Ejemplo n.º 1
0
bool android_pubkey_encode(const RSA* key, uint8_t* key_buffer, size_t size) {
  RSAPublicKey* key_struct = (RSAPublicKey*)key_buffer;
  bool ret = false;
  BN_CTX* ctx = BN_CTX_new();
  BIGNUM* r32 = BN_new();
  BIGNUM* n0inv = BN_new();
  BIGNUM* rr = BN_new();

  if (sizeof(RSAPublicKey) > size ||
      RSA_size(key) != ANDROID_PUBKEY_MODULUS_SIZE) {
    goto cleanup;
  }

  // Store the modulus size.
  key_struct->modulus_size_words = ANDROID_PUBKEY_MODULUS_SIZE_WORDS;

  // Compute and store n0inv = -1 / N[0] mod 2^32.
  if (!ctx || !r32 || !n0inv || !BN_set_bit(r32, 32) ||
      !BN_mod(n0inv, key->n, r32, ctx) ||
      !BN_mod_inverse(n0inv, n0inv, r32, ctx) || !BN_sub(n0inv, r32, n0inv)) {
    goto cleanup;
  }
  key_struct->n0inv = (uint32_t)BN_get_word(n0inv);

  // Store the modulus.
  if (!android_pubkey_encode_bignum(key->n, key_struct->modulus)) {
    goto cleanup;
  }

  // Compute and store rr = (2^(rsa_size)) ^ 2 mod N.
  if (!ctx || !rr || !BN_set_bit(rr, ANDROID_PUBKEY_MODULUS_SIZE * 8) ||
      !BN_mod_sqr(rr, rr, key->n, ctx) ||
      !android_pubkey_encode_bignum(rr, key_struct->rr)) {
    goto cleanup;
  }

  // Store the exponent.
  key_struct->exponent = (uint32_t)BN_get_word(key->e);

  ret = true;

cleanup:
  BN_free(rr);
  BN_free(n0inv);
  BN_free(r32);
  BN_CTX_free(ctx);
  return ret;
}
Ejemplo n.º 2
0
int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *group,
                                             EC_POINT *point, const BIGNUM *x_,
                                             int y_bit, BN_CTX *ctx) {
  BN_CTX *new_ctx = NULL;
  BIGNUM *tmp1, *tmp2, *x, *y;
  int ret = 0;

  ERR_clear_error();

  if (ctx == NULL) {
    ctx = new_ctx = BN_CTX_new();
    if (ctx == NULL) {
      return 0;
    }
  }

  y_bit = (y_bit != 0);

  BN_CTX_start(ctx);
  tmp1 = BN_CTX_get(ctx);
  tmp2 = BN_CTX_get(ctx);
  x = BN_CTX_get(ctx);
  y = BN_CTX_get(ctx);
  if (y == NULL) {
    goto err;
  }

  /* Recover y.  We have a Weierstrass equation
   *     y^2 = x^3 + a*x + b,
   * so  y  is one of the square roots of  x^3 + a*x + b. */

  /* tmp1 := x^3 */
  if (!BN_nnmod(x, x_, &group->field, ctx)) {
    goto err;
  }

  if (group->meth->field_decode == 0) {
    /* field_{sqr,mul} work on standard representation */
    if (!group->meth->field_sqr(group, tmp2, x_, ctx) ||
        !group->meth->field_mul(group, tmp1, tmp2, x_, ctx)) {
      goto err;
    }
  } else {
    if (!BN_mod_sqr(tmp2, x_, &group->field, ctx) ||
        !BN_mod_mul(tmp1, tmp2, x_, &group->field, ctx)) {
      goto err;
    }
  }

  /* tmp1 := tmp1 + a*x */
  if (group->a_is_minus3) {
    if (!BN_mod_lshift1_quick(tmp2, x, &group->field) ||
        !BN_mod_add_quick(tmp2, tmp2, x, &group->field) ||
        !BN_mod_sub_quick(tmp1, tmp1, tmp2, &group->field)) {
      goto err;
    }
  } else {
    if (group->meth->field_decode) {
      if (!group->meth->field_decode(group, tmp2, &group->a, ctx) ||
          !BN_mod_mul(tmp2, tmp2, x, &group->field, ctx)) {
        goto err;
      }
    } else {
      /* field_mul works on standard representation */
      if (!group->meth->field_mul(group, tmp2, &group->a, x, ctx)) {
        goto err;
      }
    }

    if (!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) {
      goto err;
    }
  }

  /* tmp1 := tmp1 + b */
  if (group->meth->field_decode) {
    if (!group->meth->field_decode(group, tmp2, &group->b, ctx) ||
        !BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) {
      goto err;
    }
  } else {
    if (!BN_mod_add_quick(tmp1, tmp1, &group->b, &group->field)) {
      goto err;
    }
  }

  if (!BN_mod_sqrt(y, tmp1, &group->field, ctx)) {
    unsigned long err = ERR_peek_last_error();

    if (ERR_GET_LIB(err) == ERR_LIB_BN &&
        ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) {
      ERR_clear_error();
      OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, EC_R_INVALID_COMPRESSED_POINT);
    } else {
      OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, ERR_R_BN_LIB);
    }
    goto err;
  }

  if (y_bit != BN_is_odd(y)) {
    if (BN_is_zero(y)) {
      int kron;

      kron = BN_kronecker(x, &group->field, ctx);
      if (kron == -2) {
        goto err;
      }

      if (kron == 1) {
        OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates,
                          EC_R_INVALID_COMPRESSION_BIT);
      } else {
        /* BN_mod_sqrt() should have cought this error (not a square) */
        OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates,
                          EC_R_INVALID_COMPRESSED_POINT);
      }
      goto err;
    }
    if (!BN_usub(y, &group->field, y)) {
      goto err;
    }
  }
  if (y_bit != BN_is_odd(y)) {
    OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates,
                      ERR_R_INTERNAL_ERROR);
    goto err;
  }

  if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx))
    goto err;

  ret = 1;

err:
  BN_CTX_end(ctx);
  if (new_ctx != NULL)
    BN_CTX_free(new_ctx);
  return ret;
}
Ejemplo n.º 3
0
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) 
/* Returns 'ret' such that
 *      ret^2 == a (mod p),
 * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
 * in Algebraic Computational Number Theory", algorithm 1.5.1).
 * 'p' must be prime!
 */
	{
	BIGNUM *ret = in;
	int err = 1;
	int r;
	BIGNUM *A, *b, *q, *t, *x, *y;
	int e, i, j;
	
	if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
		{
		if (BN_abs_is_word(p, 2))
			{
			if (ret == NULL)
				ret = BN_new();
			if (ret == NULL)
				goto end;
			if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
				{
				if (ret != in)
					BN_free(ret);
				return NULL;
				}
			bn_check_top(ret);
			return ret;
			}

		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
		return(NULL);
		}

	if (BN_is_zero(a) || BN_is_one(a))
		{
		if (ret == NULL)
			ret = BN_new();
		if (ret == NULL)
			goto end;
		if (!BN_set_word(ret, BN_is_one(a)))
			{
			if (ret != in)
				BN_free(ret);
			return NULL;
			}
		bn_check_top(ret);
		return ret;
		}

	BN_CTX_start(ctx);
	A = BN_CTX_get(ctx);
	b = BN_CTX_get(ctx);
	q = BN_CTX_get(ctx);
	t = BN_CTX_get(ctx);
	x = BN_CTX_get(ctx);
	y = BN_CTX_get(ctx);
	if (y == NULL) goto end;
	
	if (ret == NULL)
		ret = BN_new();
	if (ret == NULL) goto end;

	/* A = a mod p */
	if (!BN_nnmod(A, a, p, ctx)) goto end;

	/* now write  |p| - 1  as  2^e*q  where  q  is odd */
	e = 1;
	while (!BN_is_bit_set(p, e))
		e++;
	/* we'll set  q  later (if needed) */

	if (e == 1)
		{
		/* The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
		 * modulo  (|p|-1)/2,  and square roots can be computed
		 * directly by modular exponentiation.
		 * We have
		 *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
		 * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
		 */
		if (!BN_rshift(q, p, 2)) goto end;
		q->neg = 0;
		if (!BN_add_word(q, 1)) goto end;
		if (!BN_mod_exp(ret, A, q, p, ctx)) goto end;
		err = 0;
		goto vrfy;
		}
	
	if (e == 2)
		{
		/* |p| == 5  (mod 8)
		 *
		 * In this case  2  is always a non-square since
		 * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
		 * So if  a  really is a square, then  2*a  is a non-square.
		 * Thus for
		 *      b := (2*a)^((|p|-5)/8),
		 *      i := (2*a)*b^2
		 * we have
		 *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
		 *         = (2*a)^((p-1)/2)
		 *         = -1;
		 * so if we set
		 *      x := a*b*(i-1),
		 * then
		 *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
		 *         = a^2 * b^2 * (-2*i)
		 *         = a*(-i)*(2*a*b^2)
		 *         = a*(-i)*i
		 *         = a.
		 *
		 * (This is due to A.O.L. Atkin, 
		 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
		 * November 1992.)
		 */

		/* t := 2*a */
		if (!BN_mod_lshift1_quick(t, A, p)) goto end;

		/* b := (2*a)^((|p|-5)/8) */
		if (!BN_rshift(q, p, 3)) goto end;
		q->neg = 0;
		if (!BN_mod_exp(b, t, q, p, ctx)) goto end;

		/* y := b^2 */
		if (!BN_mod_sqr(y, b, p, ctx)) goto end;

		/* t := (2*a)*b^2 - 1*/
		if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
		if (!BN_sub_word(t, 1)) goto end;

		/* x = a*b*t */
		if (!BN_mod_mul(x, A, b, p, ctx)) goto end;
		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;

		if (!BN_copy(ret, x)) goto end;
		err = 0;
		goto vrfy;
		}
	
	/* e > 2, so we really have to use the Tonelli/Shanks algorithm.
	 * First, find some  y  that is not a square. */
	if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
	q->neg = 0;
	i = 2;
	do
		{
		/* For efficiency, try small numbers first;
		 * if this fails, try random numbers.
		 */
		if (i < 22)
			{
			if (!BN_set_word(y, i)) goto end;
			}
		else
			{
			if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
			if (BN_ucmp(y, p) >= 0)
				{
				if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
				}
			/* now 0 <= y < |p| */
			if (BN_is_zero(y))
				if (!BN_set_word(y, i)) goto end;
			}
		
		r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
		if (r < -1) goto end;
		if (r == 0)
			{
			/* m divides p */
			BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
			goto end;
			}
		}
	while (r == 1 && ++i < 82);
	
	if (r != -1)
		{
		/* Many rounds and still no non-square -- this is more likely
		 * a bug than just bad luck.
		 * Even if  p  is not prime, we should have found some  y
		 * such that r == -1.
		 */
		BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
		goto end;
		}

	/* Here's our actual 'q': */
	if (!BN_rshift(q, q, e)) goto end;

	/* Now that we have some non-square, we can find an element
	 * of order  2^e  by computing its q'th power. */
	if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
	if (BN_is_one(y))
		{
		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
		goto end;
		}

	/* Now we know that (if  p  is indeed prime) there is an integer
	 * k,  0 <= k < 2^e,  such that
	 *
	 *      a^q * y^k == 1   (mod p).
	 *
	 * As  a^q  is a square and  y  is not,  k  must be even.
	 * q+1  is even, too, so there is an element
	 *
	 *     X := a^((q+1)/2) * y^(k/2),
	 *
	 * and it satisfies
	 *
	 *     X^2 = a^q * a     * y^k
	 *         = a,
	 *
	 * so it is the square root that we are looking for.
	 */
	
	/* t := (q-1)/2  (note that  q  is odd) */
	if (!BN_rshift1(t, q)) goto end;
	
	/* x := a^((q-1)/2) */
	if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
		{
		if (!BN_nnmod(t, A, p, ctx)) goto end;
		if (BN_is_zero(t))
			{
			/* special case: a == 0  (mod p) */
			BN_zero(ret);
			err = 0;
			goto end;
			}
		else
			if (!BN_one(x)) goto end;
		}
	else
		{
		if (!BN_mod_exp(x, A, t, p, ctx)) goto end;
		if (BN_is_zero(x))
			{
			/* special case: a == 0  (mod p) */
			BN_zero(ret);
			err = 0;
			goto end;
			}
		}

	/* b := a*x^2  (= a^q) */
	if (!BN_mod_sqr(b, x, p, ctx)) goto end;
	if (!BN_mod_mul(b, b, A, p, ctx)) goto end;
	
	/* x := a*x    (= a^((q+1)/2)) */
	if (!BN_mod_mul(x, x, A, p, ctx)) goto end;

	while (1)
		{
		/* Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
		 * where  E  refers to the original value of  e,  which we
		 * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
		 *
		 * We have  a*b = x^2,
		 *    y^2^(e-1) = -1,
		 *    b^2^(e-1) = 1.
		 */

		if (BN_is_one(b))
			{
			if (!BN_copy(ret, x)) goto end;
			err = 0;
			goto vrfy;
			}


		/* find smallest  i  such that  b^(2^i) = 1 */
		i = 1;
		if (!BN_mod_sqr(t, b, p, ctx)) goto end;
		while (!BN_is_one(t))
			{
			i++;
			if (i == e)
				{
				BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
				goto end;
				}
			if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
			}
		

		/* t := y^2^(e - i - 1) */
		if (!BN_copy(t, y)) goto end;
		for (j = e - i - 1; j > 0; j--)
			{
			if (!BN_mod_sqr(t, t, p, ctx)) goto end;
			}
		if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
		if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
		e = i;
		}

 vrfy:
	if (!err)
		{
		/* verify the result -- the input might have been not a square
		 * (test added in 0.9.8) */
		
		if (!BN_mod_sqr(x, ret, p, ctx))
			err = 1;
		
		if (!err && 0 != BN_cmp(x, A))
			{
			BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
			err = 1;
			}
		}

 end:
	if (err)
		{
		if (ret != NULL && ret != in)
			{
			BN_clear_free(ret);
			}
		ret = NULL;
		}
	BN_CTX_end(ctx);
	bn_check_top(ret);
	return ret;
	}
Ejemplo n.º 4
0
int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
                                               const EC_POINT *point,
                                               BIGNUM *x, BIGNUM *y,
                                               BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    BIGNUM *Z, *Z_1, *Z_2, *Z_3;
    const BIGNUM *Z_;
    int ret = 0;

    if (EC_POINT_is_at_infinity(group, point)) {
        ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
              EC_R_POINT_AT_INFINITY);
        return 0;
    }

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    Z = BN_CTX_get(ctx);
    Z_1 = BN_CTX_get(ctx);
    Z_2 = BN_CTX_get(ctx);
    Z_3 = BN_CTX_get(ctx);
    if (Z_3 == NULL)
        goto err;

    /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */

    if (group->meth->field_decode) {
        if (!group->meth->field_decode(group, Z, point->Z, ctx))
            goto err;
        Z_ = Z;
    } else {
        Z_ = point->Z;
    }

    if (BN_is_one(Z_)) {
        if (group->meth->field_decode) {
            if (x != NULL) {
                if (!group->meth->field_decode(group, x, point->X, ctx))
                    goto err;
            }
            if (y != NULL) {
                if (!group->meth->field_decode(group, y, point->Y, ctx))
                    goto err;
            }
        } else {
            if (x != NULL) {
                if (!BN_copy(x, point->X))
                    goto err;
            }
            if (y != NULL) {
                if (!BN_copy(y, point->Y))
                    goto err;
            }
        }
    } else {
        if (!BN_mod_inverse(Z_1, Z_, group->field, ctx)) {
            ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
                  ERR_R_BN_LIB);
            goto err;
        }

        if (group->meth->field_encode == 0) {
            /* field_sqr works on standard representation */
            if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))
                goto err;
        } else {
            if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx))
                goto err;
        }

        if (x != NULL) {
            /*
             * in the Montgomery case, field_mul will cancel out Montgomery
             * factor in X:
             */
            if (!group->meth->field_mul(group, x, point->X, Z_2, ctx))
                goto err;
        }

        if (y != NULL) {
            if (group->meth->field_encode == 0) {
                /*
                 * field_mul works on standard representation
                 */
                if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))
                    goto err;
            } else {
                if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx))
                    goto err;
            }

            /*
             * in the Montgomery case, field_mul will cancel out Montgomery
             * factor in Y:
             */
            if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx))
                goto err;
        }
    }

    ret = 1;

 err:
    BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    return ret;
}
Ejemplo n.º 5
0
int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
{
    int ret = 0;
    BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
    const BIGNUM *p = group->field;
    BN_CTX *new_ctx = NULL;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL) {
            ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT,
                  ERR_R_MALLOC_FAILURE);
            goto err;
        }
    }
    BN_CTX_start(ctx);
    a = BN_CTX_get(ctx);
    b = BN_CTX_get(ctx);
    tmp_1 = BN_CTX_get(ctx);
    tmp_2 = BN_CTX_get(ctx);
    order = BN_CTX_get(ctx);
    if (order == NULL)
        goto err;

    if (group->meth->field_decode) {
        if (!group->meth->field_decode(group, a, group->a, ctx))
            goto err;
        if (!group->meth->field_decode(group, b, group->b, ctx))
            goto err;
    } else {
        if (!BN_copy(a, group->a))
            goto err;
        if (!BN_copy(b, group->b))
            goto err;
    }

    /*-
     * check the discriminant:
     * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
     * 0 =< a, b < p
     */
    if (BN_is_zero(a)) {
        if (BN_is_zero(b))
            goto err;
    } else if (!BN_is_zero(b)) {
        if (!BN_mod_sqr(tmp_1, a, p, ctx))
            goto err;
        if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
            goto err;
        if (!BN_lshift(tmp_1, tmp_2, 2))
            goto err;
        /* tmp_1 = 4*a^3 */

        if (!BN_mod_sqr(tmp_2, b, p, ctx))
            goto err;
        if (!BN_mul_word(tmp_2, 27))
            goto err;
        /* tmp_2 = 27*b^2 */

        if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
            goto err;
        if (BN_is_zero(a))
            goto err;
    }
    ret = 1;

 err:
    if (ctx != NULL)
        BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    return ret;
}
Ejemplo n.º 6
0
int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
                            BN_CTX *ctx)
{
    return BN_mod_sqr(r, a, group->field, ctx);
}
Ejemplo n.º 7
0
int test_sqrt(BIO *bp, BN_CTX *ctx)
	{
	BIGNUM *a,*p,*r;
	int i, j;
	int ret = 0;

	a = BN_new();
	p = BN_new();
	r = BN_new();
	if (a == NULL || p == NULL || r == NULL) goto err;
	
	for (i = 0; i < 16; i++)
		{
		if (i < 8)
			{
			unsigned primes[8] = { 2, 3, 5, 7, 11, 13, 17, 19 };
			
			if (!BN_set_word(p, primes[i])) goto err;
			}
		else
			{
			if (!BN_set_word(a, 32)) goto err;
			if (!BN_set_word(r, 2*i + 1)) goto err;
		
			if (!BN_generate_prime(p, 256, 0, a, r, genprime_cb, NULL)) goto err;
			putc('\n', stderr);
			}
		p->neg = rand_neg();

		for (j = 0; j < num2; j++)
			{
			/* construct 'a' such that it is a square modulo p,
			 * but in general not a proper square and not reduced modulo p */
			if (!BN_bntest_rand(r, 256, 0, 3)) goto err;
			if (!BN_nnmod(r, r, p, ctx)) goto err;
			if (!BN_mod_sqr(r, r, p, ctx)) goto err;
			if (!BN_bntest_rand(a, 256, 0, 3)) goto err;
			if (!BN_nnmod(a, a, p, ctx)) goto err;
			if (!BN_mod_sqr(a, a, p, ctx)) goto err;
			if (!BN_mul(a, a, r, ctx)) goto err;
			if (rand_neg())
				if (!BN_sub(a, a, p)) goto err;

			if (!BN_mod_sqrt(r, a, p, ctx)) goto err;
			if (!BN_mod_sqr(r, r, p, ctx)) goto err;

			if (!BN_nnmod(a, a, p, ctx)) goto err;

			if (BN_cmp(a, r) != 0)
				{
				fprintf(stderr, "BN_mod_sqrt failed: a = ");
				BN_print_fp(stderr, a);
				fprintf(stderr, ", r = ");
				BN_print_fp(stderr, r);
				fprintf(stderr, ", p = ");
				BN_print_fp(stderr, p);
				fprintf(stderr, "\n");
				goto err;
				}

			putc('.', stderr);
			fflush(stderr);
			}
		
		putc('\n', stderr);
		fflush(stderr);
		}
	ret = 1;
 err:
	if (a != NULL) BN_free(a);
	if (p != NULL) BN_free(p);
	if (r != NULL) BN_free(r);
	return ret;
	}
Ejemplo n.º 8
0
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
  // Compute a square root of |a| mod |p| using the Tonelli/Shanks algorithm
  // (cf. Henri Cohen, "A Course in Algebraic Computational Number Theory",
  // algorithm 1.5.1). |p| is assumed to be a prime.

  BIGNUM *ret = in;
  int err = 1;
  int r;
  BIGNUM *A, *b, *q, *t, *x, *y;
  int e, i, j;

  if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
    if (BN_abs_is_word(p, 2)) {
      if (ret == NULL) {
        ret = BN_new();
      }
      if (ret == NULL) {
        goto end;
      }
      if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
        if (ret != in) {
          BN_free(ret);
        }
        return NULL;
      }
      return ret;
    }

    OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
    return (NULL);
  }

  if (BN_is_zero(a) || BN_is_one(a)) {
    if (ret == NULL) {
      ret = BN_new();
    }
    if (ret == NULL) {
      goto end;
    }
    if (!BN_set_word(ret, BN_is_one(a))) {
      if (ret != in) {
        BN_free(ret);
      }
      return NULL;
    }
    return ret;
  }

  BN_CTX_start(ctx);
  A = BN_CTX_get(ctx);
  b = BN_CTX_get(ctx);
  q = BN_CTX_get(ctx);
  t = BN_CTX_get(ctx);
  x = BN_CTX_get(ctx);
  y = BN_CTX_get(ctx);
  if (y == NULL) {
    goto end;
  }

  if (ret == NULL) {
    ret = BN_new();
  }
  if (ret == NULL) {
    goto end;
  }

  // A = a mod p
  if (!BN_nnmod(A, a, p, ctx)) {
    goto end;
  }

  // now write  |p| - 1  as  2^e*q  where  q  is odd
  e = 1;
  while (!BN_is_bit_set(p, e)) {
    e++;
  }
  // we'll set  q  later (if needed)

  if (e == 1) {
    // The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
    // modulo  (|p|-1)/2,  and square roots can be computed
    // directly by modular exponentiation.
    // We have
    //     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
    // so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
    if (!BN_rshift(q, p, 2)) {
      goto end;
    }
    q->neg = 0;
    if (!BN_add_word(q, 1) ||
        !BN_mod_exp_mont(ret, A, q, p, ctx, NULL)) {
      goto end;
    }
    err = 0;
    goto vrfy;
  }

  if (e == 2) {
    // |p| == 5  (mod 8)
    //
    // In this case  2  is always a non-square since
    // Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
    // So if  a  really is a square, then  2*a  is a non-square.
    // Thus for
    //      b := (2*a)^((|p|-5)/8),
    //      i := (2*a)*b^2
    // we have
    //     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
    //         = (2*a)^((p-1)/2)
    //         = -1;
    // so if we set
    //      x := a*b*(i-1),
    // then
    //     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
    //         = a^2 * b^2 * (-2*i)
    //         = a*(-i)*(2*a*b^2)
    //         = a*(-i)*i
    //         = a.
    //
    // (This is due to A.O.L. Atkin,
    // <URL:
    //http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
    // November 1992.)

    // t := 2*a
    if (!BN_mod_lshift1_quick(t, A, p)) {
      goto end;
    }

    // b := (2*a)^((|p|-5)/8)
    if (!BN_rshift(q, p, 3)) {
      goto end;
    }
    q->neg = 0;
    if (!BN_mod_exp_mont(b, t, q, p, ctx, NULL)) {
      goto end;
    }

    // y := b^2
    if (!BN_mod_sqr(y, b, p, ctx)) {
      goto end;
    }

    // t := (2*a)*b^2 - 1
    if (!BN_mod_mul(t, t, y, p, ctx) ||
        !BN_sub_word(t, 1)) {
      goto end;
    }

    // x = a*b*t
    if (!BN_mod_mul(x, A, b, p, ctx) ||
        !BN_mod_mul(x, x, t, p, ctx)) {
      goto end;
    }

    if (!BN_copy(ret, x)) {
      goto end;
    }
    err = 0;
    goto vrfy;
  }

  // e > 2, so we really have to use the Tonelli/Shanks algorithm.
  // First, find some  y  that is not a square.
  if (!BN_copy(q, p)) {
    goto end;  // use 'q' as temp
  }
  q->neg = 0;
  i = 2;
  do {
    // For efficiency, try small numbers first;
    // if this fails, try random numbers.
    if (i < 22) {
      if (!BN_set_word(y, i)) {
        goto end;
      }
    } else {
      if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) {
        goto end;
      }
      if (BN_ucmp(y, p) >= 0) {
        if (!(p->neg ? BN_add : BN_sub)(y, y, p)) {
          goto end;
        }
      }
      // now 0 <= y < |p|
      if (BN_is_zero(y)) {
        if (!BN_set_word(y, i)) {
          goto end;
        }
      }
    }

    r = bn_jacobi(y, q, ctx);  // here 'q' is |p|
    if (r < -1) {
      goto end;
    }
    if (r == 0) {
      // m divides p
      OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
      goto end;
    }
  } while (r == 1 && ++i < 82);

  if (r != -1) {
    // Many rounds and still no non-square -- this is more likely
    // a bug than just bad luck.
    // Even if  p  is not prime, we should have found some  y
    // such that r == -1.
    OPENSSL_PUT_ERROR(BN, BN_R_TOO_MANY_ITERATIONS);
    goto end;
  }

  // Here's our actual 'q':
  if (!BN_rshift(q, q, e)) {
    goto end;
  }

  // Now that we have some non-square, we can find an element
  // of order  2^e  by computing its q'th power.
  if (!BN_mod_exp_mont(y, y, q, p, ctx, NULL)) {
    goto end;
  }
  if (BN_is_one(y)) {
    OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
    goto end;
  }

  // Now we know that (if  p  is indeed prime) there is an integer
  // k,  0 <= k < 2^e,  such that
  //
  //      a^q * y^k == 1   (mod p).
  //
  // As  a^q  is a square and  y  is not,  k  must be even.
  // q+1  is even, too, so there is an element
  //
  //     X := a^((q+1)/2) * y^(k/2),
  //
  // and it satisfies
  //
  //     X^2 = a^q * a     * y^k
  //         = a,
  //
  // so it is the square root that we are looking for.

  // t := (q-1)/2  (note that  q  is odd)
  if (!BN_rshift1(t, q)) {
    goto end;
  }

  // x := a^((q-1)/2)
  if (BN_is_zero(t))  // special case: p = 2^e + 1
  {
    if (!BN_nnmod(t, A, p, ctx)) {
      goto end;
    }
    if (BN_is_zero(t)) {
      // special case: a == 0  (mod p)
      BN_zero(ret);
      err = 0;
      goto end;
    } else if (!BN_one(x)) {
      goto end;
    }
  } else {
    if (!BN_mod_exp_mont(x, A, t, p, ctx, NULL)) {
      goto end;
    }
    if (BN_is_zero(x)) {
      // special case: a == 0  (mod p)
      BN_zero(ret);
      err = 0;
      goto end;
    }
  }

  // b := a*x^2  (= a^q)
  if (!BN_mod_sqr(b, x, p, ctx) ||
      !BN_mod_mul(b, b, A, p, ctx)) {
    goto end;
  }

  // x := a*x    (= a^((q+1)/2))
  if (!BN_mod_mul(x, x, A, p, ctx)) {
    goto end;
  }

  while (1) {
    // Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
    // where  E  refers to the original value of  e,  which we
    // don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
    //
    // We have  a*b = x^2,
    //    y^2^(e-1) = -1,
    //    b^2^(e-1) = 1.

    if (BN_is_one(b)) {
      if (!BN_copy(ret, x)) {
        goto end;
      }
      err = 0;
      goto vrfy;
    }


    // find smallest  i  such that  b^(2^i) = 1
    i = 1;
    if (!BN_mod_sqr(t, b, p, ctx)) {
      goto end;
    }
    while (!BN_is_one(t)) {
      i++;
      if (i == e) {
        OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
        goto end;
      }
      if (!BN_mod_mul(t, t, t, p, ctx)) {
        goto end;
      }
    }


    // t := y^2^(e - i - 1)
    if (!BN_copy(t, y)) {
      goto end;
    }
    for (j = e - i - 1; j > 0; j--) {
      if (!BN_mod_sqr(t, t, p, ctx)) {
        goto end;
      }
    }
    if (!BN_mod_mul(y, t, t, p, ctx) ||
        !BN_mod_mul(x, x, t, p, ctx) ||
        !BN_mod_mul(b, b, y, p, ctx)) {
      goto end;
    }
    e = i;
  }

vrfy:
  if (!err) {
    // verify the result -- the input might have been not a square
    // (test added in 0.9.8)

    if (!BN_mod_sqr(x, ret, p, ctx)) {
      err = 1;
    }

    if (!err && 0 != BN_cmp(x, A)) {
      OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
      err = 1;
    }
  }

end:
  if (err) {
    if (ret != in) {
      BN_clear_free(ret);
    }
    ret = NULL;
  }
  BN_CTX_end(ctx);
  return ret;
}
void do_mul_exp(BIGNUM *r, BIGNUM *a, BIGNUM *b, BIGNUM *c, BN_CTX *ctx)
	{
	int i,k;
	double tm;
	long num;

	num=BASENUM;
	for (i=NUM_START; i<NUM_SIZES; i++)
		{
#ifdef C_PRIME
#  ifdef TEST_SQRT
		if (!BN_set_word(a, 64)) goto err;
		if (!BN_set_word(b, P_MOD_64)) goto err;
#    define ADD a
#    define REM b
#  else
#    define ADD NULL
#    define REM NULL
#  endif
		if (!BN_generate_prime(c,sizes[i],0,ADD,REM,genprime_cb,NULL)) goto err;
		putc('\n', stderr);
		fflush(stderr);
#endif

		for (k=0; k<num; k++)
			{
			if (k%50 == 0) /* Average over num/50 different choices of random numbers. */
				{
				if (!BN_pseudo_rand(a,sizes[i],1,0)) goto err;

				if (!BN_pseudo_rand(b,sizes[i],1,0)) goto err;

#ifndef C_PRIME
				if (!BN_pseudo_rand(c,sizes[i],1,1)) goto err;
#endif

#ifdef TEST_SQRT				
				if (!BN_mod_sqr(a,a,c,ctx)) goto err;
				if (!BN_mod_sqr(b,b,c,ctx)) goto err;
#else
				if (!BN_nnmod(a,a,c,ctx)) goto err;
				if (!BN_nnmod(b,b,c,ctx)) goto err;
#endif

				if (k == 0)
					Time_F(START);
				}

#if defined(TEST_EXP)
			if (!BN_mod_exp(r,a,b,c,ctx)) goto err;
#elif defined(TEST_MUL)
			{
			int i = 0;
			for (i = 0; i < 50; i++)
				if (!BN_mod_mul(r,a,b,c,ctx)) goto err;
			}
#elif defined(TEST_SQR)
			{
			int i = 0;
			for (i = 0; i < 50; i++)
				{
				if (!BN_mod_sqr(r,a,c,ctx)) goto err;
				if (!BN_mod_sqr(r,b,c,ctx)) goto err;
				}
			}
#elif defined(TEST_GCD)
			if (!BN_gcd(r,a,b,ctx)) goto err;
			if (!BN_gcd(r,b,c,ctx)) goto err;
			if (!BN_gcd(r,c,a,ctx)) goto err;
#elif defined(TEST_KRON)
			if (-2 == BN_kronecker(a,b,ctx)) goto err;
			if (-2 == BN_kronecker(b,c,ctx)) goto err;
			if (-2 == BN_kronecker(c,a,ctx)) goto err;
#elif defined(TEST_INV)
			if (!BN_mod_inverse(r,a,c,ctx)) goto err;
			if (!BN_mod_inverse(r,b,c,ctx)) goto err;
#else /* TEST_SQRT */
			if (!BN_mod_sqrt(r,a,c,ctx)) goto err;
			if (!BN_mod_sqrt(r,b,c,ctx)) goto err;
#endif
			}
		tm=Time_F(STOP);
		printf(
#if defined(TEST_EXP)
			"modexp %4d ^ %4d %% %4d"
#elif defined(TEST_MUL)
			"50*modmul %4d %4d %4d"
#elif defined(TEST_SQR)
			"100*modsqr %4d %4d %4d"
#elif defined(TEST_GCD)
			"3*gcd %4d %4d %4d"
#elif defined(TEST_KRON)
			"3*kronecker %4d %4d %4d"
#elif defined(TEST_INV)
			"2*inv %4d %4d mod %4d"
#else /* TEST_SQRT */
			"2*sqrt [prime == %d (mod 64)] %4d %4d mod %4d"
#endif
			" -> %8.3fms %5.1f (%ld)\n",
#ifdef TEST_SQRT
			P_MOD_64,
#endif
			sizes[i],sizes[i],sizes[i],tm*1000.0/num,tm*mul_c[i]/num, num);
		num/=7;
		if (num <= 0) num=1;
		}
	return;

 err:
	ERR_print_errors_fp(stderr);
	}
Ejemplo n.º 10
0
int
ecdh_im_compute_key(PACE_CTX * ctx, const BUF_MEM * s, const BUF_MEM * in,
        BN_CTX *bn_ctx)
{
    int ret = 0;
    BUF_MEM * x_mem = NULL;
    BIGNUM * a = NULL, *b = NULL, *p = NULL;
    BIGNUM * x = NULL, *y = NULL, *v = NULL, *u = NULL;
    BIGNUM * tmp = NULL, *tmp2 = NULL, *bn_inv = NULL;
    BIGNUM * two = NULL, *three = NULL, *four = NULL, *six = NULL;
    BIGNUM * twentyseven = NULL;
    EC_KEY *static_key = NULL, *ephemeral_key = NULL;
    EC_POINT *g = NULL;

    BN_CTX_start(bn_ctx);

    check((ctx && ctx->static_key && s && ctx->ka_ctx), "Invalid arguments"); 

    static_key = EVP_PKEY_get1_EC_KEY(ctx->static_key);
    if (!static_key)
        goto err;

    /* Setup all the variables*/
    a = BN_CTX_get(bn_ctx);
    b = BN_CTX_get(bn_ctx);
    p = BN_CTX_get(bn_ctx);
    x = BN_CTX_get(bn_ctx);
    y = BN_CTX_get(bn_ctx);
    v = BN_CTX_get(bn_ctx);
    two = BN_CTX_get(bn_ctx);
    three = BN_CTX_get(bn_ctx);
    four = BN_CTX_get(bn_ctx);
    six = BN_CTX_get(bn_ctx);
    twentyseven = BN_CTX_get(bn_ctx);
    tmp = BN_CTX_get(bn_ctx);
    tmp2 = BN_CTX_get(bn_ctx);
    bn_inv = BN_CTX_get(bn_ctx);
    if (!bn_inv)
        goto err;

    /* Encrypt the Nonce using the symmetric key in */
    x_mem = cipher_no_pad(ctx->ka_ctx, NULL, in, s, 1);
    if (!x_mem)
        goto err;

    /* Fetch the curve parameters */
    if (!EC_GROUP_get_curve_GFp(EC_KEY_get0_group(static_key), p, a, b, bn_ctx))
        goto err;

    /* Assign constants */
    if (    !BN_set_word(two,2)||
            !BN_set_word(three,3)||
            !BN_set_word(four,4)||
            !BN_set_word(six,6)||
            !BN_set_word(twentyseven,27)
            ) goto err;

    /* Check prerequisites for curve parameters */
    check(
            /* p > 3;*/
           (BN_cmp(p, three) == 1) &&
           /* p mod 3 = 2; (p has the form p=q^n, q prime) */
           BN_nnmod(tmp, p, three, bn_ctx) &&
           (BN_cmp(tmp, two) == 0),
        "Unsuited curve");

    /* Convert encrypted nonce to BIGNUM */
    u = BN_bin2bn((unsigned char *) x_mem->data, x_mem->length, u);
    if (!u)
        goto err;

    if ( /* v = (3a - u^4) / 6u mod p */
            !BN_mod_mul(tmp, three, a, p, bn_ctx) ||
            !BN_mod_exp(tmp2, u, four, p, bn_ctx) ||
            !BN_mod_sub(v, tmp, tmp2, p, bn_ctx) ||
            !BN_mod_mul(tmp, u, six, p, bn_ctx) ||
            /* For division within a galois field we need to compute
             * the multiplicative inverse of a number */
            !BN_mod_inverse(bn_inv, tmp, p, bn_ctx) ||
            !BN_mod_mul(v, v, bn_inv, p, bn_ctx) ||

            /* x = (v^2 - b - ((u^6)/27)) */
            !BN_mod_sqr(tmp, v, p, bn_ctx) ||
            !BN_mod_sub(tmp2, tmp, b, p, bn_ctx) ||
            !BN_mod_exp(tmp, u, six, p, bn_ctx) ||
            !BN_mod_inverse(bn_inv, twentyseven, p, bn_ctx) ||
            !BN_mod_mul(tmp, tmp, bn_inv, p, bn_ctx) ||
            !BN_mod_sub(x, tmp2, tmp, p, bn_ctx) ||

            /* x -> x^(1/3) = x^((2p^n -1)/3) */
            !BN_mul(tmp, two, p, bn_ctx) ||
            !BN_sub(tmp, tmp, BN_value_one()) ||

            /* Division is defined, because p^n = 2 mod 3 */
            !BN_div(tmp, y, tmp, three, bn_ctx) ||
            !BN_mod_exp(tmp2, x, tmp, p, bn_ctx) ||
            !BN_copy(x, tmp2) ||

            /* x += (u^2)/3 */
            !BN_mod_sqr(tmp, u, p, bn_ctx) ||
            !BN_mod_inverse(bn_inv, three, p, bn_ctx) ||
            !BN_mod_mul(tmp2, tmp, bn_inv, p, bn_ctx) ||
            !BN_mod_add(tmp, x, tmp2, p, bn_ctx) ||
            !BN_copy(x, tmp) ||

            /* y = ux + v */
            !BN_mod_mul(y, u, x, p, bn_ctx) ||
            !BN_mod_add(tmp, y, v, p, bn_ctx) ||
            !BN_copy(y, tmp)
            )
        goto err;

    /* Initialize ephemeral parameters with parameters from the static key */
    ephemeral_key = EC_KEY_dup(static_key);
    if (!ephemeral_key)
        goto err;
    EVP_PKEY_set1_EC_KEY(ctx->ka_ctx->key, ephemeral_key);

    /* configure the new EC_KEY */
    g = EC_POINT_new(EC_KEY_get0_group(ephemeral_key));
    if (!g)
        goto err;
    if (!EC_POINT_set_affine_coordinates_GFp(EC_KEY_get0_group(ephemeral_key), g,
            x, y, bn_ctx))
        goto err;

    ret = 1;

err:
    if (x_mem)
        BUF_MEM_free(x_mem);
    if (u)
        BN_free(u);
    BN_CTX_end(bn_ctx);
    if (g)
        EC_POINT_clear_free(g);
    /* Decrement reference count, keys are still available via PACE_CTX */
    if (static_key)
        EC_KEY_free(static_key);
    if (ephemeral_key)
        EC_KEY_free(ephemeral_key);

    return ret;
}