void Perl_av_reify(pTHX_ AV *av) { SSize_t key; PERL_ARGS_ASSERT_AV_REIFY; assert(SvTYPE(av) == SVt_PVAV); if (AvREAL(av)) return; #ifdef DEBUGGING if (SvTIED_mg((const SV *)av, PERL_MAGIC_tied)) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEBUGGING), "av_reify called on tied array"); #endif key = AvMAX(av) + 1; while (key > AvFILLp(av) + 1) AvARRAY(av)[--key] = NULL; while (key) { SV * const sv = AvARRAY(av)[--key]; if (sv != &PL_sv_undef) SvREFCNT_inc_simple_void(sv); } key = AvARRAY(av) - AvALLOC(av); while (key) AvALLOC(av)[--key] = NULL; AvREIFY_off(av); AvREAL_on(av); }
void Perl_av_reify(pTHX_ AV *av) { I32 key; SV* sv; if (AvREAL(av)) return; #ifdef DEBUGGING if (SvTIED_mg((SV*)av, PERL_MAGIC_tied) && ckWARN_d(WARN_DEBUGGING)) Perl_warner(aTHX_ packWARN(WARN_DEBUGGING), "av_reify called on tied array"); #endif key = AvMAX(av) + 1; while (key > AvFILLp(av) + 1) AvARRAY(av)[--key] = &PL_sv_undef; while (key) { sv = AvARRAY(av)[--key]; assert(sv); if (sv != &PL_sv_undef) (void)SvREFCNT_inc(sv); } key = AvARRAY(av) - AvALLOC(av); while (key) AvALLOC(av)[--key] = &PL_sv_undef; AvREIFY_off(av); AvREAL_on(av); }
void Perl_av_extend(pTHX_ AV *av, I32 key) { dVAR; MAGIC *mg; PERL_ARGS_ASSERT_AV_EXTEND; assert(SvTYPE(av) == SVt_PVAV); mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied); if (mg) { dSP; ENTER; SAVETMPS; PUSHSTACKi(PERLSI_MAGIC); PUSHMARK(SP); EXTEND(SP,2); PUSHs(SvTIED_obj(MUTABLE_SV(av), mg)); mPUSHi(key + 1); PUTBACK; call_method("EXTEND", G_SCALAR|G_DISCARD); POPSTACK; FREETMPS; LEAVE; return; } if (key > AvMAX(av)) { SV** ary; I32 tmp; I32 newmax; if (AvALLOC(av) != AvARRAY(av)) { ary = AvALLOC(av) + AvFILLp(av) + 1; tmp = AvARRAY(av) - AvALLOC(av); Move(AvARRAY(av), AvALLOC(av), AvFILLp(av)+1, SV*); AvMAX(av) += tmp; AvARRAY(av) = AvALLOC(av); if (AvREAL(av)) { while (tmp) ary[--tmp] = &PL_sv_undef; } if (key > AvMAX(av) - 10) { newmax = key + AvMAX(av); goto resize; } }
void Perl_av_extend(pTHX_ AV *av, I32 key) { MAGIC *mg; if ((mg = SvTIED_mg((SV*)av, PERL_MAGIC_tied))) { dSP; ENTER; SAVETMPS; PUSHSTACKi(PERLSI_MAGIC); PUSHMARK(SP); EXTEND(SP,2); PUSHs(SvTIED_obj((SV*)av, mg)); PUSHs(sv_2mortal(newSViv(key+1))); PUTBACK; call_method("EXTEND", G_SCALAR|G_DISCARD); POPSTACK; FREETMPS; LEAVE; return; } if (key > AvMAX(av)) { SV** ary; I32 tmp; I32 newmax; if (AvALLOC(av) != AvARRAY(av)) { ary = AvALLOC(av) + AvFILLp(av) + 1; tmp = AvARRAY(av) - AvALLOC(av); Move(AvARRAY(av), AvALLOC(av), AvFILLp(av)+1, SV*); AvMAX(av) += tmp; SvPVX(av) = (char*)AvALLOC(av); if (AvREAL(av)) { while (tmp) ary[--tmp] = &PL_sv_undef; } if (key > AvMAX(av) - 10) { newmax = key + AvMAX(av); goto resize; } }
I32 Perl_debstackptrs(pTHX) { #ifdef DEBUGGING dVAR; PerlIO_printf(Perl_debug_log, "%8"UVxf" %8"UVxf" %8"IVdf" %8"IVdf" %8"IVdf"\n", PTR2UV(PL_curstack), PTR2UV(PL_stack_base), (IV)*PL_markstack_ptr, (IV)(PL_stack_sp-PL_stack_base), (IV)(PL_stack_max-PL_stack_base)); PerlIO_printf(Perl_debug_log, "%8"UVxf" %8"UVxf" %8"UVuf" %8"UVuf" %8"UVuf"\n", PTR2UV(PL_mainstack), PTR2UV(AvARRAY(PL_curstack)), PTR2UV(PL_mainstack), PTR2UV(AvFILLp(PL_curstack)), PTR2UV(AvMAX(PL_curstack))); #endif /* DEBUGGING */ return 0; }
void Perl_av_extend(pTHX_ AV *av, SSize_t key) { MAGIC *mg; PERL_ARGS_ASSERT_AV_EXTEND; assert(SvTYPE(av) == SVt_PVAV); mg = SvTIED_mg((const SV *)av, PERL_MAGIC_tied); if (UNLIKELY(mg)) { SV *arg1 = sv_newmortal(); sv_setiv(arg1, (IV)(key + 1)); Perl_magic_methcall(aTHX_ MUTABLE_SV(av), mg, SV_CONST(EXTEND), G_DISCARD, 1, arg1); return; } av_extend_guts(av,key,&AvMAX(av),&AvALLOC(av),&AvARRAY(av)); }
SV * DeadCode(pTHX) { #ifdef PURIFY return Nullsv; #else SV* sva; SV* sv; SV* ret = newRV_noinc((SV*)newAV()); register SV* svend; int tm = 0, tref = 0, ts = 0, ta = 0, tas = 0; for (sva = PL_sv_arenaroot; sva; sva = (SV*)SvANY(sva)) { svend = &sva[SvREFCNT(sva)]; for (sv = sva + 1; sv < svend; ++sv) { if (SvTYPE(sv) == SVt_PVCV) { CV *cv = (CV*)sv; AV* padlist = CvPADLIST(cv), *argav; SV** svp; SV** pad; int i = 0, j, levelm, totm = 0, levelref, totref = 0; int levels, tots = 0, levela, tota = 0, levelas, totas = 0; int dumpit = 0; if (CvXSUB(sv)) { continue; /* XSUB */ } if (!CvGV(sv)) { continue; /* file-level scope. */ } if (!CvROOT(cv)) { /* PerlIO_printf(Perl_debug_log, " no root?!\n"); */ continue; /* autoloading stub. */ } do_gvgv_dump(0, Perl_debug_log, "GVGV::GV", CvGV(sv)); if (CvDEPTH(cv)) { PerlIO_printf(Perl_debug_log, " busy\n"); continue; } svp = AvARRAY(padlist); while (++i <= AvFILL(padlist)) { /* Depth. */ SV **args; pad = AvARRAY((AV*)svp[i]); argav = (AV*)pad[0]; if (!argav || (SV*)argav == &PL_sv_undef) { PerlIO_printf(Perl_debug_log, " closure-template\n"); continue; } args = AvARRAY(argav); levelm = levels = levelref = levelas = 0; levela = sizeof(SV*) * (AvMAX(argav) + 1); if (AvREAL(argav)) { for (j = 0; j < AvFILL(argav); j++) { if (SvROK(args[j])) { PerlIO_printf(Perl_debug_log, " ref in args!\n"); levelref++; } /* else if (SvPOK(args[j]) && SvPVX(args[j])) { */ else if (SvTYPE(args[j]) >= SVt_PV && SvLEN(args[j])) { levelas += SvLEN(args[j])/SvREFCNT(args[j]); } } } for (j = 1; j < AvFILL((AV*)svp[1]); j++) { /* Vars. */ if (SvROK(pad[j])) { levelref++; do_sv_dump(0, Perl_debug_log, pad[j], 0, 4, 0, 0); dumpit = 1; } /* else if (SvPOK(pad[j]) && SvPVX(pad[j])) { */ else if (SvTYPE(pad[j]) >= SVt_PVAV) { if (!SvPADMY(pad[j])) { levelref++; do_sv_dump(0, Perl_debug_log, pad[j], 0, 4, 0, 0); dumpit = 1; } } else if (SvTYPE(pad[j]) >= SVt_PV && SvLEN(pad[j])) { levels++; levelm += SvLEN(pad[j])/SvREFCNT(pad[j]); /* Dump(pad[j],4); */ } } PerlIO_printf(Perl_debug_log, " level %i: refs: %i, strings: %i in %i,\targsarray: %i, argsstrings: %i\n", i, levelref, levelm, levels, levela, levelas); totm += levelm; tota += levela; totas += levelas; tots += levels; totref += levelref; if (dumpit) do_sv_dump(0, Perl_debug_log, (SV*)cv, 0, 2, 0, 0); } if (AvFILL(padlist) > 1) { PerlIO_printf(Perl_debug_log, " total: refs: %i, strings: %i in %i,\targsarrays: %i, argsstrings: %i\n", totref, totm, tots, tota, totas); } tref += totref; tm += totm; ts += tots; ta += tota; tas += totas; } } } PerlIO_printf(Perl_debug_log, "total: refs: %i, strings: %i in %i\targsarray: %i, argsstrings: %i\n", tref, tm, ts, ta, tas); return ret; #endif /* !PURIFY */ }
// This function reads the various JavaBin datatypes and returns a Perl SV. // Different datatypes are jumped to view a lookup in an array of computed gotos. // // The first group (undef to enum) use the entire tag for the index of the type. // // The second are matched by taking the tag byte, shifting it by 5 so to only read // the first 3 bits of the tag byte, giving it a range or 0-7 inclusive. // // To store both in one array the second group have 18 added to them. See DISPATCH. // // The remaining 5 bits can then be used to store the size of the datatype, e.g. how // many chars in a string, this therefore has a range of 0-31, if the size exceeds or // matches this then an additional vint is added. // // The overview of the tag byte is therefore TTTSSSSS with T and S being type and size. static SV* read_sv(pTHX) { void* dispatch[] = { &&read_undef, &&read_bool, &&read_bool, &&read_byte, &&read_short, &&read_double, &&read_int, &&read_long, &&read_float, &&read_date, &&read_map, &&read_solr_doc, &&read_solr_doc_list, &&read_byte_array, &&read_iterator, NULL, NULL, NULL, &&read_enum, &&read_string, &&read_small_int, &&read_small_long, &&read_array, &&read_map, &&read_map, }; in++; goto *dispatch[in[-1] >> 5 ? (in[-1] >> 5) + 18 : in[-1]]; read_undef: return &PL_sv_undef; read_bool: { SV *rv = newSV_type(SVt_IV), *sv = in[-1] == 1 ? bool_true : bool_false; SvREFCNT(sv)++; SvROK_on(rv); SvRV_set(rv, sv); return rv; } read_byte: return newSViv((int8_t) *in++); read_short: { const int16_t s = in[0] << 8 | in[1]; in += 2; return newSViv(s); } read_double: { // For perls with double length NVs this conversion is simple. // Read 8 bytes, cast to double, return. For long double perls // more magic is used, see read_float for more details. const int_double u = { (uint64_t) in[0] << 56 | (uint64_t) in[1] << 48 | (uint64_t) in[2] << 40 | (uint64_t) in[3] << 32 | (uint64_t) in[4] << 24 | (uint64_t) in[5] << 16 | (uint64_t) in[6] << 8 | (uint64_t) in[7] }; in += 8; #ifdef USE_LONG_DOUBLE char *str = alloca(snprintf(NULL, 0, "%.14f", u.d)); sprintf(str, "%.14f", u.d); return newSVnv(strtold(str, NULL)); #else return newSVnv(u.d); #endif } read_int: { const int32_t i = in[0] << 24 | in[1] << 16 | in[2] << 8 | in[3]; in += 4; return newSViv(i); } read_long: { const int64_t l = (uint64_t) in[0] << 56 | (uint64_t) in[1] << 48 | (uint64_t) in[2] << 40 | (uint64_t) in[3] << 32 | (uint64_t) in[4] << 24 | (uint64_t) in[5] << 16 | (uint64_t) in[6] << 8 | (uint64_t) in[7]; in += 8; return newSViv(l); } read_float: { // JavaBin has a 4byte float format, NVs in perl are double or long double, // therefore a little magic is required. Read the 4 bytes into an int in the // correct endian order. Re-read these bits as a float, stringify this float, // then finally numify the string into a double or long double. const int_float u = { in[0] << 24 | in[1] << 16 | in[2] << 8 | in[3] }; in += 4; char *str = alloca(snprintf(NULL, 0, "%f", u.f)); sprintf(str, "%f", u.f); #ifdef USE_LONG_DOUBLE return newSVnv(strtold(str, NULL)); #else return newSVnv(strtod(str, NULL)); #endif } read_date: { const int64_t date_ms = (uint64_t) in[0] << 56 | (uint64_t) in[1] << 48 | (uint64_t) in[2] << 40 | (uint64_t) in[3] << 32 | (uint64_t) in[4] << 24 | (uint64_t) in[5] << 16 | (uint64_t) in[6] << 8 | (uint64_t) in[7]; in += 8; const time_t date = date_ms / 1000; const struct tm *t = gmtime(&date); char date_str[25]; sprintf(date_str, "%u-%02u-%02uT%02u:%02u:%02u.%03uZ", t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec, (uint32_t) (date_ms % 1000)); return newSVpvn(date_str, 24); } read_solr_doc: in++; // Assume a solr doc is a map. read_map: { HV *hv = (HV*)newSV_type(SVt_PVHV); uint32_t len = in[-1] >> 5 ? READ_LEN : read_v_int(); while (len--) { cached_key key; in++; const uint32_t i = READ_LEN; if (i) key = cached_keys[i]; else { in++; cached_keys[++cache_pos] = key = (cached_key){ (char*)in, 0, READ_LEN }; uint8_t *key_str = in; in += key.len; // Set the UTF8 flag if we hit a high byte. while (key_str != in) { if (*key_str++ & 128) { key.flags = HVhek_UTF8; break; } } } hv_common(hv, NULL, key.key, key.len, key.flags, HV_FETCH_ISSTORE, read_sv(aTHX), 0); } SV *rv = newSV_type(SVt_IV); SvROK_on(rv); SvRV_set(rv, (SV*)hv); return rv; } read_solr_doc_list: { HV *hv = (HV*)newSV_type(SVt_PVHV); // Assume values are in an array, skip tag & read_sv. in++; hv_set(hv, "numFound", read_sv(aTHX), numFound); hv_set(hv, "start", read_sv(aTHX), start); hv_set(hv, "maxScore", read_sv(aTHX), maxScore); hv_set(hv, "docs", read_sv(aTHX), docs); SV *rv = newSV_type(SVt_IV); SvROK_on(rv); SvRV_set(rv, (SV*)hv); return rv; } read_byte_array: { AV *av = (AV*)newSV_type(SVt_PVAV); SSize_t len = read_v_int(); SV **ary = safemalloc(len * sizeof(SV*)); AvALLOC(av) = AvARRAY(av) = ary; AvFILLp(av) = AvMAX(av) = len - 1; while (len--) *ary++ = newSViv((int8_t) *in++); SV *rv = newSV_type(SVt_IV); SvROK_on(rv); SvRV_set(rv, (SV*)av); return rv; } read_iterator: { AV *av = (AV*)newSV_type(SVt_PVAV); uint32_t len = 0; while (*in != 15) av_store(av, len++, read_sv(aTHX)); in++; SV *rv = newSV_type(SVt_IV); SvROK_on(rv); SvRV_set(rv, (SV*)av); return rv; } read_enum: { SV *sv = read_sv(aTHX); // small_int if +ve, int otherwise. sv_upgrade(sv, SVt_PVMG); in++; const STRLEN len = READ_LEN; char *str = sv_grow(sv, len + 1); memcpy(str, in, len); in += len; str[len] = '\0'; SvCUR(sv) = len; SvFLAGS(sv) = SVf_IOK | SVp_IOK | SVs_OBJECT | SVf_POK | SVp_POK | SVt_PVMG | SVf_UTF8; HV *stash = CALL(gv_stashpvn, STR_WITH_LEN("JavaBin::Enum"), 0); SvREFCNT(stash)++; SvSTASH_set(sv, stash); SV *rv = newSV_type(SVt_IV); SvROK_on(rv); SvRV_set(rv, sv); return rv; } read_string: { const STRLEN len = READ_LEN; SV *sv = newSV_type(SVt_PV); char *str = SvPVX(sv) = (char*)safemalloc(len); memcpy(str, in, len); SvCUR(sv) = SvLEN(sv) = len; SvFLAGS(sv) |= SVf_POK | SVp_POK | SVf_UTF8; in += len; return sv; } read_small_int: { uint32_t result = in[-1] & 15; if (in[-1] & 16) result |= read_v_int() << 4; return newSViv(result); } read_small_long: { uint64_t result = in[-1] & 15; // Inlined variable-length +ve long code, see read_v_int(). if (in[-1] & 16) { uint8_t shift = 4; do result |= (*in++ & 127) << shift; while (in[-1] & 128 && (shift += 7)); } return newSViv(result); } read_array: { AV *av = (AV*)newSV_type(SVt_PVAV); SSize_t len = READ_LEN; SV **ary = safemalloc(len * sizeof(SV*)); AvALLOC(av) = AvARRAY(av) = ary; AvFILLp(av) = AvMAX(av) = len - 1; while (len--) *ary++ = read_sv(aTHX); SV *rv = newSV_type(SVt_IV); SvROK_on(rv); SvRV(rv) = (SV*)av; return rv; } } static void grow_out(pTHX_ const STRLEN want) { const STRLEN len = out_buf - (uint8_t *)SvPVX(out_sv); // If we want more than we have, realloc the string. if (len + want >= SvLEN(out_sv)) { sv_grow(out_sv, len + want); out_buf = (uint8_t *)SvPVX(out_sv) + len; } } static void write_v_int(uint32_t i) { while (i & ~127) { *out_buf++ = (i & 127) | 128; i >>= 7; } *out_buf++ = i; } static void write_shifted_tag(uint8_t tag, uint32_t len) { if (len < 31) *out_buf++ = tag | len; else { *out_buf++ = tag | 31; write_v_int(len - 31); } } static void write_sv(pTHX_ SV *sv) { SvGETMAGIC(sv); if (SvPOKp(sv)) { const STRLEN len = SvCUR(sv); grow_out(aTHX_ len + 5); write_shifted_tag(32, len); memcpy(out_buf, SvPVX(sv), len); out_buf += len; } else if (SvNOKp(sv)) { const int_double u = { .d = SvNV(sv) }; grow_out(aTHX_ 9); *out_buf++ = 5; *out_buf++ = u.i >> 56; *out_buf++ = u.i >> 48; *out_buf++ = u.i >> 40; *out_buf++ = u.i >> 32; *out_buf++ = u.i >> 24; *out_buf++ = u.i >> 16; *out_buf++ = u.i >> 8; *out_buf++ = u.i; } else if (SvIOKp(sv)) {