Ejemplo n.º 1
0
/**
  Worker function setting fixed MTRRs

  @param  FixedSettings  A buffer to hold fixed Mtrrs content.

**/
VOID
MtrrSetFixedMtrrWorker (
  IN MTRR_FIXED_SETTINGS          *FixedSettings
  )
{
  UINT32  Index;

  for (Index = 0; Index < MTRR_NUMBER_OF_FIXED_MTRR; Index++) {
     AsmWriteMsr64 (
       mMtrrLibFixedMtrrTable[Index].Msr,
       FixedSettings->Mtrr[Index]
       );
  }
}
Ejemplo n.º 2
0
/**
  Internal worker function that is called to complete CPU initialization at the
  end of SmmCpuFeaturesInitializeProcessor().

**/
VOID
FinishSmmCpuFeaturesInitializeProcessor (
  VOID
  )
{
  MSR_IA32_SMM_MONITOR_CTL_REGISTER  SmmMonitorCtl;

  //
  // Set MSEG Base Address in SMM Monitor Control MSR.
  //
  if (mMsegBase > 0) {
    SmmMonitorCtl.Uint64        = 0;
    SmmMonitorCtl.Bits.MsegBase = (UINT32)mMsegBase >> 12;
    SmmMonitorCtl.Bits.Valid    = 1;
    AsmWriteMsr64 (MSR_IA32_SMM_MONITOR_CTL, SmmMonitorCtl.Uint64);
  }
Ejemplo n.º 3
0
VOID
CpuSmmSxWorkAround(
  )
{
  UINT64           MsrValue;

  MsrValue = AsmReadMsr64 (0xE2);

  if (MsrValue & BIT15) {
    return;
  }

  if (MsrValue & BIT10) {
    MsrValue &= ~BIT10;
    AsmWriteMsr64 (0xE2, MsrValue);
  }
}
Ejemplo n.º 4
0
EFI_STATUS
AmdSmmOpen (
  IN EFI_SMM_ACCESS2_PROTOCOL  *This
  )
{
  UINT64 Value;

  if (mSmmAccess2.LockState) {
    return  EFI_ACCESS_DENIED;
  }

  Value = AsmReadMsr64 (0xc0010113) & ~2; //TValid
  AsmWriteMsr64 (0xc0010113, Value);

  mSmramMap.RegionState = EFI_SMRAM_OPEN;
  mSmmAccess2.OpenState = TRUE;
  return EFI_SUCCESS;
}
Ejemplo n.º 5
0
EFI_STATUS
AmdSmmClose (
  IN EFI_SMM_ACCESS2_PROTOCOL  *This
  )
{

  UINT64 Value;

  if (mSmmAccess2.LockState) {
    return  EFI_ACCESS_DENIED;
  }

  Value = AsmReadMsr64 (0xc0010113) | 2;
  AsmWriteMsr64 (0xc0010113, Value);

  mSmramMap.RegionState = EFI_SMRAM_CLOSED;
  mSmmAccess2.OpenState = FALSE;
  return EFI_SUCCESS;
}
Ejemplo n.º 6
0
/**
  Programs fixed MTRRs registers.

  @param  MemoryCacheType  The memory type to set.
  @param  Base             The base address of memory range.
  @param  Length           The length of memory range.

  @retval RETURN_SUCCESS      The cache type was updated successfully
  @retval RETURN_UNSUPPORTED  The requested range or cache type was invalid
                              for the fixed MTRRs.

**/
RETURN_STATUS
ProgramFixedMtrr (
  IN     UINT64     MemoryCacheType,
  IN OUT UINT64     *Base,
  IN OUT UINT64     *Length
  )
{
  UINT32  MsrNum;
  UINT32  ByteShift;
  UINT64  TempQword;
  UINT64  OrMask;
  UINT64  ClearMask;

  TempQword = 0;
  OrMask    = 0;
  ClearMask = 0;

  for (MsrNum = 0; MsrNum < MTRR_NUMBER_OF_FIXED_MTRR; MsrNum++) {
    if ((*Base >= mMtrrLibFixedMtrrTable[MsrNum].BaseAddress) &&
        (*Base <
            (
              mMtrrLibFixedMtrrTable[MsrNum].BaseAddress +
              (8 * mMtrrLibFixedMtrrTable[MsrNum].Length)
            )
          )
        ) {
      break;
    }
  }

  if (MsrNum == MTRR_NUMBER_OF_FIXED_MTRR) {
    return RETURN_UNSUPPORTED;
  }

  //
  // We found the fixed MTRR to be programmed
  //
  for (ByteShift = 0; ByteShift < 8; ByteShift++) {
    if (*Base ==
         (
           mMtrrLibFixedMtrrTable[MsrNum].BaseAddress +
           (ByteShift * mMtrrLibFixedMtrrTable[MsrNum].Length)
         )
       ) {
      break;
    }
  }

  if (ByteShift == 8) {
    return RETURN_UNSUPPORTED;
  }

  for (
        ;
        ((ByteShift < 8) && (*Length >= mMtrrLibFixedMtrrTable[MsrNum].Length));
        ByteShift++
      ) {
    OrMask |= LShiftU64 ((UINT64) MemoryCacheType, (UINT32) (ByteShift * 8));
    ClearMask |= LShiftU64 ((UINT64) 0xFF, (UINT32) (ByteShift * 8));
    *Length -= mMtrrLibFixedMtrrTable[MsrNum].Length;
    *Base += mMtrrLibFixedMtrrTable[MsrNum].Length;
  }

  if (ByteShift < 8 && (*Length != 0)) {
    return RETURN_UNSUPPORTED;
  }

  TempQword =
    (AsmReadMsr64 (mMtrrLibFixedMtrrTable[MsrNum].Msr) & ~ClearMask) | OrMask;
  AsmWriteMsr64 (mMtrrLibFixedMtrrTable[MsrNum].Msr, TempQword);
  return RETURN_SUCCESS;
}
Ejemplo n.º 7
0
Archivo: DlEntry.c Proyecto: jyao1/STM
/**

  This function enable TXT environment.

  @retval EFI_SUCCESS      TXT environment is enabled
  @retval EFI_UNSUPPORTED  TXT environment is not supported

**/
EFI_STATUS
EnableTxt (
  VOID
  )
{
  TXT_GETSEC_CAPABILITIES TxtCapabilities;
  UINT32                  Index;
  UINT32                  RegEax;
  UINT32                  RegEbx;
  UINT32                  RegEcx;
  BOOLEAN                 ClearMca;
  UINT32                  McaCount;

  //
  // Enable SMX
  //
  AsmWriteCr4(AsmReadCr4() | CR4_SMXE);
  
  //
  // Check TXT Chipset
  //
  Index = 0;
  TxtCapabilities.Uint32 = AsmGetSecCapabilities (Index);
  DumpGetSecCapabilities (Index, TxtCapabilities.Uint32);
  if (TxtCapabilities.Bits.ChipsetPresent == 0) {
    DEBUG ((EFI_D_ERROR, "(TXT) TXT Chipset not present!\n"));
    return EFI_UNSUPPORTED;
  }
  if (TxtCapabilities.Bits.Senter == 0) {
    DEBUG ((EFI_D_ERROR, "(TXT) SENTER not supported!\n"));
    return EFI_UNSUPPORTED;
  }
  while (TxtCapabilities.Bits.ExtendedLeafs != 0) {
    Index ++;
    TxtCapabilities.Uint32 = AsmGetSecCapabilities (Index);
    DumpGetSecCapabilities (Index, TxtCapabilities.Uint32);
  }

  //
  // Get parameters
  //
  ClearMca = TRUE;
  Index = 0;
  while (TRUE) {
    AsmGetSecParameters (Index, &RegEax, &RegEbx, &RegEcx);
    if ((RegEax & GETSEC_PARAMETER_TYPE_MASK) == 0) {
      break;
    }
    DumpGetSecParameters (RegEax, RegEbx, RegEcx);
    if ((RegEax & GETSEC_PARAMETER_TYPE_MASK) == GETSEC_PARAMETER_TYPE_EXTERNSION) {
      if ((RegEax & (1 << 6)) != 0) {
        // No need clear MCA
        ClearMca = FALSE;
      }
    }
    Index ++;
  }

  //
  // Clear MCA
  //
  if (ClearMca) {
    McaCount = (UINT32)AsmReadMsr64 (IA32_MCG_CAP) & 0xFF;
    for (Index = 0; Index < McaCount; Index++) {
      AsmWriteMsr64 (IA32_MC0_STATUS + Index * 4, 0);
    }
  }

  return EFI_SUCCESS;
}
Ejemplo n.º 8
0
/**
  Programs registers for the calling processor.

  This function programs registers for the calling processor.

  @param  RegisterTable Pointer to register table of the running processor.

**/
VOID
SetProcessorRegister (
  CPU_REGISTER_TABLE        *RegisterTable
  )
{
  CPU_REGISTER_TABLE_ENTRY  *RegisterTableEntry;
  UINTN                     Index;
  UINTN                     Value;

  //
  // Traverse Register Table of this logical processor
  //
  RegisterTableEntry = (CPU_REGISTER_TABLE_ENTRY *) (UINTN) RegisterTable->RegisterTableEntry;
  for (Index = 0; Index < RegisterTable->TableLength; Index++, RegisterTableEntry++) {
    //
    // Check the type of specified register
    //
    switch (RegisterTableEntry->RegisterType) {
    //
    // The specified register is Control Register
    //
    case ControlRegister:
      switch (RegisterTableEntry->Index) {
      case 0:
        Value = AsmReadCr0 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          (UINTN) RegisterTableEntry->Value
                          );
        AsmWriteCr0 (Value);
        break;
      case 2:
        Value = AsmReadCr2 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          (UINTN) RegisterTableEntry->Value
                          );
        AsmWriteCr2 (Value);
        break;
      case 3:
        Value = AsmReadCr3 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          (UINTN) RegisterTableEntry->Value
                          );
        AsmWriteCr3 (Value);
        break;
      case 4:
        Value = AsmReadCr4 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          (UINTN) RegisterTableEntry->Value
                          );
        AsmWriteCr4 (Value);
        break;
      default:
        break;
      }
      break;
    //
    // The specified register is Model Specific Register
    //
    case Msr:
      //
      // If this function is called to restore register setting after INIT signal,
      // there is no need to restore MSRs in register table.
      //
      if (RegisterTableEntry->ValidBitLength >= 64) {
        //
        // If length is not less than 64 bits, then directly write without reading
        //
        AsmWriteMsr64 (
          RegisterTableEntry->Index,
          RegisterTableEntry->Value
          );
      } else {
        //
        // Set the bit section according to bit start and length
        //
        AsmMsrBitFieldWrite64 (
          RegisterTableEntry->Index,
          RegisterTableEntry->ValidBitStart,
          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
          RegisterTableEntry->Value
          );
        }
      break;
    //
    // Enable or disable cache
    //
    case CacheControl:
      //
      // If value of the entry is 0, then disable cache.  Otherwise, enable cache.
      //
      if (RegisterTableEntry->Value == 0) {
        AsmDisableCache ();
      } else {
        AsmEnableCache ();
      }
      break;

    default:
      break;
    }
  }
}
Ejemplo n.º 9
0
/**

  This function is WRMSR handler for SMM.

  @param Index CPU index

**/
VOID
SmmWriteMsrHandler (
  IN UINT32 Index
  )
{
  UINT64            Data64;
  UINT32            MsrIndex;
  VM_ENTRY_CONTROLS VmEntryControls;
  X86_REGISTER      *Reg;
  STM_RSC_MSR_DESC  *MsrDesc;
  STM_RSC_MSR_DESC  LocalMsrDesc;

  Reg = &mGuestContextCommonSmm.GuestContextPerCpu[Index].Register;
  MsrIndex = ReadUnaligned32 ((UINT32 *)&Reg->Rcx);

  MsrDesc = GetStmResourceMsr (mHostContextCommon.MleProtectedResource.Base, MsrIndex);
  if ((MsrDesc != NULL) && (MsrDesc->WriteMask != 0)) {
    DEBUG ((EFI_D_ERROR, "WRMSR (%x) violation!\n", MsrIndex));
    AddEventLogForResource (EvtHandledProtectionException, (STM_RSC *)MsrDesc);
    SmmExceptionHandler (Index);
    CpuDeadLoop ();
  }

  MsrDesc = GetStmResourceMsr ((STM_RSC *)(UINTN)mGuestContextCommonSmm.BiosHwResourceRequirementsPtr, MsrIndex);
  if ((MsrDesc == NULL) || (MsrDesc->WriteMask == 0) || (MsrDesc->KernelModeProcessing == 0)) {
    ZeroMem (&LocalMsrDesc, sizeof(LocalMsrDesc));
    LocalMsrDesc.Hdr.RscType = MACHINE_SPECIFIC_REG;
    LocalMsrDesc.Hdr.Length = sizeof(LocalMsrDesc);
    LocalMsrDesc.MsrIndex = MsrIndex;
    LocalMsrDesc.ReadMask = 0;
    LocalMsrDesc.WriteMask = (UINT64)-1;
    AddEventLogForResource (EvtBiosAccessToUnclaimedResource, (STM_RSC *)&LocalMsrDesc);
  }

//  DEBUG ((EFI_D_INFO, "!!!WriteMsrHandler!!!\n"));
  Data64 = LShiftU64 ((UINT64)ReadUnaligned32 ((UINT32 *)&Reg->Rdx), 32) | (UINT64)ReadUnaligned32 ((UINT32 *)&Reg->Rax);

  switch (MsrIndex) {
  case IA32_EFER_MSR_INDEX:
#if 0
  AcquireSpinLock (&mHostContextCommon.DebugLock);
    if ((Data64 & IA32_EFER_MSR_SCE) != 0) {
      DEBUG ((EFI_D_INFO, "!!!WriteMsrHandler - SCE!!!\n"));
    }
    if ((Data64 & IA32_EFER_MSR_XDE) != 0) {
      DEBUG ((EFI_D_INFO, "!!!WriteMsrHandler - XDE!!!\n"));
    }
  ReleaseSpinLock (&mHostContextCommon.DebugLock);
#endif
    mGuestContextCommonSmm.GuestContextPerCpu[Index].Efer = Data64;
    //
    // Check IA32e mode switch
    //
    VmEntryControls.Uint32 = VmRead32 (VMCS_32_CONTROL_VMENTRY_CONTROLS_INDEX);
    if ((Data64 & IA32_EFER_MSR_MLE) != 0) {
      mGuestContextCommonSmm.GuestContextPerCpu[Index].Efer |= IA32_EFER_MSR_MLE;
    } else {
      mGuestContextCommonSmm.GuestContextPerCpu[Index].Efer &= ~IA32_EFER_MSR_MLE;
    }
    if (((mGuestContextCommonSmm.GuestContextPerCpu[Index].Efer & IA32_EFER_MSR_MLE) != 0) && 
        ((VmReadN (VMCS_N_GUEST_CR0_INDEX) & CR0_PG) != 0)) {
      mGuestContextCommonSmm.GuestContextPerCpu[Index].Efer |= IA32_EFER_MSR_MLA;
      VmEntryControls.Bits.Ia32eGuest = 1;
    } else {
      mGuestContextCommonSmm.GuestContextPerCpu[Index].Efer &= ~IA32_EFER_MSR_MLA;
      VmEntryControls.Bits.Ia32eGuest = 0;
    }
    VmWrite32 (VMCS_32_CONTROL_VMENTRY_CONTROLS_INDEX, VmEntryControls.Uint32);
    VmWrite64 (VMCS_64_GUEST_IA32_EFER_INDEX,          mGuestContextCommonSmm.GuestContextPerCpu[Index].Efer);

    break;

  case IA32_SYSENTER_CS_MSR_INDEX:
    VmWrite32 (VMCS_32_GUEST_IA32_SYSENTER_CS_INDEX, (UINT32)Data64);
    break;
  case IA32_SYSENTER_ESP_MSR_INDEX:
    VmWriteN (VMCS_N_GUEST_IA32_SYSENTER_ESP_INDEX, (UINTN)Data64);
    break;
  case IA32_SYSENTER_EIP_MSR_INDEX:
    VmWriteN (VMCS_N_GUEST_IA32_SYSENTER_EIP_INDEX, (UINTN)Data64);
    break;

  case IA32_FS_BASE_MSR_INDEX:
    VmWriteN (VMCS_N_GUEST_FS_BASE_INDEX, (UINTN)Data64);
    AsmWriteMsr64 (MsrIndex, Data64); // VMM does not use FS
    break;
  case IA32_GS_BASE_MSR_INDEX:
    VmWriteN (VMCS_N_GUEST_GS_BASE_INDEX, (UINTN)Data64);
    AsmWriteMsr64 (MsrIndex, Data64); // VMM does not use GS
    break;
#if 0
  case IA32_KERNAL_GS_BASE_MSR_INDEX:
    AsmWriteMsr64 (MsrIndex, Data64); // VMM does not use this
    break;
  case IA32_STAR_MSR_INDEX:
    AsmWriteMsr64 (MsrIndex, Data64); // VMM does not use this
    break;
  case IA32_LSTAR_MSR_INDEX:
    AsmWriteMsr64 (MsrIndex, Data64); // VMM does not use this
    break;
  case IA32_FMASK_MSR_INDEX:
    AsmWriteMsr64 (MsrIndex, Data64); // VMM does not use this
    break;
#endif

  case IA32_SMM_MONITOR_CTL_MSR_INDEX:
    break;

  case EFI_MSR_NEHALEM_SMRR_PHYS_BASE:
  case EFI_MSR_NEHALEM_SMRR_PHYS_MASK:
    // Ignore the write
    break;
    
  case IA32_BIOS_UPDT_TRIG_MSR_INDEX:
    // Only write it when BIOS request MicrocodeUpdate
    MsrDesc = GetStmResourceMsr ((STM_RSC *)(UINTN)mGuestContextCommonSmm.BiosHwResourceRequirementsPtr, IA32_BIOS_UPDT_TRIG_MSR_INDEX);
    if (MsrDesc != NULL) {
      AsmWriteMsr64 (MsrIndex, Data64);
    }
    break;

  default:
    //
    // For rest one, we need pass back to BIOS
    //

    //
    // Need mask write item
    //
    if (MsrDesc != NULL) {
      Data64 |= MsrDesc->WriteMask;
    }

    AsmWriteMsr64 (MsrIndex, Data64);
    break;
  }

  VmWriteN (VMCS_N_GUEST_RIP_INDEX, VmReadN(VMCS_N_GUEST_RIP_INDEX) + VmRead32(VMCS_32_RO_VMEXIT_INSTRUCTION_LENGTH_INDEX));
  return ;
}
Ejemplo n.º 10
0
/**
  Programs registers for the calling processor.

  This function programs registers for the calling processor.

  @param  PreSmmInit         Specify the target register table.
                             If TRUE, the target is the pre-SMM-init register table.
                             If FALSE, the target is the post-SMM-init register table.
  @param  ProcessorNumber    Handle number of specified logical processor.

**/
VOID
SetProcessorRegisterEx (
  IN BOOLEAN  PreSmmInit,
  IN UINTN    ProcessorNumber
  )
{
  CPU_REGISTER_TABLE        *RegisterTable;
  CPU_REGISTER_TABLE_ENTRY  *RegisterTableEntry;
  UINTN                     Index;
  UINTN                     Value;
  UINTN                     StartIndex;
  UINTN                     EndIndex;

  if (PreSmmInit) {
    RegisterTable = &mCpuConfigConextBuffer.PreSmmInitRegisterTable[ProcessorNumber];
  } else {
    RegisterTable = &mCpuConfigConextBuffer.RegisterTable[ProcessorNumber];
  }
  
  //
  // If microcode patch has been applied, then the first register table entry
  // is for microcode upate, so it is skipped.  
  //
  StartIndex = 0;

  if (mSetBeforeCpuOnlyReset) {
    EndIndex    = StartIndex + RegisterTable->NumberBeforeReset;
  } else {
    StartIndex += RegisterTable->NumberBeforeReset;
    EndIndex    = RegisterTable->TableLength;
  }

  //
  // Traverse Register Table of this logical processor
  //
  for (Index = StartIndex; Index < EndIndex; Index++) {

    RegisterTableEntry = &RegisterTable->RegisterTableEntry[Index];
    
    //
    // Check the type of specified register
    //
    switch (RegisterTableEntry->RegisterType) {
    //
    // The specified register is Control Register
    //
    case ControlRegister:
      switch (RegisterTableEntry->Index) {
      case 0:
        Value = AsmReadCr0 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          RegisterTableEntry->Value
                          );
        AsmWriteCr0 (Value);
        break;
      case 2:
        Value = AsmReadCr2 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          RegisterTableEntry->Value
                          );
        AsmWriteCr2 (Value);
        break;
      case 3:
        Value = AsmReadCr3 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          RegisterTableEntry->Value
                          );
        AsmWriteCr3 (Value);
        break;
      case 4:
        Value = AsmReadCr4 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          RegisterTableEntry->Value
                          );
        AsmWriteCr4 (Value);
        break;
      case 8:
        //
        //  Do we need to support CR8?
        //
        break;
      default:
        break;
      }
      break;
    //
    // The specified register is Model Specific Register
    //
    case Msr:
      //
      // If this function is called to restore register setting after INIT signal,
      // there is no need to restore MSRs in register table.
      //
      if (!mRestoreSettingAfterInit) {
        if (RegisterTableEntry->ValidBitLength >= 64) {
          //
          // If length is not less than 64 bits, then directly write without reading
          //
          AsmWriteMsr64 (
            RegisterTableEntry->Index,
            RegisterTableEntry->Value
            );
        } else {
          //
          // Set the bit section according to bit start and length
          //
          AsmMsrBitFieldWrite64 (
            RegisterTableEntry->Index,
            RegisterTableEntry->ValidBitStart,
            RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
            RegisterTableEntry->Value
            );
        }
      }
      break;
    //
    // Enable or disable cache
    //
    case CacheControl:
      //
      // If value of the entry is 0, then disable cache.  Otherwise, enable cache.
      //
      if (RegisterTableEntry->Value == 0) {
        AsmDisableCache ();
      } else {
        AsmEnableCache ();
      }
      break;

    default:
      break;
    }
  }
}
Ejemplo n.º 11
0
/**
  Programs registers for the calling processor.

  This function programs registers for the calling processor.

  @param  RegisterTables        Pointer to register table of the running processor.
  @param  RegisterTableCount    Register table count.

**/
VOID
SetProcessorRegister (
  IN CPU_REGISTER_TABLE        *RegisterTables,
  IN UINTN                     RegisterTableCount
  )
{
  CPU_REGISTER_TABLE_ENTRY  *RegisterTableEntry;
  UINTN                     Index;
  UINTN                     Value;
  SPIN_LOCK                 *MsrSpinLock;
  UINT32                    InitApicId;
  CPU_REGISTER_TABLE        *RegisterTable;

  InitApicId = GetInitialApicId ();
  RegisterTable = NULL;
  for (Index = 0; Index < RegisterTableCount; Index++) {
    if (RegisterTables[Index].InitialApicId == InitApicId) {
      RegisterTable =  &RegisterTables[Index];
      break;
    }
  }
  ASSERT (RegisterTable != NULL);

  //
  // Traverse Register Table of this logical processor
  //
  RegisterTableEntry = (CPU_REGISTER_TABLE_ENTRY *) (UINTN) RegisterTable->RegisterTableEntry;
  for (Index = 0; Index < RegisterTable->TableLength; Index++, RegisterTableEntry++) {
    //
    // Check the type of specified register
    //
    switch (RegisterTableEntry->RegisterType) {
    //
    // The specified register is Control Register
    //
    case ControlRegister:
      switch (RegisterTableEntry->Index) {
      case 0:
        Value = AsmReadCr0 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          (UINTN) RegisterTableEntry->Value
                          );
        AsmWriteCr0 (Value);
        break;
      case 2:
        Value = AsmReadCr2 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          (UINTN) RegisterTableEntry->Value
                          );
        AsmWriteCr2 (Value);
        break;
      case 3:
        Value = AsmReadCr3 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          (UINTN) RegisterTableEntry->Value
                          );
        AsmWriteCr3 (Value);
        break;
      case 4:
        Value = AsmReadCr4 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          (UINTN) RegisterTableEntry->Value
                          );
        AsmWriteCr4 (Value);
        break;
      default:
        break;
      }
      break;
    //
    // The specified register is Model Specific Register
    //
    case Msr:
      //
      // If this function is called to restore register setting after INIT signal,
      // there is no need to restore MSRs in register table.
      //
      if (RegisterTableEntry->ValidBitLength >= 64) {
        //
        // If length is not less than 64 bits, then directly write without reading
        //
        AsmWriteMsr64 (
          RegisterTableEntry->Index,
          RegisterTableEntry->Value
          );
      } else {
        //
        // Get lock to avoid Package/Core scope MSRs programming issue in parallel execution mode
        // to make sure MSR read/write operation is atomic.
        //
        MsrSpinLock = GetMsrSpinLockByIndex (RegisterTableEntry->Index);
        AcquireSpinLock (MsrSpinLock);
        //
        // Set the bit section according to bit start and length
        //
        AsmMsrBitFieldWrite64 (
          RegisterTableEntry->Index,
          RegisterTableEntry->ValidBitStart,
          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
          RegisterTableEntry->Value
          );
        ReleaseSpinLock (MsrSpinLock);
      }
      break;
    //
    // MemoryMapped operations
    //
    case MemoryMapped:
      AcquireSpinLock (mMemoryMappedLock);
      MmioBitFieldWrite32 (
        (UINTN)(RegisterTableEntry->Index | LShiftU64 (RegisterTableEntry->HighIndex, 32)),
        RegisterTableEntry->ValidBitStart,
        RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
        (UINT32)RegisterTableEntry->Value
        );
      ReleaseSpinLock (mMemoryMappedLock);
      break;
    //
    // Enable or disable cache
    //
    case CacheControl:
      //
      // If value of the entry is 0, then disable cache.  Otherwise, enable cache.
      //
      if (RegisterTableEntry->Value == 0) {
        AsmDisableCache ();
      } else {
        AsmEnableCache ();
      }
      break;

    default:
      break;
    }
  }
}
Ejemplo n.º 12
0
/**
  Detect whether specified processor can find matching microcode patch and load it.

**/
VOID
MicrocodeDetect (
  VOID
  )
{
  UINT64                                  MicrocodePatchAddress;
  UINT64                                  MicrocodePatchRegionSize;
  UINT32                                  ExtendedTableLength;
  UINT32                                  ExtendedTableCount;
  EFI_CPU_MICROCODE_EXTENDED_TABLE        *ExtendedTable;
  EFI_CPU_MICROCODE_EXTENDED_TABLE_HEADER *ExtendedTableHeader;
  EFI_CPU_MICROCODE_HEADER                *MicrocodeEntryPoint;
  UINTN                                   MicrocodeEnd;
  UINTN                                   Index;
  UINT8                                   PlatformId;
  UINT32                                  RegEax;
  UINT32                                  LatestRevision;
  UINTN                                   TotalSize;
  UINT32                                  CheckSum32;
  BOOLEAN                                 CorrectMicrocode;
  INT32                                   CurrentSignature;
  MICROCODE_INFO                          MicrocodeInfo;

  ZeroMem (&MicrocodeInfo, sizeof (MICROCODE_INFO));
  MicrocodePatchAddress    = PcdGet64 (PcdCpuMicrocodePatchAddress);
  MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);
  if (MicrocodePatchRegionSize == 0) {
    //
    // There is no microcode patches
    //
    return;
  }

  ExtendedTableLength = 0;
  //
  // Here data of CPUID leafs have not been collected into context buffer, so
  // GetProcessorCpuid() cannot be used here to retrieve CPUID data.
  //
  AsmCpuid (CPUID_VERSION_INFO, &RegEax, NULL, NULL, NULL);

  //
  // The index of platform information resides in bits 50:52 of MSR IA32_PLATFORM_ID
  //
  PlatformId = (UINT8) AsmMsrBitFieldRead64 (EFI_MSR_IA32_PLATFORM_ID, 50, 52);

  LatestRevision = 0;
  MicrocodeEnd = (UINTN) (MicrocodePatchAddress + MicrocodePatchRegionSize);
  MicrocodeEntryPoint = (EFI_CPU_MICROCODE_HEADER *) (UINTN) MicrocodePatchAddress;
  do {
    //
    // Check if the microcode is for the Cpu and the version is newer
    // and the update can be processed on the platform
    //
    CorrectMicrocode = FALSE;
    if (MicrocodeEntryPoint->HeaderVersion == 0x1) {
      //
      // It is the microcode header. It is not the padding data between microcode patches
      // becasue the padding data should not include 0x00000001 and it should be the repeated
      // byte format (like 0xXYXYXYXY....).
      //
      if (MicrocodeEntryPoint->ProcessorId == RegEax &&
          MicrocodeEntryPoint->UpdateRevision > LatestRevision &&
          (MicrocodeEntryPoint->ProcessorFlags & (1 << PlatformId))
          ) {
        if (MicrocodeEntryPoint->DataSize == 0) {
          CheckSum32 = CalculateSum32 ((UINT32 *)MicrocodeEntryPoint, 2048);
        } else {
          CheckSum32 = CalculateSum32 ((UINT32 *)MicrocodeEntryPoint, MicrocodeEntryPoint->DataSize + sizeof(EFI_CPU_MICROCODE_HEADER));
        }
        if (CheckSum32 == 0) {
          CorrectMicrocode = TRUE;
        }
      } else if ((MicrocodeEntryPoint->DataSize != 0) &&
                 (MicrocodeEntryPoint->UpdateRevision > LatestRevision)) {
        ExtendedTableLength = MicrocodeEntryPoint->TotalSize - (MicrocodeEntryPoint->DataSize + sizeof (EFI_CPU_MICROCODE_HEADER));
        if (ExtendedTableLength != 0) {
          //
          // Extended Table exist, check if the CPU in support list
          //
          ExtendedTableHeader = (EFI_CPU_MICROCODE_EXTENDED_TABLE_HEADER *)((UINT8 *)(MicrocodeEntryPoint) + MicrocodeEntryPoint->DataSize + sizeof (EFI_CPU_MICROCODE_HEADER));
          //
          // Calculate Extended Checksum
          //
          if ((ExtendedTableLength % 4) == 0) {
            CheckSum32 = CalculateSum32 ((UINT32 *)ExtendedTableHeader, ExtendedTableLength);
            if (CheckSum32 == 0) {
              //
              // Checksum correct
              //
              ExtendedTableCount = ExtendedTableHeader->ExtendedSignatureCount;
              ExtendedTable      = (EFI_CPU_MICROCODE_EXTENDED_TABLE *)(ExtendedTableHeader + 1);
              for (Index = 0; Index < ExtendedTableCount; Index ++) {
                CheckSum32 = CalculateSum32 ((UINT32 *)ExtendedTable, sizeof(EFI_CPU_MICROCODE_EXTENDED_TABLE));
                if (CheckSum32 == 0) {
                  //
                  // Verify Header
                  //
                  if ((ExtendedTable->ProcessorSignature == RegEax) &&
                      (ExtendedTable->ProcessorFlag & (1 << PlatformId)) ) {
                    //
                    // Find one
                    //
                    CorrectMicrocode = TRUE;
                    break;
                  }
                }
                ExtendedTable ++;
              }
            }
          }
        }
      }
    } else {
      //
      // It is the padding data between the microcode patches for microcode patches alignment.
      // Because the microcode patch is the multiple of 1-KByte, the padding data should not
      // exist if the microcode patch alignment value is not larger than 1-KByte. So, the microcode
      // alignment value should be larger than 1-KByte. We could skip SIZE_1KB padding data to
      // find the next possible microcode patch header.
      //
      MicrocodeEntryPoint = (EFI_CPU_MICROCODE_HEADER *) (((UINTN) MicrocodeEntryPoint) + SIZE_1KB);
      continue;
    }
    //
    // Get the next patch.
    //
    if (MicrocodeEntryPoint->DataSize == 0) {
      TotalSize = 2048;
    } else {
      TotalSize = MicrocodeEntryPoint->TotalSize;
    }

    if (CorrectMicrocode) {
      LatestRevision = MicrocodeEntryPoint->UpdateRevision;
      MicrocodeInfo.MicrocodeData = (VOID *)((UINTN)MicrocodeEntryPoint + sizeof (EFI_CPU_MICROCODE_HEADER));
      MicrocodeInfo.MicrocodeSize = TotalSize;
      MicrocodeInfo.ProcessorId = RegEax;
    }

    MicrocodeEntryPoint = (EFI_CPU_MICROCODE_HEADER *) (((UINTN) MicrocodeEntryPoint) + TotalSize);
  } while (((UINTN) MicrocodeEntryPoint < MicrocodeEnd));

  if (LatestRevision > 0) {
    //
    // Get microcode update signature of currently loaded microcode update
    //
    CurrentSignature = GetCurrentMicrocodeSignature ();
    //
    // If no microcode update has been loaded, then trigger microcode load.
    //
    if (CurrentSignature == 0) {
      AsmWriteMsr64 (
        EFI_MSR_IA32_BIOS_UPDT_TRIG,
        (UINT64) (UINTN) MicrocodeInfo.MicrocodeData
        );
      MicrocodeInfo.Load = TRUE;
    } else {
      MicrocodeInfo.Load = FALSE;
    }
  }
}