Ejemplo n.º 1
0
/* Get neatly aligned memory, initializing or growing the
   heap info table as necessary. */
static void *
morecore(size_t size)
{
    void *result;
    union info *newinfo, *oldinfo;
    int newsize;

    result = align(size);
    if (!result)
	return NULL;

    /* Check if we need to grow the info table. */
    if (BLOCK((char *) result + size) > heapsize) {
	newsize = heapsize;
	while (BLOCK((char *) result + size) > newsize)
	    newsize *= 2;
	newinfo = align(newsize * sizeof (union info));
	if (!newinfo) {
	    (*_morecore)(-size);
	    return NULL;
	}
	memset(newinfo, 0, newsize * sizeof (union info));
	memcpy(newinfo, _heapinfo, heapsize * sizeof (union info));
	oldinfo = _heapinfo;
	newinfo[BLOCK(oldinfo)].busy.type = 0;
	newinfo[BLOCK(oldinfo)].busy.info.size
	    = BLOCKIFY(heapsize * sizeof (union info));
	_heapinfo = newinfo;
	free(oldinfo);
	heapsize = newsize;
    }

    _heaplimit = BLOCK((char *) result + size);
    return result;
}
Ejemplo n.º 2
0
/* Get neatly aligned memory, initializing or
   growing the heap info table as necessary. */
static void *
morecore( shmalloc_heap *heap, size_t size )
{
     void *result;
     shmalloc_info *newinfo, *oldinfo;
     size_t newsize;

     D_DEBUG_AT( Fusion_SHMHeap, "%s( %p, %zu )\n", __FUNCTION__, heap, size );

     D_MAGIC_ASSERT( heap, shmalloc_heap );

     result = align( heap, size );
     if (result == NULL)
          return NULL;

     /* Check if we need to grow the info table.  */
     if ((size_t) BLOCK ((char *) result + size) > heap->heapsize) {
          newsize = heap->heapsize;

          while ((size_t) BLOCK ((char *) result + size) > newsize)
               newsize *= 2;

          newinfo = (shmalloc_info *) align( heap, newsize * sizeof (shmalloc_info) );
          if (newinfo == NULL) {
               __shmalloc_brk( heap, -size );
               return NULL;
          }

          direct_memcpy( newinfo, heap->heapinfo,
                         heap->heapsize * sizeof (shmalloc_info) );

          memset (newinfo + heap->heapsize,
                  0, (newsize - heap->heapsize) * sizeof (shmalloc_info));

          oldinfo = heap->heapinfo;

          newinfo[BLOCK (oldinfo)].busy.type = 0;
          newinfo[BLOCK (oldinfo)].busy.info.size = BLOCKIFY (heap->heapsize * sizeof (shmalloc_info));

          heap->heapinfo = newinfo;

          _fusion_shfree( heap, oldinfo );

          heap->heapsize = newsize;
     }

     heap->heaplimit = BLOCK ((char *) result + size);

     return result;
}
Ejemplo n.º 3
0
/* Get neatly aligned memory, initializing or
growing the heap info table as necessary. */
static __ptr_t morecore (__malloc_size_t size)
{
	__ptr_t result;
	malloc_info *newinfo, *oldinfo;
	__malloc_size_t newsize;

	result = align (size);
	if (result == NULL)
		return NULL;

	/* Check if we need to grow the info table.  */
	if ((__malloc_size_t) BLOCK ((char *) result + size) > heapsize)
	{
		newsize = heapsize;
		while ((__malloc_size_t) BLOCK ((char *) result + size) > newsize)
			newsize *= 2;
		newinfo = (malloc_info *) align (newsize * sizeof (malloc_info));
		if (newinfo == NULL)
		{
			(*__morecore) (-size);
			return NULL;
		}
		MEMCPY (newinfo, _heapinfo, heapsize * sizeof (malloc_info));
		MEMSET (&newinfo[heapsize], 0,
				(newsize - heapsize) * sizeof (malloc_info));
		oldinfo = _heapinfo;
		newinfo[BLOCK (oldinfo)].busy.type = 0;
		newinfo[BLOCK (oldinfo)].busy.info.size
		= BLOCKIFY (heapsize * sizeof (malloc_info));
		_heapinfo = newinfo;
		/* Account for the _heapinfo block itself in the statistics.  */
		_bytes_used += newsize * sizeof (malloc_info);
		++_chunks_used;
		_free_internal (oldinfo);
		heapsize = newsize;
	}

	_heaplimit = BLOCK ((char *) result + size);
	return result;
}
Ejemplo n.º 4
0
/* Resize the given region to the new size, returning a pointer
   to the (possibly moved) region.  This is optimized for speed;
   some benchmarks seem to indicate that greater compactness is
   achieved by unconditionally allocating and copying to a
   new region. */
void *
realloc(void *ptr, size_t size)
{
    void *result, *previous;
    int block, blocks, type;
    int oldlimit;

    if (!ptr)
        return malloc(size);
    if (!size) {
        free(ptr);
        return malloc(0);
    }

    block = BLOCK(ptr);

    switch (type = _heapinfo[block].busy.type) {
    case 0:
        /* Maybe reallocate a large block to a small fragment. */
        if (size <= BLOCKSIZE / 2) {
            if ((result = malloc(size)) != NULL) {
                memcpy(result, ptr, size);
                free(ptr);
            }
            return result;
        }

        /* The new size is a large allocation as well; see if
           we can hold it in place. */
        blocks = BLOCKIFY(size);
        if (blocks < _heapinfo[block].busy.info.size) {
            /* The new size is smaller; return excess memory
               to the free list. */
            _heapinfo[block + blocks].busy.type = 0;
            _heapinfo[block + blocks].busy.info.size
                = _heapinfo[block].busy.info.size - blocks;
            _heapinfo[block].busy.info.size = blocks;
            free(ADDRESS(block + blocks));
            return ptr;
        } else if (blocks == _heapinfo[block].busy.info.size)
            /* No size change necessary. */
            return ptr;
        else {
            /* Won't fit, so allocate a new region that will.  Free
               the old region first in case there is sufficient adjacent
               free space to grow without moving. */
            blocks = _heapinfo[block].busy.info.size;
            /* Prevent free from actually returning memory to the system. */
            oldlimit = _heaplimit;
            _heaplimit = 0;
            free(ptr);
            _heaplimit = oldlimit;
            result = malloc(size);
            if (!result) {
                /* Now we're really in trouble.  We have to unfree
                   the thing we just freed.  Unfortunately it might
                   have been coalesced with its neighbors. */
                if (_heapindex == block)
                    malloc(blocks * BLOCKSIZE);
                else {
                    previous = malloc((block - _heapindex) * BLOCKSIZE);
                    malloc(blocks * BLOCKSIZE);
                    free(previous);
                }
                return NULL;
            }
            if (ptr != result)
                memmove(result, ptr, blocks * BLOCKSIZE);
            return result;
        }
        break;

    default:
        /* Old size is a fragment; type is logarithm to base two of
           the fragment size. */
        if ((size > 1 << (type - 1)) && (size <= 1 << type))
            /* New size is the same kind of fragment. */
            return ptr;
        else {
            /* New size is different; allocate a new space, and copy
               the lesser of the new size and the old. */
            result = malloc(size);
            if (!result)
                return NULL;
            memcpy(result, ptr, MIN(size, 1 << type));
            free(ptr);
            return result;
        }
        break;
    }
}
Ejemplo n.º 5
0
void *mrealloc(xbt_mheap_t mdp, void *ptr, size_t size)
{
  void *result;
  int type;
  size_t block, blocks, oldlimit;

  /* Only keep real realloc, and reroute hidden malloc and free to the relevant functions */
  if (size == 0) {
    mfree(mdp, ptr);
    return mmalloc(mdp, 0);
  } else if (ptr == NULL) {
    return mmalloc(mdp, size);
  }

  //printf("(%s)realloc %p to %d...",xbt_thread_self_name(),ptr,(int)size);

  if ((char *) ptr < (char *) mdp->heapbase || BLOCK(ptr) > mdp->heapsize) {
    printf
      ("FIXME. Ouch, this pointer is not mine, refusing to proceed (another solution would be to malloc it instead of reallocing it, see source code)\n");
    result = mmalloc(mdp, size);
    abort();
    return result;
  }

  size_t requested_size = size; // The amount of memory requested by user, for real

  /* Work even if the user was stupid enough to ask a ridicullously small block (even 0-length),
   *    ie return a valid block that can be realloced and freed.
   * glibc malloc does not use this trick but return a constant pointer, but we need to enlist the free fragments later on.
   */
  if (size < SMALLEST_POSSIBLE_MALLOC)
    size = SMALLEST_POSSIBLE_MALLOC;

  block = BLOCK(ptr);

  type = mdp->heapinfo[block].type;

  switch (type) {
  case -1:
    fprintf(stderr, "Asked realloc a fragment coming from a *free* block. I'm puzzled.\n");
    abort();
    break;

  case 0:
    /* Maybe reallocate a large block to a small fragment.  */

    if (size <= BLOCKSIZE / 2) { // Full block -> Fragment; no need to optimize for time

      result = mmalloc(mdp, size);
      if (result != NULL) { // useless (mmalloc never returns NULL), but harmless
        memcpy(result, ptr, requested_size);
        mfree(mdp, ptr);
        return (result);
      }
    }

    /* Full blocks -> Full blocks; see if we can hold it in place. */
    blocks = BLOCKIFY(size);
    if (blocks < mdp->heapinfo[block].busy_block.size) {
      int it;
      /* The new size is smaller; return excess memory to the free list. */
      //printf("(%s) return excess memory...",xbt_thread_self_name());
      for (it= block+blocks; it< mdp->heapinfo[block].busy_block.size ; it++){
        mdp->heapinfo[it].type = 0; // FIXME that should be useless, type should already be 0 here
        mdp->heapinfo[it].busy_block.ignore = 0;
      }

      mdp->heapinfo[block + blocks].busy_block.size
        = mdp->heapinfo[block].busy_block.size - blocks;
      mfree(mdp, ADDRESS(block + blocks));

      mdp->heapinfo[block].busy_block.size = blocks;
      mdp->heapinfo[block].busy_block.busy_size = requested_size;
      mdp->heapinfo[block].busy_block.ignore = 0;

      result = ptr;
    } else if (blocks == mdp->heapinfo[block].busy_block.size) {

      /* No block size change necessary; only update the requested size  */
      result = ptr;
      mdp->heapinfo[block].busy_block.busy_size = requested_size;
      mdp->heapinfo[block].busy_block.ignore = 0;

    } else {
      /* Won't fit, so allocate a new region that will.
         Free the old region first in case there is sufficient adjacent free space to grow without moving.
         This trick mandates using a specific version of mmalloc that does not memset the memory to 0 after
           action for obvious reasons. */
      blocks = mdp->heapinfo[block].busy_block.size;
      /* Prevent free from actually returning memory to the system.  */
      oldlimit = mdp->heaplimit;
      mdp->heaplimit = 0;
      mfree(mdp, ptr);
      mdp->heaplimit = oldlimit;

      result = mmalloc_no_memset(mdp, requested_size);
      //fprintf(stderr,"remalloc(%zu)~>%p\n",requested_size,result);

      if (ptr != result)
        memmove(result, ptr, blocks * BLOCKSIZE);
      /* FIXME: we should memset the end of the recently area */
    }
    break;

  default: /* Fragment -> ??; type=logarithm to base two of the fragment size.  */

    if (size > (size_t) (1 << (type - 1)) && size <= (size_t) (1 << type)) {
      /* The new size is the same kind of fragment.  */
      //printf("(%s) new size is same kind of fragment...",xbt_thread_self_name());

      result = ptr;
      int frag_nb = RESIDUAL(result, BLOCKSIZE) >> type;
      mdp->heapinfo[block].busy_frag.frag_size[frag_nb] = requested_size;
      mdp->heapinfo[block].busy_frag.ignore[frag_nb] = 0;

    } else { /* fragment -> Either other fragment, or block */