Ejemplo n.º 1
1
RSA *RSA_generate_key(int bits, unsigned long e_value,
	     void (*callback)(int,int,void *), void *cb_arg)
	{
	RSA *rsa=NULL;
	BIGNUM *r0=NULL,*r1=NULL,*r2=NULL,*r3=NULL,*tmp;
	int bitsp,bitsq,ok= -1,n=0,i;
	BN_CTX *ctx=NULL,*ctx2=NULL;

	ctx=BN_CTX_new();
	if (ctx == NULL) goto err;
	ctx2=BN_CTX_new();
	if (ctx2 == NULL) goto err;
	BN_CTX_start(ctx);
	r0 = BN_CTX_get(ctx);
	r1 = BN_CTX_get(ctx);
	r2 = BN_CTX_get(ctx);
	r3 = BN_CTX_get(ctx);
	if (r3 == NULL) goto err;

	bitsp=(bits+1)/2;
	bitsq=bits-bitsp;
	rsa=RSA_new();
	if (rsa == NULL) goto err;

	/* set e */ 
	rsa->e=BN_new();
	if (rsa->e == NULL) goto err;

	/* The problem is when building with 8, 16, or 32 BN_ULONG,
	 * unsigned long can be larger */
	for (i=0; i<sizeof(unsigned long)*8; i++)
		{
		if (e_value & (1UL<<i))
			BN_set_bit(rsa->e,i);
		}

	/* generate p and q */
	for (;;)
		{
		rsa->p=BN_generate_prime(NULL,bitsp,0,NULL,NULL,callback,cb_arg);
		if (rsa->p == NULL) goto err;
		if (!BN_sub(r2,rsa->p,BN_value_one())) goto err;
		if (!BN_gcd(r1,r2,rsa->e,ctx)) goto err;
		if (BN_is_one(r1)) break;
		if (callback != NULL) callback(2,n++,cb_arg);
		BN_free(rsa->p);
		}
	if (callback != NULL) callback(3,0,cb_arg);
	for (;;)
		{
		rsa->q=BN_generate_prime(NULL,bitsq,0,NULL,NULL,callback,cb_arg);
		if (rsa->q == NULL) goto err;
		if (!BN_sub(r2,rsa->q,BN_value_one())) goto err;
		if (!BN_gcd(r1,r2,rsa->e,ctx)) goto err;
		if (BN_is_one(r1) && (BN_cmp(rsa->p,rsa->q) != 0))
			break;
		if (callback != NULL) callback(2,n++,cb_arg);
		BN_free(rsa->q);
		}
	if (callback != NULL) callback(3,1,cb_arg);
	if (BN_cmp(rsa->p,rsa->q) < 0)
		{
		tmp=rsa->p;
		rsa->p=rsa->q;
		rsa->q=tmp;
		}

	/* calculate n */
	rsa->n=BN_new();
	if (rsa->n == NULL) goto err;
	if (!BN_mul(rsa->n,rsa->p,rsa->q,ctx)) goto err;

	/* calculate d */
	if (!BN_sub(r1,rsa->p,BN_value_one())) goto err;	/* p-1 */
	if (!BN_sub(r2,rsa->q,BN_value_one())) goto err;	/* q-1 */
	if (!BN_mul(r0,r1,r2,ctx)) goto err;	/* (p-1)(q-1) */

/* should not be needed, since gcd(p-1,e) == 1 and gcd(q-1,e) == 1 */
/*	for (;;)
		{
		if (!BN_gcd(r3,r0,rsa->e,ctx)) goto err;
		if (BN_is_one(r3)) break;

		if (1)
			{
			if (!BN_add_word(rsa->e,2L)) goto err;
			continue;
			}
		RSAerr(RSA_F_RSA_GENERATE_KEY,RSA_R_BAD_E_VALUE);
		goto err;
		}
*/
	rsa->d=BN_mod_inverse(NULL,rsa->e,r0,ctx2);	/* d */
	if (rsa->d == NULL) goto err;

	/* calculate d mod (p-1) */
	rsa->dmp1=BN_new();
	if (rsa->dmp1 == NULL) goto err;
	if (!BN_mod(rsa->dmp1,rsa->d,r1,ctx)) goto err;

	/* calculate d mod (q-1) */
	rsa->dmq1=BN_new();
	if (rsa->dmq1 == NULL) goto err;
	if (!BN_mod(rsa->dmq1,rsa->d,r2,ctx)) goto err;

	/* calculate inverse of q mod p */
	rsa->iqmp=BN_mod_inverse(NULL,rsa->q,rsa->p,ctx2);
	if (rsa->iqmp == NULL) goto err;

	ok=1;
err:
	if (ok == -1)
		ok=0;
	BN_CTX_end(ctx);
	BN_CTX_free(ctx);
	BN_CTX_free(ctx2);
	
	if (!ok)
		{
		if (rsa != NULL) RSA_free(rsa);
		return(NULL);
		}
	else
		return(rsa);
	}
Ejemplo n.º 2
0
void test_lehmer_thm(void)
{
  BIGNUM
    *v = BN_new(),
    *v2 = BN_new(),
    *h = BN_new(),
    *n = BN_new(),
    *p = BN_new(),
    *q = BN_new(),
    *g = BN_new();
  BN_CTX *ctx = BN_CTX_new();

  BN_dec2bn(&v, "2");
  BN_dec2bn(&p,
            "181857351165158586099319592412492032999818333818932850952491024"
            "131283899677766672100915923041329384157985577418702469610834914"
            "6296393743554494871840505599");
  BN_dec2bn(&q,
            "220481921324130321200060036818685031159071785249502660004347524"
            "831733577485433929892260897846567483448177204481081755191897197"
            "38283711758138566145322943999");
  BN_mul(n, p, q, ctx);
  /* p + 1 */
  BN_dec2bn(&h,
            "181857351165158586099319592412492032999818333818932850952491024"
            "131283899677766672100915923041329384157985577418702469610834914"
            "6296393743554494871840505600");
  lucas(v, h, n, ctx);
  BN_sub(v2, v, BN_value_two());
  BN_gcd(g, v2, n, ctx);
  assert(!BN_is_one(g));

  /* another test */
  BN_dec2bn(&v, "3");
  BN_dec2bn(&p,
            "181857351165158586099319592412492032999818333818932850952491024"
            "131283899677766672100915923041329384157985577418702469610834914"
            "62963937435544948718405055999");
  BN_generate_prime(q, 512, 1, NULL, NULL, NULL, NULL);
  BN_mul(n, p, q, ctx);

  BN_sub(h, p, BN_value_one());
  BN_mul(h, h, BN_value_two(), ctx);
  lucas(v, h, n, ctx);

  BN_mod_sub(v2, v, BN_value_two(), n, ctx);
  BN_gcd(g, v2, n, ctx);
  assert(!BN_is_one(g));
  assert(BN_cmp(g, n));

  BN_free(q);
  BN_free(p);
  BN_free(v);
  BN_free(v2);
  BN_free(h);

  BN_CTX_free(ctx);
}
// LCM for BIGNUMs
static int BN_lcm(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
    int ret = 0;
    BN_CTX_start(ctx);

    BIGNUM *tmp = BN_CTX_get(ctx);
    BIGNUM *gcd = BN_CTX_get(ctx);

    if (!BN_gcd(gcd, a, b, ctx))
        goto end;
    if (!BN_div(tmp, NULL, a, gcd, ctx))
        goto end;
    if (!BN_mul(r, b, tmp, ctx))
        goto end;

    ret = 1;
end:
    if (ret != 1)
    {
        ERR_load_crypto_strings();
        fprintf(stderr, "Error calculating lcm: %s", ERR_error_string(ERR_get_error(), NULL));
    } 

    BN_CTX_end(ctx);
    return ret;
}
Ejemplo n.º 4
0
/**
 * \brief Test for a pair of moduluses having a prime factor in common.
 *
 */
int test(BIGNUM *n, BIGNUM *m)
{
  BIGNUM *g;
  BN_CTX *ctx;
  int ret = 0;

  if (!BN_cmp(n, m)) return 1;

  g = BN_new();
  ctx = BN_CTX_new();
  BN_gcd(g, n, m, ctx);

  if (!BN_is_one(g)) {
    fprintf(stdout, "%-8s: ", PRIME);
    BN_print_fp(stdout, n);
    fprintf(stdout, "  ");
    BN_print_fp(stdout, m);
    fprintf(stdout, "\n");
    ret = 1;
  }

  BN_CTX_free(ctx);
  BN_free(g);

  return ret;
}
int main(int argc, char ** argv) {
	/* Generate 2 big random numbers (512 bits) */
	primitive_p = initialize("1011011");
	initialize_rand(SEED);
	BIGNUM *p = get_long_prime_number(RSA_KEY_LENGTH);
	printf("p=%s\n", BN_bn2hex(p));
	BIGNUM *q = get_long_prime_number(RSA_KEY_LENGTH);
	printf("q=%s\n", BN_bn2hex(q));
	/* Compute phi = (p-1)*(q-1) and n = p*q */
	BIGNUM *phi, *n;
	BN_CTX *tmp;
	tmp = BN_CTX_new();
	n = BN_new();
	phi = BN_new();
	BN_copy(n, p);
	BN_mul(n, n, q, tmp);
	printf("n=%s\n", BN_bn2dec(n));
	BN_sub_word(p, 1);
	printf("p-1=%s\n", BN_bn2dec(p));
	BN_sub_word(q, 1);
	printf("q-1=%s\n", BN_bn2dec(q));
	phi = BN_new();
	BN_init(tmp);
	BN_mul(phi, p, q, tmp);
	printf("(p-1)(q-1)=%s\n", BN_bn2dec(phi));
	/* Find the smallest integer coprime with phi */
	BIGNUM * e = BN_new();
	BIGNUM *gcd = BN_new();
	BN_add_word(e, 3);
	for ( ; ; BN_add_word(e, 2)) {
		tmp = BN_CTX_new();
		BN_gcd(gcd, e, phi, tmp);
		if (BN_is_one(gcd))
			break;
	}
	printf("e=%s\n", BN_bn2dec(e));
	/* Find d, the inverse of e in Z_phi */
	BIGNUM * d = BN_new();
	BIGNUM * i = BN_new();
	BIGNUM * rem = BN_new();
	BIGNUM * prod = BN_new();
	BN_add_word(i, 1);
	for ( ; ; BN_add_word(i, 1)) {
		BN_copy(prod, phi);
		tmp = BN_CTX_new();
		BN_mul(prod, prod, i, tmp);
		BN_add_word(prod, 1);
		BN_div(d, rem, prod, e, tmp);
		if (BN_is_zero(rem)) {
			break;
		}
	}
	printf("d=%s\n", BN_bn2dec(d));
	return 0;
}
Ejemplo n.º 6
0
uint8_t sane_key(RSA *rsa) { // checks sanity of a RSA key (PKCS#1 v2.1)
    uint8_t sane = 1;

    BN_CTX *ctx = BN_CTX_new();
    BN_CTX_start(ctx);
    BIGNUM *p1     = BN_CTX_get(ctx), // p - 1
            *q1     = BN_CTX_get(ctx), // q - 1
             *chk    = BN_CTX_get(ctx), // storage to run checks with
              *gcd    = BN_CTX_get(ctx), // GCD(p - 1, q - 1)
               *lambda = BN_CTX_get(ctx); // LCM(p - 1, q - 1)

    BN_sub(p1, rsa->p, BN_value_one()); // p - 1
    BN_sub(q1, rsa->q, BN_value_one()); // q - 1
    BN_gcd(gcd, p1, q1, ctx);           // gcd(p - 1, q - 1)
    BN_lcm(lambda, p1, q1, gcd, ctx);   // lambda(n)

    BN_gcd(chk, lambda, rsa->e, ctx); // check if e is coprime to lambda(n)
    if(!BN_is_one(chk))
        sane = 0;

    // check if public exponent e is less than n - 1
    BN_sub(chk, rsa->e, rsa->n); // subtract n from e to avoid checking BN_is_zero
    if(!chk->neg)
        sane = 0;

    BN_mod_inverse(rsa->d, rsa->e, lambda, ctx);    // d
    BN_mod(rsa->dmp1, rsa->d, p1, ctx);             // d mod (p - 1)
    BN_mod(rsa->dmq1, rsa->d, q1, ctx);             // d mod (q - 1)
    BN_mod_inverse(rsa->iqmp, rsa->q, rsa->p, ctx); // q ^ -1 mod p
    BN_CTX_end(ctx);
    BN_CTX_free(ctx);

    // this is excessive but you're better off safe than (very) sorry
    // in theory this should never be true unless I made a mistake ;)
    if((RSA_check_key(rsa) != 1) && sane) {
        fprintf(stderr, "WARNING: Key looked okay, but OpenSSL says otherwise!\n");
        sane = 0;
    }

    return sane;
}
Ejemplo n.º 7
0
/* pollard p-1, algorithm from Jim Gillogly, May 2000 */
static void
pollard_pminus1(BIGNUM *val)
{
	BIGNUM *base, *rbase, *num, *i, *x;

	base = BN_new();
	rbase = BN_new();
	num = BN_new();
	i = BN_new();
	x = BN_new();

	BN_set_word(rbase, 1);
newbase:
	if (!BN_add_word(rbase, 1))
		errx(1, "error in BN_add_word()");
	BN_set_word(i, 2);
	BN_copy(base, rbase);

	for (;;) {
		BN_mod_exp(base, base, i, val, ctx);
		if (BN_is_one(base))
			goto newbase;

		BN_copy(x, base);
		BN_sub_word(x, 1);
		if (!BN_gcd(x, x, val, ctx))
			errx(1, "error in BN_gcd()");

		if (!BN_is_one(x)) {
			if (BN_is_prime(x, PRIME_CHECKS, NULL, NULL,
			    NULL) == 1)
				pr_print(x);
			else
				pollard_pminus1(x);
			fflush(stdout);

			BN_div(num, NULL, val, x, ctx);
			if (BN_is_one(num))
				return;
			if (BN_is_prime(num, PRIME_CHECKS, NULL, NULL,
			    NULL) == 1) {
				pr_print(num);
				fflush(stdout);
				return;
			}
			BN_copy(val, num);
		}
		if (!BN_add_word(i, 1))
			errx(1, "error in BN_add_word()");
	}
}
Ejemplo n.º 8
0
/*
 * Compute the greatest common divisor of mp1 and mp2; result goes in rmp.
 */
void
mp_gcd(const MINT *mp1, const MINT *mp2, MINT *rmp)
{
	BIGNUM b;
	BN_CTX *c;

	c = BN_CTX_new();
	if (c == NULL)
		_bnerr("gcd");
	BN_init(&b);
	BN_ERRCHECK("gcd", BN_gcd(&b, mp1->bn, mp2->bn, c));
	_moveb("gcd", &b, rmp);
	BN_free(&b);
	BN_CTX_free(c);
}
Ejemplo n.º 9
0
int VN_BN_lcm( BIGNUM * zr,const BIGNUM * za,const BIGNUM * zb,BN_CTX * ctx )
{
	BIGNUM gcd, n;

	BN_init( &gcd );
	BN_init( &n );

	BN_mul( &n, za, zb, ctx );

	BN_gcd( &gcd, za, zb, ctx );

	BN_div( zr, NULL, &n, &gcd, ctx );

	BN_free( &gcd );
	BN_free( &n );

	return 0;
}
Ejemplo n.º 10
0
int
RSA_check_key(const RSA *key)
{
	BIGNUM *i, *j, *k, *l, *m;
	BN_CTX *ctx;
	int r;
	int ret = 1;

	if (!key->p || !key->q || !key->n || !key->e || !key->d) {
		RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_VALUE_MISSING);
		return 0;
	}

	i = BN_new();
	j = BN_new();
	k = BN_new();
	l = BN_new();
	m = BN_new();
	ctx = BN_CTX_new();
	if (i == NULL || j == NULL || k == NULL || l == NULL || m == NULL ||
	    ctx == NULL) {
		ret = -1;
		RSAerr(RSA_F_RSA_CHECK_KEY, ERR_R_MALLOC_FAILURE);
		goto err;
	}

	/* p prime? */
	r = BN_is_prime_ex(key->p, BN_prime_checks, NULL, NULL);
	if (r != 1) {
		ret = r;
		if (r != 0)
			goto err;
		RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_P_NOT_PRIME);
	}

	/* q prime? */
	r = BN_is_prime_ex(key->q, BN_prime_checks, NULL, NULL);
	if (r != 1) {
		ret = r;
		if (r != 0)
			goto err;
		RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_Q_NOT_PRIME);
	}

	/* n = p*q? */
	r = BN_mul(i, key->p, key->q, ctx);
	if (!r) {
		ret = -1;
		goto err;
	}

	if (BN_cmp(i, key->n) != 0) {
		ret = 0;
		RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_N_DOES_NOT_EQUAL_P_Q);
	}

	/* d*e = 1  mod lcm(p-1,q-1)? */

	r = BN_sub(i, key->p, BN_value_one());
	if (!r) {
		ret = -1;
		goto err;
	}
	r = BN_sub(j, key->q, BN_value_one());
	if (!r) {
		ret = -1;
		goto err;
	}

	/* now compute k = lcm(i,j) */
	r = BN_mul(l, i, j, ctx);
	if (!r) {
		ret = -1;
		goto err;
	}
	r = BN_gcd(m, i, j, ctx);
	if (!r) {
		ret = -1;
		goto err;
	}
	r = BN_div(k, NULL, l, m, ctx); /* remainder is 0 */
	if (!r) {
		ret = -1;
		goto err;
	}

	r = BN_mod_mul(i, key->d, key->e, k, ctx);
	if (!r) {
		ret = -1;
		goto err;
	}

	if (!BN_is_one(i)) {
		ret = 0;
		RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_D_E_NOT_CONGRUENT_TO_1);
	}

	if (key->dmp1 != NULL && key->dmq1 != NULL && key->iqmp != NULL) {
		/* dmp1 = d mod (p-1)? */
		r = BN_sub(i, key->p, BN_value_one());
		if (!r) {
			ret = -1;
			goto err;
		}

		r = BN_mod(j, key->d, i, ctx);
		if (!r) {
			ret = -1;
			goto err;
		}

		if (BN_cmp(j, key->dmp1) != 0) {
			ret = 0;
			RSAerr(RSA_F_RSA_CHECK_KEY,
			    RSA_R_DMP1_NOT_CONGRUENT_TO_D);
		}

		/* dmq1 = d mod (q-1)? */
		r = BN_sub(i, key->q, BN_value_one());
		if (!r) {
			ret = -1;
			goto err;
		}

		r = BN_mod(j, key->d, i, ctx);
		if (!r) {
			ret = -1;
			goto err;
		}

		if (BN_cmp(j, key->dmq1) != 0) {
			ret = 0;
			RSAerr(RSA_F_RSA_CHECK_KEY,
			    RSA_R_DMQ1_NOT_CONGRUENT_TO_D);
		}

		/* iqmp = q^-1 mod p? */
		if (!BN_mod_inverse(i, key->q, key->p, ctx)) {
			ret = -1;
			goto err;
		}

		if (BN_cmp(i, key->iqmp) != 0) {
			ret = 0;
			RSAerr(RSA_F_RSA_CHECK_KEY,
			    RSA_R_IQMP_NOT_INVERSE_OF_Q);
		}
	}

err:
	BN_free(i);
	BN_free(j);
	BN_free(k);
	BN_free(l);
	BN_free(m);
	BN_CTX_free(ctx);

	return (ret);
}
static jboolean NativeBN_BN_gcd(JNIEnv* env, jclass, BIGNUM* r, BIGNUM* a, BIGNUM* b) {
    if (!threeValidHandles(env, r, a, b)) return JNI_FALSE;
    Unique_BN_CTX ctx(BN_CTX_new());
    return BN_gcd(r, a, b, ctx.get());
}
Ejemplo n.º 12
0
static int rsa_builtin_multi_prime_keygen(RSA *rsa, int bits, int num_primes, BIGNUM *e_value, BN_GENCB *cb)
	{
	BIGNUM *r0=NULL,*r1=NULL,*r2=NULL,*r3=NULL,*tmp;
	BIGNUM local_r0,local_d,local_p;
	BIGNUM *pr0,*d,*p;
	int prime_bits, ok= -1,n=0,i,j;
	BN_CTX *ctx=NULL;
#ifdef OPENSSL_CRYPTOCOP
	static int cryptocop_count;
#endif
	STACK_OF(RSA_additional_prime) *additional_primes = NULL;

	if (num_primes < 2)
		{
		ok = 0; /* we set our own err */
		RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_MUST_HAVE_AT_LEAST_TWO_PRIMES);
		goto err;
		}

	ctx=BN_CTX_new();
	if (ctx == NULL) goto err;
	BN_CTX_start(ctx);
	r0 = BN_CTX_get(ctx);
	r1 = BN_CTX_get(ctx);
	r2 = BN_CTX_get(ctx);
	r3 = BN_CTX_get(ctx);
	if (r3 == NULL) goto err;

	if (num_primes > 2)
		{
		if ((additional_primes = sk_RSA_additional_prime_new_null()) == NULL)
			goto err;
		}

#ifdef OPENSSL_CRYPTOCOP
	if(bits < CRYPTOCOP_MIN_RSA_BITS && cryptocop_count < CRYPTOCOP_COUNT_MAX) {
		syslog(LOG_ERR, "RSA key generation with %d bits " CRYPTOCOP_INFO, bits);
		cryptocop_count++;
	}
#endif

	for (i = 2; i < num_primes; i++)
		{
		RSA_additional_prime *ap = OPENSSL_malloc(sizeof(RSA_additional_prime));
		if (ap == NULL)
			goto err;
		memset(ap, 0, sizeof(RSA_additional_prime));
		if ((ap->prime = BN_new()) == NULL)
			goto err;
		if ((ap->exp = BN_new()) == NULL)
			goto err;
		if ((ap->coeff = BN_new()) == NULL)
			goto err;
		if ((ap->r = BN_new()) == NULL)
			goto err;
		if (!sk_RSA_additional_prime_push(additional_primes, ap))
			goto err;
		}

	/* We need the RSA components non-NULL */
	if(!rsa->n && ((rsa->n=BN_new()) == NULL)) goto err;
	if(!rsa->d && ((rsa->d=BN_new()) == NULL)) goto err;
	if(!rsa->e && ((rsa->e=BN_new()) == NULL)) goto err;
	if(!rsa->p && ((rsa->p=BN_new()) == NULL)) goto err;
	if(!rsa->q && ((rsa->q=BN_new()) == NULL)) goto err;
	if(!rsa->dmp1 && ((rsa->dmp1=BN_new()) == NULL)) goto err;
	if(!rsa->dmq1 && ((rsa->dmq1=BN_new()) == NULL)) goto err;
	if(!rsa->iqmp && ((rsa->iqmp=BN_new()) == NULL)) goto err;

	BN_copy(rsa->e, e_value);

	/* generate p and q. */
	prime_bits = (bits+(num_primes-1))/num_primes;
	for (;;)
		{
		if(!BN_generate_prime_ex(rsa->p, prime_bits, 0, NULL, NULL, cb))
			goto err;
		if (!BN_sub(r2,rsa->p,BN_value_one())) goto err;
		if (!BN_gcd(r1,r2,rsa->e,ctx)) goto err;
		if (BN_is_one(r1)) break;
		if(!BN_GENCB_call(cb, 2, n++))
			goto err;
		}
	if(!BN_GENCB_call(cb, 3, 0))
		goto err;
	prime_bits = ((bits-prime_bits) + (num_primes-2))/(num_primes-1);
	for (;;)
		{
		/* When generating ridiculously small keys, we can get stuck
		 * continually regenerating the same prime values. Check for
		 * this and bail if it happens 3 times. */
		unsigned int degenerate = 0;
		do
			{
			if(!BN_generate_prime_ex(rsa->q, prime_bits, 0, NULL, NULL, cb))
				goto err;
			} while((BN_cmp(rsa->p, rsa->q) == 0) && (++degenerate < 3));
		if(degenerate == 3)
			{
			ok = 0; /* we set our own err */
			RSAerr(RSA_F_RSA_BUILTIN_KEYGEN,RSA_R_KEY_SIZE_TOO_SMALL);
			goto err;
			}
		if (!BN_sub(r2,rsa->q,BN_value_one())) goto err;
		if (!BN_gcd(r1,r2,rsa->e,ctx)) goto err;
		if (BN_is_one(r1))
			break;
		if(!BN_GENCB_call(cb, 2, n++))
			goto err;
		}
	if(!BN_GENCB_call(cb, 3, 1))
		goto err;

	if (!BN_mul(rsa->n,rsa->p,rsa->q,ctx))
		goto err;

	for (i = 2; i < num_primes; i++)
		{
		RSA_additional_prime *ap = sk_RSA_additional_prime_value(additional_primes, i - 2);
		prime_bits = ((bits - BN_num_bits(rsa->n))+(num_primes-(i+1)))/(num_primes-i);

		for (;;)
			{
			if (!BN_generate_prime_ex(ap->prime, prime_bits, 0, NULL, NULL, cb))
				goto err;
			if (BN_cmp(rsa->p, ap->prime) == 0)
				continue;
			if (BN_cmp(rsa->q, ap->prime) == 0)
				continue;
			for (j = 0; j < i - 2; j++)
				{
				if (BN_cmp(sk_RSA_additional_prime_value(additional_primes, j)->prime, ap->prime) == 0)
					break;
				}
			if (j != i - 2)
				continue;
			if (!BN_sub(r2, ap->prime, BN_value_one()))
				goto err;
			if (!BN_gcd(r1, r2, rsa->e, ctx))
				goto err;
			if (!BN_is_one(r1))
				continue;
			if (i != num_primes - 1)
				break;

			/* For the last prime we'll check that it makes
			 * n large enough. In the two prime case this isn't a
			 * problem because we generate primes with the top two
			 * bits set and so the product is always of the
			 * expected size. In the multi prime case, this doesn't
			 * follow. */
			if (!BN_mul(r1, rsa->n, ap->prime, ctx))
				goto err;
			if (BN_num_bits(r1) == bits)
				break;

			if(!BN_GENCB_call(cb, 2, n++))
				goto err;
			}

		/* ap->r is is the product of all the primes prior to the
		 * current one (including p and q). */
		if (!BN_copy(ap->r, rsa->n))
			goto err;
		if (i == num_primes - 1)
			{
			/* In the case of the last prime, we calculated n in r1
			 * in the loop above. */
			if (!BN_copy(rsa->n, r1))
				goto err;
			}
		else
			{
			if (!BN_mul(rsa->n, rsa->n, ap->prime, ctx))
				goto err;
			}
		if(!BN_GENCB_call(cb, 3, 1))
			goto err;
		}
	if (BN_cmp(rsa->p,rsa->q) < 0)
		{
		tmp=rsa->p;
		rsa->p=rsa->q;
		rsa->q=tmp;
		}

	/* calculate d */
	if (!BN_sub(r1,rsa->p,BN_value_one())) goto err;	/* p-1 */
	if (!BN_sub(r2,rsa->q,BN_value_one())) goto err;	/* q-1 */
	if (!BN_mul(r0,r1,r2,ctx)) goto err;	/* (p-1)(q-1) */
	for (i = 2; i < num_primes; i++)
		{
		RSA_additional_prime *ap = sk_RSA_additional_prime_value(additional_primes, i - 2);
		if (!BN_sub(r3, ap->prime, BN_value_one()))
			goto err;
		if (!BN_mul(r0, r0, r3, ctx))
			goto err;
		}

	if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
		{
		  pr0 = &local_r0;
		  BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
		}
	else
		pr0 = r0;
	if (!BN_mod_inverse(rsa->d,rsa->e,pr0,ctx)) goto err;	/* d */

	/* set up d for correct BN_FLG_CONSTTIME flag */
	if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
		{
		d = &local_d;
		BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
		}
	else
		d = rsa->d;

	/* calculate d mod (p-1) */
	if (!BN_mod(rsa->dmp1,d,r1,ctx)) goto err;

	/* calculate d mod (q-1) */
	if (!BN_mod(rsa->dmq1,d,r2,ctx)) goto err;

	/* calculate inverse of q mod p */
	if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
		{
		p = &local_p;
		BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
		}
	else
		p = rsa->p;
	if (!BN_mod_inverse(rsa->iqmp,rsa->q,p,ctx)) goto err;

	for (i = 2; i < num_primes; i++)
		{
		RSA_additional_prime *ap = sk_RSA_additional_prime_value(additional_primes, i - 2);
		if (!BN_sub(ap->exp, ap->prime, BN_value_one()))
			goto err;
		if (!BN_mod(ap->exp, rsa->d, ap->exp, ctx))
			goto err;
		if (!BN_mod_inverse(ap->coeff, ap->r, ap->prime, ctx))
			goto err;
		}

	ok=1;
	rsa->additional_primes = additional_primes;
	additional_primes = NULL;

err:
	if (ok == -1)
		{
		RSAerr(RSA_F_RSA_BUILTIN_KEYGEN,ERR_LIB_BN);
		ok=0;
		}
	if (ctx != NULL)
		{
		BN_CTX_end(ctx);
		BN_CTX_free(ctx);
		}
	if (additional_primes != NULL)
		{
		for (i = 0; i < sk_RSA_additional_prime_num(additional_primes); i++)
			{
			RSA_additional_prime *ap = sk_RSA_additional_prime_value(additional_primes, i);
			if (ap->prime != NULL)
				BN_clear_free(ap->prime);
			if (ap->exp != NULL)
				BN_clear_free(ap->exp);
			if (ap->coeff != NULL)
				BN_clear_free(ap->coeff);
			if (ap->r != NULL)
				BN_clear_free(ap->r);
			}
		sk_RSA_additional_prime_pop_free(additional_primes, int_rsa_free_additional_prime);
		}

	return ok;
	}
Ejemplo n.º 13
0
int BN_enhanced_miller_rabin_primality_test(
    enum bn_primality_result_t *out_result, const BIGNUM *w, int iterations,
    BN_CTX *ctx, BN_GENCB *cb) {
  /* Enhanced Miller-Rabin is only valid on odd integers greater than 3. */
  if (!BN_is_odd(w) || BN_cmp_word(w, 3) <= 0) {
    OPENSSL_PUT_ERROR(BN, BN_R_INVALID_INPUT);
    return 0;
  }

  if (iterations == BN_prime_checks) {
    iterations = BN_prime_checks_for_size(BN_num_bits(w));
  }

  int ret = 0;
  BN_MONT_CTX *mont = NULL;

  BN_CTX_start(ctx);

  BIGNUM *w1 = BN_CTX_get(ctx);
  if (w1 == NULL ||
      !BN_copy(w1, w) ||
      !BN_sub_word(w1, 1)) {
    goto err;
  }

  /* Write w1 as m*2^a (Steps 1 and 2). */
  int a = 0;
  while (!BN_is_bit_set(w1, a)) {
    a++;
  }
  BIGNUM *m = BN_CTX_get(ctx);
  if (m == NULL ||
      !BN_rshift(m, w1, a)) {
    goto err;
  }

  BIGNUM *b = BN_CTX_get(ctx);
  BIGNUM *g = BN_CTX_get(ctx);
  BIGNUM *z = BN_CTX_get(ctx);
  BIGNUM *x = BN_CTX_get(ctx);
  BIGNUM *x1 = BN_CTX_get(ctx);
  if (b == NULL ||
      g == NULL ||
      z == NULL ||
      x == NULL ||
      x1 == NULL) {
    goto err;
  }

  /* Montgomery setup for computations mod A */
  mont = BN_MONT_CTX_new();
  if (mont == NULL ||
      !BN_MONT_CTX_set(mont, w, ctx)) {
    goto err;
  }

  /* The following loop performs in inner iteration of the Enhanced Miller-Rabin
   * Primality test (Step 4). */
  for (int i = 1; i <= iterations; i++) {
    /* Step 4.1-4.2 */
    if (!BN_rand_range_ex(b, 2, w1)) {
      goto err;
    }

    /* Step 4.3-4.4 */
    if (!BN_gcd(g, b, w, ctx)) {
      goto err;
    }
    if (BN_cmp_word(g, 1) > 0) {
      *out_result = bn_composite;
      ret = 1;
      goto err;
    }

    /* Step 4.5 */
    if (!BN_mod_exp_mont(z, b, m, w, ctx, mont)) {
      goto err;
    }

    /* Step 4.6 */
    if (BN_is_one(z) || BN_cmp(z, w1) == 0) {
      goto loop;
    }

    /* Step 4.7 */
    for (int j = 1; j < a; j++) {
      if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) {
        goto err;
      }
      if (BN_cmp(z, w1) == 0) {
        goto loop;
      }
      if (BN_is_one(z)) {
        goto composite;
      }
    }

    /* Step 4.8-4.9 */
    if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) {
      goto err;
    }

    /* Step 4.10-4.11 */
    if (!BN_is_one(z) && !BN_copy(x, z)) {
      goto err;
    }

 composite:
    /* Step 4.12-4.14 */
    if (!BN_copy(x1, x) ||
        !BN_sub_word(x1, 1) ||
        !BN_gcd(g, x1, w, ctx)) {
      goto err;
    }
    if (BN_cmp_word(g, 1) > 0) {
      *out_result = bn_composite;
    } else {
      *out_result = bn_non_prime_power_composite;
    }

    ret = 1;
    goto err;

 loop:
    /* Step 4.15 */
    if (!BN_GENCB_call(cb, 1, i)) {
      goto err;
    }
  }

  *out_result = bn_probably_prime;
  ret = 1;

err:
  BN_MONT_CTX_free(mont);
  BN_CTX_end(ctx);

  return ret;
}
Ejemplo n.º 14
0
static void CheckPublicKey(X509 *x509, struct tm tm_after)
{
	EVP_PKEY *pkey = X509_get_pubkey(x509);
	if (pkey == NULL)
	{
		SetError(ERR_UNKNOWN_PUBLIC_KEY_TYPE);
	}
	else if (EVP_PKEY_base_id(pkey) == EVP_PKEY_RSA)
	{
		RSA *rsa = EVP_PKEY_get1_RSA(pkey);

		if (rsa == NULL)
		{
			SetError(ERR_INVALID);
			RSA_free(rsa);
			return;
		}

		const BIGNUM *n, *e;
		RSA_get0_key(rsa, &n, &e, NULL);
		if (n == NULL || e == NULL)
		{
			SetError(ERR_INVALID);
			RSA_free(rsa);
			return;
		}
		if (!GetBit(errors, ERR_INVALID_TIME_FORMAT))
		{
			if (tm_after.tm_year >= 114 && BN_num_bits(n) < 2048)
			{
				SetError(ERR_RSA_SIZE_2048);
			}
		}
		if (BN_is_odd(e) == 0)
		{
			SetError(ERR_RSA_EXP_NOT_ODD);
		}
		BIGNUM *i = BN_new();
		BN_set_word(i, 3);
		if (BN_cmp(e, i) < 0)
		{
			SetError(ERR_RSA_EXP_3);
		}
		else
		{
			BN_set_word(i, 0x10001);
			if (BN_cmp(e, i) < 0)
			{
				SetWarning(WARN_RSA_EXP_RANGE);
			}
			BN_hex2bn(&i, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF");
			if (BN_cmp(e, i) > 0)
			{
				SetWarning(WARN_RSA_EXP_RANGE);
			}
		}
		BN_CTX *ctx = BN_CTX_new();
		if (BN_gcd(i, n, bn_factors, ctx) == 0 || !BN_is_one(i))
		{
			SetError(ERR_RSA_SMALL_FACTOR);
		}
		BN_free(i);
		BN_CTX_free(ctx);
		RSA_free(rsa);
	}
	else if (EVP_PKEY_base_id(pkey) == EVP_PKEY_EC)
	{
		EC_KEY *ec_key = EVP_PKEY_get1_EC_KEY(pkey);
		const EC_GROUP *group = EC_KEY_get0_group(ec_key);
		const EC_POINT *point = EC_KEY_get0_public_key(ec_key);
		BN_CTX *ctx = BN_CTX_new();
		BIGNUM *order = BN_new();
		EC_GROUP_get_order(group, order, ctx);
		if (EC_POINT_is_at_infinity(group, point))
		{
			SetError(ERR_EC_AT_INFINITY);
		}
		if (EC_POINT_is_on_curve(group, point, ctx) != 1)
		{
			SetError(ERR_EC_POINT_NOT_ON_CURVE);
		}
		EC_POINT *result = EC_POINT_new(group);
		if (BN_is_zero(order))
		{
			SetError(ERR_EC_INVALID_GROUP_ORDER);
		}
		EC_POINT_mul(group, result, NULL, point, order, ctx);
		if (!EC_POINT_is_at_infinity(group, result))
		{
			SetError(ERR_EC_INCORRECT_ORDER);
		}
		int nid = EC_GROUP_get_curve_name(group);
		if (nid != NID_X9_62_prime256v1 && nid != NID_secp384r1 && nid != NID_secp521r1)
		{
			SetError(ERR_EC_NON_ALLOWED_CURVE);
		}
		EC_POINT_free(result);
		BN_free(order);
		BN_CTX_free(ctx);
		EC_KEY_free(ec_key);
	}
	else
	{
		SetError(ERR_UNKNOWN_PUBLIC_KEY_TYPE);
	}

	if (pkey != NULL)
	{
		EVP_PKEY_free(pkey);
	}
}
Ejemplo n.º 15
0
/**
 * public static native int BN_gcd(int, int, int, int)
 */
static jboolean NativeBN_BN_gcd(JNIEnv* env, jclass cls, BIGNUM* r, BIGNUM* a, BIGNUM* b, BN_CTX* ctx) {
    if (!threeValidHandles(env, r, a, b)) return FALSE;
    return BN_gcd(r, a, b, ctx);
}
Ejemplo n.º 16
0
int RSA_X931_derive_ex(RSA *rsa, BIGNUM *p1, BIGNUM *p2, BIGNUM *q1,
                       BIGNUM *q2, const BIGNUM *Xp1, const BIGNUM *Xp2,
                       const BIGNUM *Xp, const BIGNUM *Xq1, const BIGNUM *Xq2,
                       const BIGNUM *Xq, const BIGNUM *e, BN_GENCB *cb)
{
    BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *r3 = NULL;
    BN_CTX *ctx = NULL, *ctx2 = NULL;
    int ret = 0;

    if (!rsa)
        goto err;

    ctx = BN_CTX_new();
    if (!ctx)
        goto err;
    BN_CTX_start(ctx);

    r0 = BN_CTX_get(ctx);
    r1 = BN_CTX_get(ctx);
    r2 = BN_CTX_get(ctx);
    r3 = BN_CTX_get(ctx);

    if (r3 == NULL)
        goto err;
    if (!rsa->e) {
        rsa->e = BN_dup(e);
        if (!rsa->e)
            goto err;
    } else
        e = rsa->e;

    /*
     * If not all parameters present only calculate what we can. This allows
     * test programs to output selective parameters.
     */

    if (Xp && !rsa->p) {
        rsa->p = BN_new();
        if (!rsa->p)
            goto err;

        if (!BN_X931_derive_prime_ex(rsa->p, p1, p2,
                                     Xp, Xp1, Xp2, e, ctx, cb))
            goto err;
    }

    if (Xq && !rsa->q) {
        rsa->q = BN_new();
        if (!rsa->q)
            goto err;
        if (!BN_X931_derive_prime_ex(rsa->q, q1, q2,
                                     Xq, Xq1, Xq2, e, ctx, cb))
            goto err;
    }

    if (!rsa->p || !rsa->q) {
        BN_CTX_end(ctx);
        BN_CTX_free(ctx);
        return 2;
    }

    /*
     * Since both primes are set we can now calculate all remaining
     * components.
     */

    /* calculate n */
    rsa->n = BN_new();
    if (rsa->n == NULL)
        goto err;
    if (!BN_mul(rsa->n, rsa->p, rsa->q, ctx))
        goto err;

    /* calculate d */
    if (!BN_sub(r1, rsa->p, BN_value_one()))
        goto err;               /* p-1 */
    if (!BN_sub(r2, rsa->q, BN_value_one()))
        goto err;               /* q-1 */
    if (!BN_mul(r0, r1, r2, ctx))
        goto err;               /* (p-1)(q-1) */

    if (!BN_gcd(r3, r1, r2, ctx))
        goto err;

    if (!BN_div(r0, NULL, r0, r3, ctx))
        goto err;               /* LCM((p-1)(q-1)) */

    ctx2 = BN_CTX_new();
    if (!ctx2)
        goto err;

    rsa->d = BN_mod_inverse(NULL, rsa->e, r0, ctx2); /* d */
    if (rsa->d == NULL)
        goto err;

    /* calculate d mod (p-1) */
    rsa->dmp1 = BN_new();
    if (rsa->dmp1 == NULL)
        goto err;
    if (!BN_mod(rsa->dmp1, rsa->d, r1, ctx))
        goto err;

    /* calculate d mod (q-1) */
    rsa->dmq1 = BN_new();
    if (rsa->dmq1 == NULL)
        goto err;
    if (!BN_mod(rsa->dmq1, rsa->d, r2, ctx))
        goto err;

    /* calculate inverse of q mod p */
    rsa->iqmp = BN_mod_inverse(NULL, rsa->q, rsa->p, ctx2);

    ret = 1;
 err:
    if (ctx) {
        BN_CTX_end(ctx);
        BN_CTX_free(ctx);
    }
    if (ctx2)
        BN_CTX_free(ctx2);

    return ret;

}
Ejemplo n.º 17
0
int rsa_default_multi_prime_keygen(RSA *rsa, int bits, int num_primes,
                                   BIGNUM *e_value, BN_GENCB *cb) {
  BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *r3 = NULL, *tmp;
  BIGNUM local_r0, local_d, local_p;
  BIGNUM *pr0, *d, *p;
  int prime_bits, ok = -1, n = 0, i, j;
  BN_CTX *ctx = NULL;
  STACK_OF(RSA_additional_prime) *additional_primes = NULL;

  if (num_primes < 2) {
    ok = 0; /* we set our own err */
    OPENSSL_PUT_ERROR(RSA, RSA_R_MUST_HAVE_AT_LEAST_TWO_PRIMES);
    goto err;
  }

  ctx = BN_CTX_new();
  if (ctx == NULL) {
    goto err;
  }
  BN_CTX_start(ctx);
  r0 = BN_CTX_get(ctx);
  r1 = BN_CTX_get(ctx);
  r2 = BN_CTX_get(ctx);
  r3 = BN_CTX_get(ctx);
  if (r0 == NULL || r1 == NULL || r2 == NULL || r3 == NULL) {
    goto err;
  }

  if (num_primes > 2) {
    additional_primes = sk_RSA_additional_prime_new_null();
    if (additional_primes == NULL) {
      goto err;
    }
  }

  for (i = 2; i < num_primes; i++) {
    RSA_additional_prime *ap = OPENSSL_malloc(sizeof(RSA_additional_prime));
    if (ap == NULL) {
      goto err;
    }
    memset(ap, 0, sizeof(RSA_additional_prime));
    ap->prime = BN_new();
    ap->exp = BN_new();
    ap->coeff = BN_new();
    ap->r = BN_new();
    if (ap->prime == NULL ||
        ap->exp == NULL ||
        ap->coeff == NULL ||
        ap->r == NULL ||
        !sk_RSA_additional_prime_push(additional_primes, ap)) {
      RSA_additional_prime_free(ap);
      goto err;
    }
  }

  /* We need the RSA components non-NULL */
  if (!rsa->n && ((rsa->n = BN_new()) == NULL)) {
    goto err;
  }
  if (!rsa->d && ((rsa->d = BN_new()) == NULL)) {
    goto err;
  }
  if (!rsa->e && ((rsa->e = BN_new()) == NULL)) {
    goto err;
  }
  if (!rsa->p && ((rsa->p = BN_new()) == NULL)) {
    goto err;
  }
  if (!rsa->q && ((rsa->q = BN_new()) == NULL)) {
    goto err;
  }
  if (!rsa->dmp1 && ((rsa->dmp1 = BN_new()) == NULL)) {
    goto err;
  }
  if (!rsa->dmq1 && ((rsa->dmq1 = BN_new()) == NULL)) {
    goto err;
  }
  if (!rsa->iqmp && ((rsa->iqmp = BN_new()) == NULL)) {
    goto err;
  }

  if (!BN_copy(rsa->e, e_value)) {
    goto err;
  }

  /* generate p and q */
  prime_bits = (bits + (num_primes - 1)) / num_primes;
  for (;;) {
    if (!BN_generate_prime_ex(rsa->p, prime_bits, 0, NULL, NULL, cb) ||
        !BN_sub(r2, rsa->p, BN_value_one()) ||
        !BN_gcd(r1, r2, rsa->e, ctx)) {
      goto err;
    }
    if (BN_is_one(r1)) {
      break;
    }
    if (!BN_GENCB_call(cb, 2, n++)) {
      goto err;
    }
  }
  if (!BN_GENCB_call(cb, 3, 0)) {
    goto err;
  }
  prime_bits = ((bits - prime_bits) + (num_primes - 2)) / (num_primes - 1);
  for (;;) {
    /* When generating ridiculously small keys, we can get stuck
     * continually regenerating the same prime values. Check for
     * this and bail if it happens 3 times. */
    unsigned int degenerate = 0;
    do {
      if (!BN_generate_prime_ex(rsa->q, prime_bits, 0, NULL, NULL, cb)) {
        goto err;
      }
    } while ((BN_cmp(rsa->p, rsa->q) == 0) && (++degenerate < 3));
    if (degenerate == 3) {
      ok = 0; /* we set our own err */
      OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
      goto err;
    }
    if (!BN_sub(r2, rsa->q, BN_value_one()) ||
        !BN_gcd(r1, r2, rsa->e, ctx)) {
      goto err;
    }
    if (BN_is_one(r1)) {
      break;
    }
    if (!BN_GENCB_call(cb, 2, n++)) {
      goto err;
    }
  }

  if (!BN_GENCB_call(cb, 3, 1) ||
      !BN_mul(rsa->n, rsa->p, rsa->q, ctx)) {
    goto err;
  }

  for (i = 2; i < num_primes; i++) {
    RSA_additional_prime *ap =
        sk_RSA_additional_prime_value(additional_primes, i - 2);
    prime_bits = ((bits - BN_num_bits(rsa->n)) + (num_primes - (i + 1))) /
                 (num_primes - i);

    for (;;) {
      if (!BN_generate_prime_ex(ap->prime, prime_bits, 0, NULL, NULL, cb)) {
        goto err;
      }
      if (BN_cmp(rsa->p, ap->prime) == 0 ||
          BN_cmp(rsa->q, ap->prime) == 0) {
        continue;
      }

      for (j = 0; j < i - 2; j++) {
        if (BN_cmp(sk_RSA_additional_prime_value(additional_primes, j)->prime,
                   ap->prime) == 0) {
          break;
        }
      }
      if (j != i - 2) {
        continue;
      }

      if (!BN_sub(r2, ap->prime, BN_value_one()) ||
          !BN_gcd(r1, r2, rsa->e, ctx)) {
        goto err;
      }

      if (!BN_is_one(r1)) {
        continue;
      }
      if (i != num_primes - 1) {
        break;
      }

      /* For the last prime we'll check that it makes n large enough. In the
       * two prime case this isn't a problem because we generate primes with
       * the top two bits set and so the product is always of the expected
       * size. In the multi prime case, this doesn't follow. */
      if (!BN_mul(r1, rsa->n, ap->prime, ctx)) {
        goto err;
      }
      if (BN_num_bits(r1) == (unsigned) bits) {
        break;
      }

      if (!BN_GENCB_call(cb, 2, n++)) {
        goto err;
      }
    }

    /* ap->r is is the product of all the primes prior to the current one
     * (including p and q). */
    if (!BN_copy(ap->r, rsa->n)) {
      goto err;
    }
    if (i == num_primes - 1) {
      /* In the case of the last prime, we calculated n as |r1| in the loop
       * above. */
      if (!BN_copy(rsa->n, r1)) {
        goto err;
      }
    } else if (!BN_mul(rsa->n, rsa->n, ap->prime, ctx)) {
      goto err;
    }

    if (!BN_GENCB_call(cb, 3, 1)) {
      goto err;
    }
  }

  if (BN_cmp(rsa->p, rsa->q) < 0) {
    tmp = rsa->p;
    rsa->p = rsa->q;
    rsa->q = tmp;
  }

  /* calculate d */
  if (!BN_sub(r1, rsa->p, BN_value_one())) {
    goto err; /* p-1 */
  }
  if (!BN_sub(r2, rsa->q, BN_value_one())) {
    goto err; /* q-1 */
  }
  if (!BN_mul(r0, r1, r2, ctx)) {
    goto err; /* (p-1)(q-1) */
  }
  for (i = 2; i < num_primes; i++) {
    RSA_additional_prime *ap =
        sk_RSA_additional_prime_value(additional_primes, i - 2);
    if (!BN_sub(r3, ap->prime, BN_value_one()) ||
        !BN_mul(r0, r0, r3, ctx)) {
      goto err;
    }
  }
  pr0 = &local_r0;
  BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
  if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) {
    goto err; /* d */
  }

  /* set up d for correct BN_FLG_CONSTTIME flag */
  d = &local_d;
  BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);

  /* calculate d mod (p-1) */
  if (!BN_mod(rsa->dmp1, d, r1, ctx)) {
    goto err;
  }

  /* calculate d mod (q-1) */
  if (!BN_mod(rsa->dmq1, d, r2, ctx)) {
    goto err;
  }

  /* calculate inverse of q mod p */
  p = &local_p;
  BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);

  if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) {
    goto err;
  }

  for (i = 2; i < num_primes; i++) {
    RSA_additional_prime *ap =
        sk_RSA_additional_prime_value(additional_primes, i - 2);
    if (!BN_sub(ap->exp, ap->prime, BN_value_one()) ||
        !BN_mod(ap->exp, rsa->d, ap->exp, ctx) ||
        !BN_mod_inverse(ap->coeff, ap->r, ap->prime, ctx)) {
      goto err;
    }
  }

  ok = 1;
  rsa->additional_primes = additional_primes;
  additional_primes = NULL;

err:
  if (ok == -1) {
    OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
    ok = 0;
  }
  if (ctx != NULL) {
    BN_CTX_end(ctx);
    BN_CTX_free(ctx);
  }
  sk_RSA_additional_prime_pop_free(additional_primes,
                                   RSA_additional_prime_free);
  return ok;
}
Ejemplo n.º 18
0
void do_mul_exp(BIGNUM *r, BIGNUM *a, BIGNUM *b, BIGNUM *c, BN_CTX *ctx)
	{
	int i,k;
	double tm;
	long num;

	num=BASENUM;
	for (i=NUM_START; i<NUM_SIZES; i++)
		{
#ifdef C_PRIME
#  ifdef TEST_SQRT
		if (!BN_set_word(a, 64)) goto err;
		if (!BN_set_word(b, P_MOD_64)) goto err;
#    define ADD a
#    define REM b
#  else
#    define ADD NULL
#    define REM NULL
#  endif
		if (!BN_generate_prime(c,sizes[i],0,ADD,REM,genprime_cb,NULL)) goto err;
		putc('\n', stderr);
		fflush(stderr);
#endif

		for (k=0; k<num; k++)
			{
			if (k%50 == 0) /* Average over num/50 different choices of random numbers. */
				{
				if (!BN_pseudo_rand(a,sizes[i],1,0)) goto err;

				if (!BN_pseudo_rand(b,sizes[i],1,0)) goto err;

#ifndef C_PRIME
				if (!BN_pseudo_rand(c,sizes[i],1,1)) goto err;
#endif

#ifdef TEST_SQRT				
				if (!BN_mod_sqr(a,a,c,ctx)) goto err;
				if (!BN_mod_sqr(b,b,c,ctx)) goto err;
#else
				if (!BN_nnmod(a,a,c,ctx)) goto err;
				if (!BN_nnmod(b,b,c,ctx)) goto err;
#endif

				if (k == 0)
					Time_F(START);
				}

#if defined(TEST_EXP)
			if (!BN_mod_exp(r,a,b,c,ctx)) goto err;
#elif defined(TEST_MUL)
			{
			int i = 0;
			for (i = 0; i < 50; i++)
				if (!BN_mod_mul(r,a,b,c,ctx)) goto err;
			}
#elif defined(TEST_SQR)
			{
			int i = 0;
			for (i = 0; i < 50; i++)
				{
				if (!BN_mod_sqr(r,a,c,ctx)) goto err;
				if (!BN_mod_sqr(r,b,c,ctx)) goto err;
				}
			}
#elif defined(TEST_GCD)
			if (!BN_gcd(r,a,b,ctx)) goto err;
			if (!BN_gcd(r,b,c,ctx)) goto err;
			if (!BN_gcd(r,c,a,ctx)) goto err;
#elif defined(TEST_KRON)
			if (-2 == BN_kronecker(a,b,ctx)) goto err;
			if (-2 == BN_kronecker(b,c,ctx)) goto err;
			if (-2 == BN_kronecker(c,a,ctx)) goto err;
#elif defined(TEST_INV)
			if (!BN_mod_inverse(r,a,c,ctx)) goto err;
			if (!BN_mod_inverse(r,b,c,ctx)) goto err;
#else /* TEST_SQRT */
			if (!BN_mod_sqrt(r,a,c,ctx)) goto err;
			if (!BN_mod_sqrt(r,b,c,ctx)) goto err;
#endif
			}
		tm=Time_F(STOP);
		printf(
#if defined(TEST_EXP)
			"modexp %4d ^ %4d %% %4d"
#elif defined(TEST_MUL)
			"50*modmul %4d %4d %4d"
#elif defined(TEST_SQR)
			"100*modsqr %4d %4d %4d"
#elif defined(TEST_GCD)
			"3*gcd %4d %4d %4d"
#elif defined(TEST_KRON)
			"3*kronecker %4d %4d %4d"
#elif defined(TEST_INV)
			"2*inv %4d %4d mod %4d"
#else /* TEST_SQRT */
			"2*sqrt [prime == %d (mod 64)] %4d %4d mod %4d"
#endif
			" -> %8.3fms %5.1f (%ld)\n",
#ifdef TEST_SQRT
			P_MOD_64,
#endif
			sizes[i],sizes[i],sizes[i],tm*1000.0/num,tm*mul_c[i]/num, num);
		num/=7;
		if (num <= 0) num=1;
		}
	return;

 err:
	ERR_print_errors_fp(stderr);
	}
Ejemplo n.º 19
0
int
BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, const BIGNUM *Xp,
    const BIGNUM *Xp1, const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
    BN_GENCB *cb)
{
	int ret = 0;

	BIGNUM *t, *p1p2, *pm1;

	/* Only even e supported */
	if (!BN_is_odd(e))
		return 0;

	BN_CTX_start(ctx);
	if (p1 == NULL) {
		if ((p1 = BN_CTX_get(ctx)) == NULL)
			goto err;
	}
	if (p2 == NULL) {
		if ((p2 = BN_CTX_get(ctx)) == NULL)
			goto err;
	}

	if ((t = BN_CTX_get(ctx)) == NULL)
		goto err;
	if ((p1p2 = BN_CTX_get(ctx)) == NULL)
		goto err;
	if ((pm1 = BN_CTX_get(ctx)) == NULL)
		goto err;

	if (!bn_x931_derive_pi(p1, Xp1, ctx, cb))
		goto err;

	if (!bn_x931_derive_pi(p2, Xp2, ctx, cb))
		goto err;

	if (!BN_mul(p1p2, p1, p2, ctx))
		goto err;

	/* First set p to value of Rp */

	if (!BN_mod_inverse(p, p2, p1, ctx))
		goto err;

	if (!BN_mul(p, p, p2, ctx))
		goto err;

	if (!BN_mod_inverse(t, p1, p2, ctx))
		goto err;

	if (!BN_mul(t, t, p1, ctx))
		goto err;

	if (!BN_sub(p, p, t))
		goto err;

	if (p->neg && !BN_add(p, p, p1p2))
		goto err;

	/* p now equals Rp */

	if (!BN_mod_sub(p, p, Xp, p1p2, ctx))
		goto err;

	if (!BN_add(p, p, Xp))
		goto err;

	/* p now equals Yp0 */

	for (;;) {
		int i = 1;
		BN_GENCB_call(cb, 0, i++);
		if (!BN_copy(pm1, p))
			goto err;
		if (!BN_sub_word(pm1, 1))
			goto err;
		if (!BN_gcd(t, pm1, e, ctx))
			goto err;
		if (BN_is_one(t)
		/* X9.31 specifies 8 MR and 1 Lucas test or any prime test
		 * offering similar or better guarantees 50 MR is considerably
		 * better.
		 */
		    && BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb))
			break;
		if (!BN_add(p, p, p1p2))
			goto err;
	}

	BN_GENCB_call(cb, 3, 0);

	ret = 1;

err:

	BN_CTX_end(ctx);

	return ret;
}
Ejemplo n.º 20
0
int rsa_keypair (int bits, unsigned long e_value, char **public_key, char **secret_key)
{
    BIGNUM  *n=NULL, *e=NULL, *d=NULL, *p=NULL, *q=NULL;
    BIGNUM  *r0=NULL, *r1=NULL, *r2=NULL, *r3=NULL, *tmp;
    int     bitsp, bitsq, i;
    BN_CTX  *ctx=NULL, *ctx2=NULL;
    char    *buf1, *buf2, *buf3;

    ctx=BN_CTX_new();
    if (ctx == NULL) goto err;
    
    ctx2=BN_CTX_new();
    if (ctx2 == NULL) goto err;
    
    r0 = &(ctx->bn[0]);
    r1 = &(ctx->bn[1]);
    r2 = &(ctx->bn[2]);
    r3 = &(ctx->bn[3]);
    ctx->tos += 4;

    bitsp = (bits+1)/2;
    bitsq = bits-bitsp;
    
    /* set e */
    e = BN_new();
    if (e == NULL) goto err;

    /* The problem is when building with 8, 16, or 32 BN_ULONG,
     * unsigned long can be larger */
    for (i=0; i<sizeof(unsigned long)*8; i++)
    {
        if (e_value & (1<<i))
            BN_set_bit(e,i);
    }

    /* generate p and q */
    for (;;)
    {
        p = BN_generate_prime (NULL, bitsp, 1, NULL, NULL, NULL, NULL);
        if (p == NULL) goto err;
        if (!BN_sub (r2, p, BN_value_one())) goto err;
        if (!BN_gcd (r1, r2, e, ctx)) goto err;
        if (BN_is_one(r1)) break;
        BN_free(p);
    }
    
    for (;;)
    {
        q = BN_generate_prime (NULL, bitsq, 1, NULL, NULL, NULL, NULL);
        if (q == NULL) goto err;
        if (!BN_sub (r2, q, BN_value_one())) goto err;
        if (!BN_gcd (r1, r2, e, ctx)) goto err;
        if (BN_is_one (r1) && (BN_cmp (p, q) != 0)) break;
        BN_free(q);
    }
    
    if (BN_cmp (p, q) < 0) tmp = p, p = q, q = tmp;

    /* calculate n */
    n = BN_new();
    if (n == NULL) goto err;
    if (!BN_mul (n, p, q, ctx)) goto err;

    /* calculate d */
    if (!BN_sub (r1, p, BN_value_one())) goto err;	/* p-1 */
    if (!BN_sub (r2, q, BN_value_one())) goto err;	/* q-1 */
    if (!BN_mul (r0, r1, r2, ctx)) goto err;	/* (p-1)(q-1) */

    d = BN_mod_inverse (NULL, e, r0, ctx2);	/* d */
    if (d == NULL) goto err;

    BN_CTX_free(ctx);
    BN_CTX_free(ctx2);
    
    // n, d, e are ready. secret key: n:d, public key: n:e
    buf1 = BN_bn2hex (n);
    buf2 = BN_bn2hex (d);
    buf3 = BN_bn2hex (e);

    *secret_key = malloc (strlen(buf1) + strlen(buf2) + 2);
    *public_key = malloc (strlen(buf1) + strlen(buf3) + 2);
    
    strcpy (*secret_key, buf1); strcat (*secret_key, ":"); strcat (*secret_key, buf2);
    strcpy (*public_key, buf1); strcat (*public_key, ":"); strcat (*public_key, buf3);
    free (buf1); free (buf2); free (buf3);

    // cleanup
    BN_clear_free (n);    BN_clear_free (e);
    BN_clear_free (d);    BN_clear_free (p);
    BN_clear_free (q);

    return 0;
    
err:
    
    BN_CTX_free(ctx);
    BN_CTX_free(ctx2);
    return -1;
}
int generateRandomKeys(paillierKeys *keys, int *key_len, BN_CTX *ctx)
{
    int ret = 1, final_key_l = 0;
    BIGNUM *p, *q, *tmp, *n, *n2, *g, *lamda, *mu;

    if (key_len != NULL && *key_len == 0)
    {
        *key_len = DEFAULT_KEY_LEN;
        final_key_l = *key_len;
    }
    else if (key_len != NULL)
    {
        final_key_l = *key_len;
    }
    else
    {
        final_key_l = DEFAULT_KEY_LEN;
    }

    if (final_key_l < 32)
    {
        fprintf(stderr, "Key lenght too short. Minimum lenght 32 bits");
        goto end;
    }

    BN_CTX_start(ctx);

    // Temp BIGNUMs
    p = BN_CTX_get(ctx);
    q = BN_CTX_get(ctx);
    tmp = BN_CTX_get(ctx);

    // Part of the keys BIGNUMs
    n = BN_new();
    n2 = BN_new();
    g = BN_new();
    lamda = BN_new();
    mu = BN_new();

    // 1. Choose two large prime numbers
    // This numbers have to hold gcd(pq, (p-1)(q-1)) = 1
    unsigned char buffer;
    do
    {
        if (!RAND_bytes(&buffer, sizeof(buffer)))
            goto end;
        srandom((int)buffer);

        if (!BN_generate_prime_ex(p, final_key_l / 2, 0, NULL, NULL, NULL))
            goto end;
        if (!BN_generate_prime_ex(q, final_key_l / 2, 0, NULL, NULL, NULL))
            goto end;

        // 2. Compute n = pq
        if (!BN_mul(n, p, q, ctx))
            goto end;

        // Test if primes are ok
        if (!BN_sub_word(p, 1))
            goto end;
        if (!BN_sub_word(q, 1))
            goto end;
        if (!BN_mul(tmp, p, q, ctx))
            goto end;

    }
    while (BN_cmp(p, q) == 0 || BN_gcd(tmp, tmp, n, ctx) != 1);

    // and lamda = lcm(p-1,q-1)
    if (!BN_lcm(lamda, p, q, ctx))
        goto end;

    if (!BN_mul(n2, n, n, ctx))
        goto end;
    do
    {
        // 3. Select a random integer g moz n2
        do
        {
            if (!BN_rand_range(g, n2))
                goto end;
        }
        while (BN_is_zero(g));

        // 4. Ensure n divides the order of g
        if (!BN_mod_exp(tmp, g, lamda, n2, ctx))
            goto end;
        if (L(tmp, tmp, n, ctx) != 0)
            goto end;

        BN_mod_inverse(mu, tmp, n, ctx);
    }
    while (mu == NULL);

    keys->pub.n = n;
    keys->pub.n2 = n2;
    keys->pub.g = g;

    keys->priv.n = BN_dup(n);
    keys->priv.n2 = BN_dup(n2);
    keys->priv.lamda = lamda;
    keys->priv.mu = mu;

    keys->n = BN_dup(n);
    keys->n2 = BN_dup(n2);

    ret = 0;
end:
    if (ret)
    {
        ERR_load_crypto_strings();
        fprintf(stderr, "Error generating keys: %s", ERR_error_string(ERR_get_error(), NULL));
    }

    BN_CTX_end(ctx);
    return ret;
}
Ejemplo n.º 22
0
extern "C" void Java_java_math_NativeBN_BN_1gcd(JNIEnv* env, jclass, jlong r, jlong a, jlong b) {
  if (!threeValidHandles(env, r, a, b)) return;
  Unique_BN_CTX ctx(BN_CTX_new());
  BN_gcd(toBigNum(r), toBigNum(a), toBigNum(b), ctx.get());
  throwExceptionIfNecessary(env);
}
Ejemplo n.º 23
0
int RSA_check_fips(RSA *key) {
  if (RSA_is_opaque(key)) {
    /* Opaque keys can't be checked. */
    OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED);
    return 0;
  }

  if (!RSA_check_key(key)) {
    return 0;
  }

  BN_CTX *ctx = BN_CTX_new();
  if (ctx == NULL) {
    OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
    return 0;
  }

  BIGNUM small_gcd;
  BN_init(&small_gcd);

  int ret = 1;

  /* Perform partial public key validation of RSA keys (SP 800-89 5.3.3). */
  enum bn_primality_result_t primality_result;
  if (BN_num_bits(key->e) <= 16 ||
      BN_num_bits(key->e) > 256 ||
      !BN_is_odd(key->n) ||
      !BN_is_odd(key->e) ||
      !BN_gcd(&small_gcd, key->n, g_small_factors(), ctx) ||
      !BN_is_one(&small_gcd) ||
      !BN_enhanced_miller_rabin_primality_test(&primality_result, key->n,
                                               BN_prime_checks, ctx, NULL) ||
      primality_result != bn_non_prime_power_composite) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED);
    ret = 0;
  }

  BN_free(&small_gcd);
  BN_CTX_free(ctx);

  if (!ret || key->d == NULL || key->p == NULL) {
    /* On a failure or on only a public key, there's nothing else can be
     * checked. */
    return ret;
  }

  /* FIPS pairwise consistency test (FIPS 140-2 4.9.2). Per FIPS 140-2 IG,
   * section 9.9, it is not known whether |rsa| will be used for signing or
   * encryption, so either pair-wise consistency self-test is acceptable. We
   * perform a signing test. */
  uint8_t data[32] = {0};
  unsigned sig_len = RSA_size(key);
  uint8_t *sig = OPENSSL_malloc(sig_len);
  if (sig == NULL) {
    OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
    return 0;
  }

  if (!RSA_sign(NID_sha256, data, sizeof(data), sig, &sig_len, key)) {
    OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
    ret = 0;
    goto cleanup;
  }
#if defined(BORINGSSL_FIPS_BREAK_RSA_PWCT)
  data[0] = ~data[0];
#endif
  if (!RSA_verify(NID_sha256, data, sizeof(data), sig, sig_len, key)) {
    OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
    ret = 0;
  }

cleanup:
  OPENSSL_free(sig);

  return ret;
}
Ejemplo n.º 24
0
int RSA_check_key_ex(const RSA *key, BN_GENCB *cb)
{
    BIGNUM *i, *j, *k, *l, *m;
    BN_CTX *ctx;
    int ret = 1, ex_primes = 0, idx;
    RSA_PRIME_INFO *pinfo;

    if (key->p == NULL || key->q == NULL || key->n == NULL
            || key->e == NULL || key->d == NULL) {
        RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_VALUE_MISSING);
        return 0;
    }

    /* multi-prime? */
    if (key->version == RSA_ASN1_VERSION_MULTI) {
        ex_primes = sk_RSA_PRIME_INFO_num(key->prime_infos);
        if (ex_primes <= 0
                || (ex_primes + 2) > rsa_multip_cap(BN_num_bits(key->n))) {
            RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_INVALID_MULTI_PRIME_KEY);
            return 0;
        }
    }

    i = BN_new();
    j = BN_new();
    k = BN_new();
    l = BN_new();
    m = BN_new();
    ctx = BN_CTX_new();
    if (i == NULL || j == NULL || k == NULL || l == NULL
            || m == NULL || ctx == NULL) {
        ret = -1;
        RSAerr(RSA_F_RSA_CHECK_KEY_EX, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    if (BN_is_one(key->e)) {
        ret = 0;
        RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_BAD_E_VALUE);
    }
    if (!BN_is_odd(key->e)) {
        ret = 0;
        RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_BAD_E_VALUE);
    }

    /* p prime? */
    if (BN_is_prime_ex(key->p, BN_prime_checks, NULL, cb) != 1) {
        ret = 0;
        RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_P_NOT_PRIME);
    }

    /* q prime? */
    if (BN_is_prime_ex(key->q, BN_prime_checks, NULL, cb) != 1) {
        ret = 0;
        RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_Q_NOT_PRIME);
    }

    /* r_i prime? */
    for (idx = 0; idx < ex_primes; idx++) {
        pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
        if (BN_is_prime_ex(pinfo->r, BN_prime_checks, NULL, cb) != 1) {
            ret = 0;
            RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_MP_R_NOT_PRIME);
        }
    }

    /* n = p*q * r_3...r_i? */
    if (!BN_mul(i, key->p, key->q, ctx)) {
        ret = -1;
        goto err;
    }
    for (idx = 0; idx < ex_primes; idx++) {
        pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
        if (!BN_mul(i, i, pinfo->r, ctx)) {
            ret = -1;
            goto err;
        }
    }
    if (BN_cmp(i, key->n) != 0) {
        ret = 0;
        if (ex_primes)
            RSAerr(RSA_F_RSA_CHECK_KEY_EX,
                   RSA_R_N_DOES_NOT_EQUAL_PRODUCT_OF_PRIMES);
        else
            RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_N_DOES_NOT_EQUAL_P_Q);
    }

    /* d*e = 1  mod \lambda(n)? */
    if (!BN_sub(i, key->p, BN_value_one())) {
        ret = -1;
        goto err;
    }
    if (!BN_sub(j, key->q, BN_value_one())) {
        ret = -1;
        goto err;
    }

    /* now compute k = \lambda(n) = LCM(i, j, r_3 - 1...) */
    if (!BN_mul(l, i, j, ctx)) {
        ret = -1;
        goto err;
    }
    if (!BN_gcd(m, i, j, ctx)) {
        ret = -1;
        goto err;
    }
    for (idx = 0; idx < ex_primes; idx++) {
        pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
        if (!BN_sub(k, pinfo->r, BN_value_one())) {
            ret = -1;
            goto err;
        }
        if (!BN_mul(l, l, k, ctx)) {
            ret = -1;
            goto err;
        }
        if (!BN_gcd(m, m, k, ctx)) {
            ret = -1;
            goto err;
        }
    }
    if (!BN_div(k, NULL, l, m, ctx)) { /* remainder is 0 */
        ret = -1;
        goto err;
    }
    if (!BN_mod_mul(i, key->d, key->e, k, ctx)) {
        ret = -1;
        goto err;
    }

    if (!BN_is_one(i)) {
        ret = 0;
        RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_D_E_NOT_CONGRUENT_TO_1);
    }

    if (key->dmp1 != NULL && key->dmq1 != NULL && key->iqmp != NULL) {
        /* dmp1 = d mod (p-1)? */
        if (!BN_sub(i, key->p, BN_value_one())) {
            ret = -1;
            goto err;
        }
        if (!BN_mod(j, key->d, i, ctx)) {
            ret = -1;
            goto err;
        }
        if (BN_cmp(j, key->dmp1) != 0) {
            ret = 0;
            RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_DMP1_NOT_CONGRUENT_TO_D);
        }

        /* dmq1 = d mod (q-1)? */
        if (!BN_sub(i, key->q, BN_value_one())) {
            ret = -1;
            goto err;
        }
        if (!BN_mod(j, key->d, i, ctx)) {
            ret = -1;
            goto err;
        }
        if (BN_cmp(j, key->dmq1) != 0) {
            ret = 0;
            RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_DMQ1_NOT_CONGRUENT_TO_D);
        }

        /* iqmp = q^-1 mod p? */
        if (!BN_mod_inverse(i, key->q, key->p, ctx)) {
            ret = -1;
            goto err;
        }
        if (BN_cmp(i, key->iqmp) != 0) {
            ret = 0;
            RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_IQMP_NOT_INVERSE_OF_Q);
        }
    }

    for (idx = 0; idx < ex_primes; idx++) {
        pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
        /* d_i = d mod (r_i - 1)? */
        if (!BN_sub(i, pinfo->r, BN_value_one())) {
            ret = -1;
            goto err;
        }
        if (!BN_mod(j, key->d, i, ctx)) {
            ret = -1;
            goto err;
        }
        if (BN_cmp(j, pinfo->d) != 0) {
            ret = 0;
            RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_MP_EXPONENT_NOT_CONGRUENT_TO_D);
        }
        /* t_i = R_i ^ -1 mod r_i ? */
        if (!BN_mod_inverse(i, pinfo->pp, pinfo->r, ctx)) {
            ret = -1;
            goto err;
        }
        if (BN_cmp(i, pinfo->t) != 0) {
            ret = 0;
            RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_MP_COEFFICIENT_NOT_INVERSE_OF_R);
        }
    }

 err:
    BN_free(i);
    BN_free(j);
    BN_free(k);
    BN_free(l);
    BN_free(m);
    BN_CTX_free(ctx);
    return ret;
}
Ejemplo n.º 25
0
int RSA_check_key(const RSA *key) {
  BIGNUM n, pm1, qm1, lcm, gcd, de, dmp1, dmq1, iqmp_times_q;
  BN_CTX *ctx;
  int ok = 0, has_crt_values;

  if (RSA_is_opaque(key)) {
    /* Opaque keys can't be checked. */
    return 1;
  }

  if ((key->p != NULL) != (key->q != NULL)) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_ONLY_ONE_OF_P_Q_GIVEN);
    return 0;
  }

  if (!key->n || !key->e) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
    return 0;
  }

  if (!key->d || !key->p) {
    /* For a public key, or without p and q, there's nothing that can be
     * checked. */
    return 1;
  }

  ctx = BN_CTX_new();
  if (ctx == NULL) {
    OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
    return 0;
  }

  BN_init(&n);
  BN_init(&pm1);
  BN_init(&qm1);
  BN_init(&lcm);
  BN_init(&gcd);
  BN_init(&de);
  BN_init(&dmp1);
  BN_init(&dmq1);
  BN_init(&iqmp_times_q);

  if (!BN_mul(&n, key->p, key->q, ctx) ||
      /* lcm = lcm(p, q) */
      !BN_sub(&pm1, key->p, BN_value_one()) ||
      !BN_sub(&qm1, key->q, BN_value_one()) ||
      !BN_mul(&lcm, &pm1, &qm1, ctx) ||
      !BN_gcd(&gcd, &pm1, &qm1, ctx)) {
    OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
    goto out;
  }

  if (!BN_div(&lcm, NULL, &lcm, &gcd, ctx) ||
      !BN_gcd(&gcd, &pm1, &qm1, ctx) ||
      /* de = d*e mod lcm(p, q). */
      !BN_mod_mul(&de, key->d, key->e, &lcm, ctx)) {
    OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
    goto out;
  }

  if (BN_cmp(&n, key->n) != 0) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q);
    goto out;
  }

  if (!BN_is_one(&de)) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_D_E_NOT_CONGRUENT_TO_1);
    goto out;
  }

  has_crt_values = key->dmp1 != NULL;
  if (has_crt_values != (key->dmq1 != NULL) ||
      has_crt_values != (key->iqmp != NULL)) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_INCONSISTENT_SET_OF_CRT_VALUES);
    goto out;
  }

  if (has_crt_values) {
    if (/* dmp1 = d mod (p-1) */
        !BN_mod(&dmp1, key->d, &pm1, ctx) ||
        /* dmq1 = d mod (q-1) */
        !BN_mod(&dmq1, key->d, &qm1, ctx) ||
        /* iqmp = q^-1 mod p */
        !BN_mod_mul(&iqmp_times_q, key->iqmp, key->q, key->p, ctx)) {
      OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
      goto out;
    }

    if (BN_cmp(&dmp1, key->dmp1) != 0 ||
        BN_cmp(&dmq1, key->dmq1) != 0 ||
        BN_cmp(key->iqmp, key->p) >= 0 ||
        !BN_is_one(&iqmp_times_q)) {
      OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_VALUES_INCORRECT);
      goto out;
    }
  }

  ok = 1;

out:
  BN_free(&n);
  BN_free(&pm1);
  BN_free(&qm1);
  BN_free(&lcm);
  BN_free(&gcd);
  BN_free(&de);
  BN_free(&dmp1);
  BN_free(&dmq1);
  BN_free(&iqmp_times_q);
  BN_CTX_free(ctx);

  return ok;
}
Ejemplo n.º 26
0
/*
 * Refer to FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test.
 * OR C.3.1 Miller-Rabin Probabilistic Primality Test (if enhanced is zero).
 * The Step numbers listed in the code refer to the enhanced case.
 *
 * if enhanced is set, then status returns one of the following:
 *     BN_PRIMETEST_PROBABLY_PRIME
 *     BN_PRIMETEST_COMPOSITE_WITH_FACTOR
 *     BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME
 * if enhanced is zero, then status returns either
 *     BN_PRIMETEST_PROBABLY_PRIME or
 *     BN_PRIMETEST_COMPOSITE
 *
 * returns 0 if there was an error, otherwise it returns 1.
 */
int bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx,
                             BN_GENCB *cb, int enhanced, int *status)
{
    int i, j, a, ret = 0;
    BIGNUM *g, *w1, *w3, *x, *m, *z, *b;
    BN_MONT_CTX *mont = NULL;

    /* w must be odd */
    if (!BN_is_odd(w))
        return 0;

    BN_CTX_start(ctx);
    g = BN_CTX_get(ctx);
    w1 = BN_CTX_get(ctx);
    w3 = BN_CTX_get(ctx);
    x = BN_CTX_get(ctx);
    m = BN_CTX_get(ctx);
    z = BN_CTX_get(ctx);
    b = BN_CTX_get(ctx);

    if (!(b != NULL
            /* w1 := w - 1 */
            && BN_copy(w1, w)
            && BN_sub_word(w1, 1)
            /* w3 := w - 3 */
            && BN_copy(w3, w)
            && BN_sub_word(w3, 3)))
        goto err;

    /* check w is larger than 3, otherwise the random b will be too small */
    if (BN_is_zero(w3) || BN_is_negative(w3))
        goto err;

    /* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */
    a = 1;
    while (!BN_is_bit_set(w1, a))
        a++;
    /* (Step 2) m = (w-1) / 2^a */
    if (!BN_rshift(m, w1, a))
        goto err;

    /* Montgomery setup for computations mod a */
    mont = BN_MONT_CTX_new();
    if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx))
        goto err;

    if (iterations == BN_prime_checks)
        iterations = BN_prime_checks_for_size(BN_num_bits(w));

    /* (Step 4) */
    for (i = 0; i < iterations; ++i) {
        /* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */
        if (!BN_priv_rand_range(b, w3) || !BN_add_word(b, 2)) /* 1 < b < w-1 */
            goto err;

        if (enhanced) {
            /* (Step 4.3) */
            if (!BN_gcd(g, b, w, ctx))
                goto err;
            /* (Step 4.4) */
            if (!BN_is_one(g)) {
                *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
                ret = 1;
                goto err;
            }
        }
        /* (Step 4.5) z = b^m mod w */
        if (!BN_mod_exp_mont(z, b, m, w, ctx, mont))
            goto err;
        /* (Step 4.6) if (z = 1 or z = w-1) */
        if (BN_is_one(z) || BN_cmp(z, w1) == 0)
            goto outer_loop;
        /* (Step 4.7) for j = 1 to a-1 */
        for (j = 1; j < a ; ++j) {
            /* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */
            if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
                goto err;
            /* (Step 4.7.3) */
            if (BN_cmp(z, w1) == 0)
                goto outer_loop;
            /* (Step 4.7.4) */
            if (BN_is_one(z))
                goto composite;
        }
        /* At this point z = b^((w-1)/2) mod w */
        /* (Steps 4.8 - 4.9) x = z, z = x^2 mod w */
        if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
            goto err;
        /* (Step 4.10) */
        if (BN_is_one(z))
            goto composite;
        /* (Step 4.11) x = b^(w-1) mod w */
        if (!BN_copy(x, z))
            goto err;
composite:
        if (enhanced) {
            /* (Step 4.1.2) g = GCD(x-1, w) */
            if (!BN_sub_word(x, 1) || !BN_gcd(g, x, w, ctx))
                goto err;
            /* (Steps 4.1.3 - 4.1.4) */
            if (BN_is_one(g))
                *status = BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME;
            else
                *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
        } else {
            *status = BN_PRIMETEST_COMPOSITE;
        }
        ret = 1;
        goto err;
outer_loop: ;
        /* (Step 4.1.5) */
        if (!BN_GENCB_call(cb, 1, i))
            goto err;
    }
    /* (Step 5) */
    *status = BN_PRIMETEST_PROBABLY_PRIME;
    ret = 1;
err:
    BN_clear(g);
    BN_clear(w1);
    BN_clear(w3);
    BN_clear(x);
    BN_clear(m);
    BN_clear(z);
    BN_clear(b);
    BN_CTX_end(ctx);
    BN_MONT_CTX_free(mont);
    return ret;
}
Ejemplo n.º 27
0
int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) {
  // See FIPS 186-4 appendix B.3. This function implements a generalized version
  // of the FIPS algorithm. |RSA_generate_key_fips| performs additional checks
  // for FIPS-compliant key generation.

  // Always generate RSA keys which are a multiple of 128 bits. Round |bits|
  // down as needed.
  bits &= ~127;

  // Reject excessively small keys.
  if (bits < 256) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
    return 0;
  }

  int ret = 0;
  BN_CTX *ctx = BN_CTX_new();
  if (ctx == NULL) {
    goto bn_err;
  }
  BN_CTX_start(ctx);
  BIGNUM *totient = BN_CTX_get(ctx);
  BIGNUM *pm1 = BN_CTX_get(ctx);
  BIGNUM *qm1 = BN_CTX_get(ctx);
  BIGNUM *gcd = BN_CTX_get(ctx);
  BIGNUM *sqrt2 = BN_CTX_get(ctx);
  if (totient == NULL || pm1 == NULL || qm1 == NULL || gcd == NULL ||
      sqrt2 == NULL) {
    goto bn_err;
  }

  // We need the RSA components non-NULL.
  if (!ensure_bignum(&rsa->n) ||
      !ensure_bignum(&rsa->d) ||
      !ensure_bignum(&rsa->e) ||
      !ensure_bignum(&rsa->p) ||
      !ensure_bignum(&rsa->q) ||
      !ensure_bignum(&rsa->dmp1) ||
      !ensure_bignum(&rsa->dmq1)) {
    goto bn_err;
  }

  if (!BN_copy(rsa->e, e_value)) {
    goto bn_err;
  }

  int prime_bits = bits / 2;

  // Compute sqrt2 >= ⌊2^(prime_bits-1)×√2⌋.
  if (!bn_set_words(sqrt2, kBoringSSLRSASqrtTwo, kBoringSSLRSASqrtTwoLen)) {
    goto bn_err;
  }
  int sqrt2_bits = kBoringSSLRSASqrtTwoLen * BN_BITS2;
  assert(sqrt2_bits == (int)BN_num_bits(sqrt2));
  if (sqrt2_bits > prime_bits) {
    // For key sizes up to 3072 (prime_bits = 1536), this is exactly
    // ⌊2^(prime_bits-1)×√2⌋.
    if (!BN_rshift(sqrt2, sqrt2, sqrt2_bits - prime_bits)) {
      goto bn_err;
    }
  } else if (prime_bits > sqrt2_bits) {
    // For key sizes beyond 3072, this is approximate. We err towards retrying
    // to ensure our key is the right size and round up.
    if (!BN_add_word(sqrt2, 1) ||
        !BN_lshift(sqrt2, sqrt2, prime_bits - sqrt2_bits)) {
      goto bn_err;
    }
  }
  assert(prime_bits == (int)BN_num_bits(sqrt2));

  do {
    // Generate p and q, each of size |prime_bits|, using the steps outlined in
    // appendix FIPS 186-4 appendix B.3.3.
    if (!generate_prime(rsa->p, prime_bits, rsa->e, NULL, sqrt2, ctx, cb) ||
        !BN_GENCB_call(cb, 3, 0) ||
        !generate_prime(rsa->q, prime_bits, rsa->e, rsa->p, sqrt2, ctx, cb) ||
        !BN_GENCB_call(cb, 3, 1)) {
      goto bn_err;
    }

    if (BN_cmp(rsa->p, rsa->q) < 0) {
      BIGNUM *tmp = rsa->p;
      rsa->p = rsa->q;
      rsa->q = tmp;
    }

    // Calculate d = e^(-1) (mod lcm(p-1, q-1)), per FIPS 186-4. This differs
    // from typical RSA implementations which use (p-1)*(q-1).
    //
    // Note this means the size of d might reveal information about p-1 and
    // q-1. However, we do operations with Chinese Remainder Theorem, so we only
    // use d (mod p-1) and d (mod q-1) as exponents. Using a minimal totient
    // does not affect those two values.
    if (!BN_sub(pm1, rsa->p, BN_value_one()) ||
        !BN_sub(qm1, rsa->q, BN_value_one()) ||
        !BN_mul(totient, pm1, qm1, ctx) ||
        !BN_gcd(gcd, pm1, qm1, ctx) ||
        !BN_div(totient, NULL, totient, gcd, ctx) ||
        !BN_mod_inverse(rsa->d, rsa->e, totient, ctx)) {
      goto bn_err;
    }

    // Check that |rsa->d| > 2^|prime_bits| and try again if it fails. See
    // appendix B.3.1's guidance on values for d.
  } while (!rsa_greater_than_pow2(rsa->d, prime_bits));

  if (// Calculate n.
      !BN_mul(rsa->n, rsa->p, rsa->q, ctx) ||
      // Calculate d mod (p-1).
      !BN_mod(rsa->dmp1, rsa->d, pm1, ctx) ||
      // Calculate d mod (q-1)
      !BN_mod(rsa->dmq1, rsa->d, qm1, ctx)) {
    goto bn_err;
  }

  // Sanity-check that |rsa->n| has the specified size. This is implied by
  // |generate_prime|'s bounds.
  if (BN_num_bits(rsa->n) != (unsigned)bits) {
    OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
    goto err;
  }

  // Call |freeze_private_key| to compute the inverse of q mod p, by way of
  // |rsa->mont_p|.
  if (!freeze_private_key(rsa, ctx)) {
    goto bn_err;
  }

  // The key generation process is complex and thus error-prone. It could be
  // disastrous to generate and then use a bad key so double-check that the key
  // makes sense.
  if (!RSA_check_key(rsa)) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR);
    goto err;
  }

  ret = 1;

bn_err:
  if (!ret) {
    OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
  }
err:
  if (ctx != NULL) {
    BN_CTX_end(ctx);
    BN_CTX_free(ctx);
  }
  return ret;
}
Ejemplo n.º 28
0
// generate_prime sets |out| to a prime with length |bits| such that |out|-1 is
// relatively prime to |e|. If |p| is non-NULL, |out| will also not be close to
// |p|.
static int generate_prime(BIGNUM *out, int bits, const BIGNUM *e,
                          const BIGNUM *p, const BIGNUM *sqrt2, BN_CTX *ctx,
                          BN_GENCB *cb) {
  if (bits < 128 || (bits % BN_BITS2) != 0) {
    OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
    return 0;
  }

  // See FIPS 186-4 appendix B.3.3, steps 4 and 5. Note |bits| here is nlen/2.

  // Use the limit from steps 4.7 and 5.8 for most values of |e|. When |e| is 3,
  // the 186-4 limit is too low, so we use a higher one. Note this case is not
  // reachable from |RSA_generate_key_fips|.
  if (bits >= INT_MAX/32) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE);
    return 0;
  }
  int limit = BN_is_word(e, 3) ? bits * 32 : bits * 5;

  int ret = 0, tries = 0, rand_tries = 0;
  BN_CTX_start(ctx);
  BIGNUM *tmp = BN_CTX_get(ctx);
  if (tmp == NULL) {
    goto err;
  }

  for (;;) {
    // Generate a random number of length |bits| where the bottom bit is set
    // (steps 4.2, 4.3, 5.2 and 5.3) and the top bit is set (implied by the
    // bound checked below in steps 4.4 and 5.5).
    if (!BN_rand(out, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD) ||
        !BN_GENCB_call(cb, BN_GENCB_GENERATED, rand_tries++)) {
      goto err;
    }

    if (p != NULL) {
      // If |p| and |out| are too close, try again (step 5.4).
      if (!BN_sub(tmp, out, p)) {
        goto err;
      }
      BN_set_negative(tmp, 0);
      if (!rsa_greater_than_pow2(tmp, bits - 100)) {
        continue;
      }
    }

    // If out < 2^(bits-1)×√2, try again (steps 4.4 and 5.5). This is equivalent
    // to out <= ⌊2^(bits-1)×√2⌋, or out <= sqrt2 for FIPS key sizes.
    //
    // For larger keys, the comparison is approximate, leaning towards
    // retrying. That is, we reject a negligible fraction of primes that are
    // within the FIPS bound, but we will never accept a prime outside the
    // bound, ensuring the resulting RSA key is the right size.
    if (BN_cmp(out, sqrt2) <= 0) {
      continue;
    }

    // Check gcd(out-1, e) is one (steps 4.5 and 5.6).
    if (!BN_sub(tmp, out, BN_value_one()) ||
        !BN_gcd(tmp, tmp, e, ctx)) {
      goto err;
    }
    if (BN_is_one(tmp)) {
      // Test |out| for primality (steps 4.5.1 and 5.6.1).
      int is_probable_prime;
      if (!BN_primality_test(&is_probable_prime, out, BN_prime_checks, ctx, 1,
                             cb)) {
        goto err;
      }
      if (is_probable_prime) {
        ret = 1;
        goto err;
      }
    }

    // If we've tried too many times to find a prime, abort (steps 4.7 and
    // 5.8).
    tries++;
    if (tries >= limit) {
      OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_MANY_ITERATIONS);
      goto err;
    }
    if (!BN_GENCB_call(cb, 2, tries)) {
      goto err;
    }
  }

err:
  BN_CTX_end(ctx);
  return ret;
}
Ejemplo n.º 29
0
static int rsa_builtin_keygen(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
	{
	BIGNUM *r0=NULL,*r1=NULL,*r2=NULL,*r3=NULL,*tmp;
	BIGNUM local_r0,local_d,local_p;
	BIGNUM *pr0,*d,*p;
	int bitsp,bitsq,ok= -1,n=0;
	BN_CTX *ctx=NULL;

	ctx=BN_CTX_new();
	if (ctx == NULL) goto err;
	BN_CTX_start(ctx);
	r0 = BN_CTX_get(ctx);
	r1 = BN_CTX_get(ctx);
	r2 = BN_CTX_get(ctx);
	r3 = BN_CTX_get(ctx);
	if (r3 == NULL) goto err;

	bitsp=(bits+1)/2;
	bitsq=bits-bitsp;

	/* We need the RSA components non-NULL */
	if(!rsa->n && ((rsa->n=BN_new()) == NULL)) goto err;
	if(!rsa->d && ((rsa->d=BN_new()) == NULL)) goto err;
	if(!rsa->e && ((rsa->e=BN_new()) == NULL)) goto err;
	if(!rsa->p && ((rsa->p=BN_new()) == NULL)) goto err;
	if(!rsa->q && ((rsa->q=BN_new()) == NULL)) goto err;
	if(!rsa->dmp1 && ((rsa->dmp1=BN_new()) == NULL)) goto err;
	if(!rsa->dmq1 && ((rsa->dmq1=BN_new()) == NULL)) goto err;
	if(!rsa->iqmp && ((rsa->iqmp=BN_new()) == NULL)) goto err;

	BN_copy(rsa->e, e_value);

	/* generate p and q */
	for (;;)
		{
		if(!BN_generate_prime_ex(rsa->p, bitsp, 0, NULL, NULL, cb))
			goto err;
		if (!BN_sub(r2,rsa->p,BN_value_one())) goto err;
		if (!BN_gcd(r1,r2,rsa->e,ctx)) goto err;
		if (BN_is_one(r1)) break;
		if(!BN_GENCB_call(cb, 2, n++))
			goto err;
		}
	if(!BN_GENCB_call(cb, 3, 0))
		goto err;
	for (;;)
		{
		/* When generating ridiculously small keys, we can get stuck
		 * continually regenerating the same prime values. Check for
		 * this and bail if it happens 3 times. */
		unsigned int degenerate = 0;
		do
			{
			if(!BN_generate_prime_ex(rsa->q, bitsq, 0, NULL, NULL, cb))
				goto err;
			} while((BN_cmp(rsa->p, rsa->q) == 0) && (++degenerate < 3));
		if(degenerate == 3)
			{
			ok = 0; /* we set our own err */
			RSAerr(RSA_F_RSA_BUILTIN_KEYGEN,RSA_R_KEY_SIZE_TOO_SMALL);
			goto err;
			}
		if (!BN_sub(r2,rsa->q,BN_value_one())) goto err;
		if (!BN_gcd(r1,r2,rsa->e,ctx)) goto err;
		if (BN_is_one(r1))
			break;
		if(!BN_GENCB_call(cb, 2, n++))
			goto err;
		}
	if(!BN_GENCB_call(cb, 3, 1))
		goto err;
	if (BN_cmp(rsa->p,rsa->q) < 0)
		{
		tmp=rsa->p;
		rsa->p=rsa->q;
		rsa->q=tmp;
		}

	/* calculate n */
	if (!BN_mul(rsa->n,rsa->p,rsa->q,ctx)) goto err;

	/* calculate d */
	if (!BN_sub(r1,rsa->p,BN_value_one())) goto err;	/* p-1 */
	if (!BN_sub(r2,rsa->q,BN_value_one())) goto err;	/* q-1 */
	if (!BN_mul(r0,r1,r2,ctx)) goto err;	/* (p-1)(q-1) */
	if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
		{
		  pr0 = &local_r0;
		  BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
		}
	else
	  pr0 = r0;
	if (!BN_mod_inverse(rsa->d,rsa->e,pr0,ctx)) goto err;	/* d */

	/* set up d for correct BN_FLG_CONSTTIME flag */
	if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
		{
		d = &local_d;
		BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
		}
	else
		d = rsa->d;
	/* calculate d mod (p-1) */
	if (!BN_mod(rsa->dmp1,d,r1,ctx)) goto err;

	/* calculate d mod (q-1) */
	if (!BN_mod(rsa->dmq1,d,r2,ctx)) goto err;

	/* calculate inverse of q mod p */
	if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
		{
		p = &local_p;
		BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
		}
	else
		p = rsa->p;
	if (!BN_mod_inverse(rsa->iqmp,rsa->q,p,ctx)) goto err;

	ok=1;
err:
	if (ok == -1)
		{
		RSAerr(RSA_F_RSA_BUILTIN_KEYGEN,ERR_LIB_BN);
		ok=0;
		}
	if (ctx != NULL)
		{
		BN_CTX_end(ctx);
		BN_CTX_free(ctx);
		}

	return ok;
	}
Ejemplo n.º 30
0
static void
pollard_rho(BIGNUM *val)
{
	BIGNUM *x, *y, *tmp, *num;
	BN_ULONG a;
	unsigned int steps_taken, steps_limit;

	x = BN_new();
	y = BN_new();
	tmp = BN_new();
	num = BN_new();
	a = 1;
restart:
	steps_taken = 0;
	steps_limit = 2;
	BN_set_word(x, 1);
	BN_copy(y, x);

	for (;;) {
		BN_sqr(tmp, x, ctx);
		BN_add_word(tmp, a);
		BN_mod(x, tmp, val, ctx);
		BN_sub(tmp, x, y);
		if (BN_is_zero(tmp)) {
#ifdef DEBUG
			printf(" (loop)");
#endif
			a++;
			goto restart;
		}
		BN_gcd(tmp, tmp, val, ctx);

		if (!BN_is_one(tmp)) {
			if (BN_is_prime(tmp, PRIME_CHECKS, NULL, NULL,
			    NULL) == 1) {
				putchar(' ');
				BN_print_dec_fp(stdout, tmp);
			} else {
#ifdef DEBUG
				printf(" (recurse for ");
				BN_print_dec_fp(stdout, tmp);
				putchar(')');
#endif
				pollard_rho(BN_dup(tmp));
#ifdef DEBUG
				printf(" (back)");
#endif
			}
			fflush(stdout);

			BN_div(num, NULL, val, tmp, ctx);
			if (BN_is_one(num))
				return;
			if (BN_is_prime(num, PRIME_CHECKS, NULL, NULL,
			    NULL) == 1) {
				putchar(' ');
				BN_print_dec_fp(stdout, num);
				fflush(stdout);
				return;
			}
			BN_copy(val, num);
			goto restart;
		}
		steps_taken++;
		if (steps_taken == steps_limit) {
			BN_copy(y, x); /* teleport the turtle */
			steps_taken = 0;
			steps_limit *= 2;
			if (steps_limit == 0) {
#ifdef DEBUG
				printf(" (overflow)");
#endif
				a++;
				goto restart;
			}
		}
	}
}