPHA[ i ] = alpha_r[ i ] + alpha_i[ i ] * eye;
    }
    // set the eigenvalue member data
    EIGENVALUES_BETA = beta;
#endif

  }
Ejemplo n.º 7
0
  void DenseLinearEigenSystem< double >::eigensolve_lapack_with_vectors()
  {
#ifndef LAPACK
    std::string problem;
    problem = "The DenseLinearEigenSystem::eigensolve_lapack_with_vectors method has been called\n";
    problem += "but the compiler option -DLAPACK was not provided when\n";
    problem += "the library was built.";
    throw ExceptionExternal( problem );
#else

    std::size_t N = p_A -> nrows();
    // Cache contention issues of varying significance plague problems of size 2^j + 2^k + ...
    // when LDA = N, so this is my shameless 'tweak' to maintain predictable
    // performance, at least for N <=1024 or so.
    int padding( 0 );
    if ( ( N % 2 == 0 ) && ( N > 127 ) )
    {
      padding = 1;
    }
#ifdef PARANOID
    if ( ( p_A -> nrows() != p_B -> nrows() ) ||
         ( p_A -> ncols() != p_B -> ncols() ) )
    {
      std::string problem( "The DenseLinearEigenSystem::eigensolve_lapack_with_vectors method has detected a failure. \n" );
      throw ExceptionGeom( problem, p_A -> nrows(), p_A -> ncols(),
                           p_B -> nrows(), p_B -> ncols() );
    }
#endif
    // Convert to fortran data  incl. a transpose of the
    // input matrices so they are in column_major format then include padding
    FortranData Af( *p_A, true, padding );
    FortranData Bf( *p_B, true, padding );
    // eigenvalue storage
    DenseVector<double> alpha_r( N, 0.0 );
    DenseVector<double> alpha_i( N, 0.0 );
    DenseVector<double> beta( N, 0.0 );
    // new the right eigenvector storage
    DenseVector<double> vec_left( 1, 0.0 );
    DenseVector<double> vec_right( N * N, 0.0 );
    // some workspace for the LAPACK routine
    DenseVector<double> work( 1, 0.0 );
    // return integer for LAPACK
    int info( 0 );
    // Call FORTRAN LAPACK to get the required workspace
    LAPACK_DGGEV( ( char* ) "N", ( char* ) "V", N, Af.base(), N + padding, Bf.base(), N + padding, &alpha_r[ 0 ], &alpha_i[ 0 ], &beta[ 0 ], &vec_left[ 0 ], 1, &vec_right[ 0 ], N, &work[ 0 ], -1, info );
    int required_workspace = 4 * int( work[ 0 ] );
#ifdef DEBUG

    std::cout << "[DEBUG] DenseLinearEigenSystem::eigensolve_lapack_with_vectors is requesting \n";
    std::cout << "[DEBUG] a workspace vector of size " << required_workspace << "\n";
#endif

    work.resize( required_workspace );
    // call FORTRAN LAPACK again with the optimum workspace
    LAPACK_DGGEV( ( char* ) "N", ( char* ) "V", N, Af.base(), N + padding, Bf.base(), N + padding, &alpha_r[ 0 ], &alpha_i[ 0 ], &beta[ 0 ], &vec_left[ 0 ], 1, &vec_right[ 0 ], N, &work[ 0 ], required_workspace, info );
    if ( 0 != info )
    {
      std::string problem( "The DenseLinearEigenSystem::eigensolve_lapack_with_vectors method has detected a failure.\n" );
      throw ExceptionExternal( problem, info );
    }
    // create a complex eigenvalue vector
    EIGENVALUES_ALPHA = DenseVector<D_complex>( N, 0.0 );
    // complex eigenvector matrix
    ALL_EIGENVECTORS = DenseMatrix<D_complex>( N, N, 0.0 );
    // step through the eigenvalues
    for ( std::size_t i = 0; i < N; ++i )
    {
      const D_complex eye( 0.0, 1.0 );
      // make the complex vector of alpha
      EIGENVALUES_ALPHA[ i ] = alpha_r[ i ] + alpha_i[ i ] * eye;
      if ( std::abs( alpha_i[ i ] ) > 0.0 )
      {
        // eigenvector is complex
        for ( std::size_t k = 0; k < N; ++k )
        {
          ALL_EIGENVECTORS[ i ][ k ] = vec_right[ i * N + k ] + eye * vec_right[ ( i + 1 ) * N + k ];
          // store the conjugate too for completeness
          ALL_EIGENVECTORS[ i + 1 ][ k ] = vec_right[ i * N + k ] - eye * vec_right[ ( i + 1 ) * N + k ];
        }
        ++i;
      }
      else // eigenvector is real
      {
        for ( std::size_t k = 0; k < N; ++k )
        {
          ALL_EIGENVECTORS( i, k ) = vec_right[ i * N + k ];
        }
      }
    }
    // set the eigenvalue member data
    EIGENVALUES_BETA = beta;
#endif

  }
Ejemplo n.º 8
0
void geClearColor(u32 color){
	libge_context->clear_color = color;
	glClearColor(Rf(libge_context->clear_color), Gf(libge_context->clear_color), Bf(libge_context->clear_color), Af(libge_context->clear_color));
}