Ejemplo n.º 1
0
static DerivedMesh *generate_ocean_geometry(OceanModifierData *omd)
{
	DerivedMesh *result;

	MVert *mverts;
	MPoly *mpolys;
	MLoop *mloops;
	int *origindex;

	int cdlayer;

	const int rx = omd->resolution * omd->resolution;
	const int ry = omd->resolution * omd->resolution;
	const int res_x = rx * omd->repeat_x;
	const int res_y = ry * omd->repeat_y;

	const int num_verts = (res_x + 1) * (res_y + 1);
	/* const int num_edges = (res_x * res_y * 2) + res_x + res_y; */ /* UNUSED BMESH */
	const int num_faces = res_x * res_y;

	float sx = omd->size * omd->spatial_size;
	float sy = omd->size * omd->spatial_size;
	const float ox = -sx / 2.0f;
	const float oy = -sy / 2.0f;

	float ix, iy;

	int x, y;

	sx /= rx;
	sy /= ry;

	result = CDDM_new(num_verts, 0, 0, num_faces * 4, num_faces);

	mverts = CDDM_get_verts(result);
	mpolys = CDDM_get_polys(result);
	mloops = CDDM_get_loops(result);

	origindex = CustomData_get_layer(&result->polyData, CD_ORIGINDEX);

	/* create vertices */
#pragma omp parallel for private(x, y) if (rx > OMP_MIN_RES)
	for (y = 0; y <= res_y; y++) {
		for (x = 0; x <= res_x; x++) {
			const int i = y * (res_x + 1) + x;
			float *co = mverts[i].co;
			co[0] = ox + (x * sx);
			co[1] = oy + (y * sy);
			co[2] = 0;
		}
	}

	/* create faces */
#pragma omp parallel for private(x, y) if (rx > OMP_MIN_RES)
	for (y = 0; y < res_y; y++) {
		for (x = 0; x < res_x; x++) {
			const int fi = y * res_x + x;
			const int vi = y * (res_x + 1) + x;
			MPoly *mp = &mpolys[fi];
			MLoop *ml = &mloops[fi * 4];

			ml->v = vi;
			ml++;
			ml->v = vi + 1;
			ml++;
			ml->v = vi + 1 + res_x + 1;
			ml++;
			ml->v = vi + res_x + 1;
			ml++;

			mp->loopstart = fi * 4;
			mp->totloop = 4;

			mp->flag |= ME_SMOOTH;

			/* generated geometry does not map to original faces */
			origindex[fi] = ORIGINDEX_NONE;
		}
	}

	CDDM_calc_edges(result);

	/* add uvs */
	cdlayer = CustomData_number_of_layers(&result->loopData, CD_MLOOPUV);
	if (cdlayer < MAX_MTFACE) {
		MLoopUV *mloopuvs = CustomData_add_layer(&result->loopData, CD_MLOOPUV, CD_CALLOC, NULL, num_faces * 4);
		CustomData_add_layer(&result->polyData, CD_MTEXPOLY, CD_CALLOC, NULL, num_faces);

		if (mloopuvs) { /* unlikely to fail */
			ix = 1.0 / rx;
			iy = 1.0 / ry;
#pragma omp parallel for private(x, y) if (rx > OMP_MIN_RES)
			for (y = 0; y < res_y; y++) {
				for (x = 0; x < res_x; x++) {
					const int i = y * res_x + x;
					MLoopUV *luv = &mloopuvs[i * 4];

					luv->uv[0] = x * ix;
					luv->uv[1] = y * iy;
					luv++;

					luv->uv[0] = (x + 1) * ix;
					luv->uv[1] = y * iy;
					luv++;

					luv->uv[0] = (x + 1) * ix;
					luv->uv[1] = (y + 1) * iy;
					luv++;

					luv->uv[0] = x * ix;
					luv->uv[1] = (y + 1) * iy;
					luv++;

				}
			}
		}
	}

	result->dirty |= DM_DIRTY_NORMALS;

	return result;
}
Ejemplo n.º 2
0
static DerivedMesh *applyModifier(ModifierData *md, Object *ob,
                                  DerivedMesh *derivedData,
                                  ModifierApplyFlag UNUSED(flag))
{
	MaskModifierData *mmd = (MaskModifierData *)md;
	DerivedMesh *dm = derivedData, *result = NULL;
	GHash *vertHash = NULL, *edgeHash, *polyHash;
	GHashIterator *hashIter;
	MDeformVert *dvert = NULL, *dv;
	int numPolys = 0, numLoops = 0, numEdges = 0, numVerts = 0;
	int maxVerts, maxEdges, maxPolys;
	int i;

	MPoly *mpoly;
	MLoop *mloop;

	MPoly *mpoly_new;
	MLoop *mloop_new;
	MEdge *medge_new;
	MVert *mvert_new;


	int *loop_mapping;

	/* Overview of Method:
	 *	1. Get the vertices that are in the vertexgroup of interest 
	 *	2. Filter out unwanted geometry (i.e. not in vertexgroup), by populating mappings with new vs old indices
	 *	3. Make a new mesh containing only the mapping data
	 */
	
	/* get original number of verts, edges, and faces */
	maxVerts = dm->getNumVerts(dm);
	maxEdges = dm->getNumEdges(dm);
	maxPolys = dm->getNumPolys(dm);
	
	/* check if we can just return the original mesh 
	 *	- must have verts and therefore verts assigned to vgroups to do anything useful
	 */
	if (!(ELEM(mmd->mode, MOD_MASK_MODE_ARM, MOD_MASK_MODE_VGROUP)) ||
	    (maxVerts == 0) || (ob->defbase.first == NULL) )
	{
		return derivedData;
	}
	
	/* if mode is to use selected armature bones, aggregate the bone groups */
	if (mmd->mode == MOD_MASK_MODE_ARM) { /* --- using selected bones --- */
		Object *oba = mmd->ob_arm;
		bPoseChannel *pchan;
		bDeformGroup *def;
		char *bone_select_array;
		int bone_select_tot = 0;
		const int defbase_tot = BLI_countlist(&ob->defbase);
		
		/* check that there is armature object with bones to use, otherwise return original mesh */
		if (ELEM3(NULL, oba, oba->pose, ob->defbase.first))
			return derivedData;
		
		/* determine whether each vertexgroup is associated with a selected bone or not 
		 * - each cell is a boolean saying whether bone corresponding to the ith group is selected
		 * - groups that don't match a bone are treated as not existing (along with the corresponding ungrouped verts)
		 */
		bone_select_array = MEM_mallocN(defbase_tot * sizeof(char), "mask array");
		
		for (i = 0, def = ob->defbase.first; def; def = def->next, i++) {
			pchan = BKE_pose_channel_find_name(oba->pose, def->name);
			if (pchan && pchan->bone && (pchan->bone->flag & BONE_SELECTED)) {
				bone_select_array[i] = TRUE;
				bone_select_tot++;
			}
			else {
				bone_select_array[i] = FALSE;
			}
		}
		
		/* if no dverts (i.e. no data for vertex groups exists), we've got an
		 * inconsistent situation, so free hashes and return oirginal mesh
		 */
		dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
		if (dvert == NULL) {
			MEM_freeN(bone_select_array);
			return derivedData;
		}
		
		/* verthash gives mapping from original vertex indices to the new indices (including selected matches only)
		 * key = oldindex, value = newindex
		 */
		vertHash = BLI_ghash_int_new("mask vert gh");
		
		/* add vertices which exist in vertexgroups into vertHash for filtering 
		 * - dv = for each vertex, what vertexgroups does it belong to
		 * - dw = weight that vertex was assigned to a vertexgroup it belongs to
		 */
		for (i = 0, dv = dvert; i < maxVerts; i++, dv++) {
			MDeformWeight *dw = dv->dw;
			short found = 0;
			int j;
			
			/* check the groups that vertex is assigned to, and see if it was any use */
			for (j = 0; j < dv->totweight; j++, dw++) {
				if (dw->def_nr < defbase_tot) {
					if (bone_select_array[dw->def_nr]) {
						if (dw->weight != 0.0f) {
							found = TRUE;
							break;
						}
					}
				}
			}
			
			/* check if include vert in vertHash */
			if (mmd->flag & MOD_MASK_INV) {
				/* if this vert is in the vgroup, don't include it in vertHash */
				if (found) continue;
			}
			else {
				/* if this vert isn't in the vgroup, don't include it in vertHash */
				if (!found) continue;
			}
			
			/* add to ghash for verts (numVerts acts as counter for mapping) */
			BLI_ghash_insert(vertHash, SET_INT_IN_POINTER(i), SET_INT_IN_POINTER(numVerts));
			numVerts++;
		}
		
		/* free temp hashes */
		MEM_freeN(bone_select_array);
	}
	else {  /* --- Using Nominated VertexGroup only --- */
		int defgrp_index = defgroup_name_index(ob, mmd->vgroup);
		
		/* get dverts */
		if (defgrp_index != -1)
			dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
			
		/* if no vgroup (i.e. dverts) found, return the initial mesh */
		if ((defgrp_index == -1) || (dvert == NULL))
			return dm;
			
		/* hashes for quickly providing a mapping from old to new - use key=oldindex, value=newindex */
		vertHash = BLI_ghash_int_new("mask vert2 bh");
		
		/* add vertices which exist in vertexgroup into ghash for filtering */
		for (i = 0, dv = dvert; i < maxVerts; i++, dv++) {
			const int weight_set = defvert_find_weight(dv, defgrp_index) != 0.0f;
			
			/* check if include vert in vertHash */
			if (mmd->flag & MOD_MASK_INV) {
				/* if this vert is in the vgroup, don't include it in vertHash */
				if (weight_set) continue;
			}
			else {
				/* if this vert isn't in the vgroup, don't include it in vertHash */
				if (!weight_set) continue;
			}
			
			/* add to ghash for verts (numVerts acts as counter for mapping) */
			BLI_ghash_insert(vertHash, SET_INT_IN_POINTER(i), SET_INT_IN_POINTER(numVerts));
			numVerts++;
		}
	}

	/* hashes for quickly providing a mapping from old to new - use key=oldindex, value=newindex */
	edgeHash = BLI_ghash_int_new("mask ed2 gh");
	polyHash = BLI_ghash_int_new("mask fa2 gh");
	
	mpoly = dm->getPolyArray(dm);
	mloop = dm->getLoopArray(dm);

	loop_mapping = MEM_callocN(sizeof(int) * maxPolys, "mask loopmap"); /* overalloc, assume all polys are seen */

	/* loop over edges and faces, and do the same thing to 
	 * ensure that they only reference existing verts 
	 */
	for (i = 0; i < maxEdges; i++) {
		MEdge me;
		dm->getEdge(dm, i, &me);
		
		/* only add if both verts will be in new mesh */
		if (BLI_ghash_haskey(vertHash, SET_INT_IN_POINTER(me.v1)) &&
		    BLI_ghash_haskey(vertHash, SET_INT_IN_POINTER(me.v2)))
		{
			BLI_ghash_insert(edgeHash, SET_INT_IN_POINTER(i), SET_INT_IN_POINTER(numEdges));
			numEdges++;
		}
	}
	for (i = 0; i < maxPolys; i++) {
		MPoly *mp = &mpoly[i];
		MLoop *ml = mloop + mp->loopstart;
		int ok = TRUE;
		int j;
		
		for (j = 0; j < mp->totloop; j++, ml++) {
			if (!BLI_ghash_haskey(vertHash, SET_INT_IN_POINTER(ml->v))) {
				ok = FALSE;
				break;
			}
		}
		
		/* all verts must be available */
		if (ok) {
			BLI_ghash_insert(polyHash, SET_INT_IN_POINTER(i), SET_INT_IN_POINTER(numPolys));
			loop_mapping[numPolys] = numLoops;
			numPolys++;
			numLoops += mp->totloop;
		}
	}
	
	
	/* now we know the number of verts, edges and faces, 
	 * we can create the new (reduced) mesh
	 */
	result = CDDM_from_template(dm, numVerts, numEdges, 0, numLoops, numPolys);
	
	mpoly_new = CDDM_get_polys(result);
	mloop_new = CDDM_get_loops(result);
	medge_new = CDDM_get_edges(result);
	mvert_new = CDDM_get_verts(result);
	
	/* using ghash-iterators, map data into new mesh */
	/* vertices */
	for (hashIter = BLI_ghashIterator_new(vertHash);
	     !BLI_ghashIterator_isDone(hashIter);
	     BLI_ghashIterator_step(hashIter) )
	{
		MVert source;
		MVert *dest;
		int oldIndex = GET_INT_FROM_POINTER(BLI_ghashIterator_getKey(hashIter));
		int newIndex = GET_INT_FROM_POINTER(BLI_ghashIterator_getValue(hashIter));
		
		dm->getVert(dm, oldIndex, &source);
		dest = &mvert_new[newIndex];
		
		DM_copy_vert_data(dm, result, oldIndex, newIndex, 1);
		*dest = source;
	}
	BLI_ghashIterator_free(hashIter);
		
	/* edges */
	for (hashIter = BLI_ghashIterator_new(edgeHash);
	     !BLI_ghashIterator_isDone(hashIter);
	     BLI_ghashIterator_step(hashIter))
	{
		MEdge source;
		MEdge *dest;
		int oldIndex = GET_INT_FROM_POINTER(BLI_ghashIterator_getKey(hashIter));
		int newIndex = GET_INT_FROM_POINTER(BLI_ghashIterator_getValue(hashIter));
		
		dm->getEdge(dm, oldIndex, &source);
		dest = &medge_new[newIndex];
		
		source.v1 = GET_INT_FROM_POINTER(BLI_ghash_lookup(vertHash, SET_INT_IN_POINTER(source.v1)));
		source.v2 = GET_INT_FROM_POINTER(BLI_ghash_lookup(vertHash, SET_INT_IN_POINTER(source.v2)));
		
		DM_copy_edge_data(dm, result, oldIndex, newIndex, 1);
		*dest = source;
	}
	BLI_ghashIterator_free(hashIter);
	
	/* faces */
	for (hashIter = BLI_ghashIterator_new(polyHash);
	     !BLI_ghashIterator_isDone(hashIter);
	     BLI_ghashIterator_step(hashIter) )
	{
		int oldIndex = GET_INT_FROM_POINTER(BLI_ghashIterator_getKey(hashIter));
		int newIndex = GET_INT_FROM_POINTER(BLI_ghashIterator_getValue(hashIter));
		MPoly *source = &mpoly[oldIndex];
		MPoly *dest = &mpoly_new[newIndex];
		int oldLoopIndex = source->loopstart;
		int newLoopIndex = loop_mapping[newIndex];
		MLoop *source_loop = &mloop[oldLoopIndex];
		MLoop *dest_loop = &mloop_new[newLoopIndex];
		
		DM_copy_poly_data(dm, result, oldIndex, newIndex, 1);
		DM_copy_loop_data(dm, result, oldLoopIndex, newLoopIndex, source->totloop);

		*dest = *source;
		dest->loopstart = newLoopIndex;
		for (i = 0; i < source->totloop; i++) {
			dest_loop[i].v = GET_INT_FROM_POINTER(BLI_ghash_lookup(vertHash, SET_INT_IN_POINTER(source_loop[i].v)));
			dest_loop[i].e = GET_INT_FROM_POINTER(BLI_ghash_lookup(edgeHash, SET_INT_IN_POINTER(source_loop[i].e)));
		}
	}

	BLI_ghashIterator_free(hashIter);

	MEM_freeN(loop_mapping);

	/* why is this needed? - campbell */
	/* recalculate normals */
	CDDM_calc_normals(result);
	
	/* free hashes */
	BLI_ghash_free(vertHash, NULL, NULL);
	BLI_ghash_free(edgeHash, NULL, NULL);
	BLI_ghash_free(polyHash, NULL, NULL);

	/* return the new mesh */
	return result;
}
Ejemplo n.º 3
0
/* dm must be a CDDerivedMesh */
static void displaceModifier_do(
        DisplaceModifierData *dmd, Object *ob,
        DerivedMesh *dm, float (*vertexCos)[3], int numVerts)
{
	int i;
	MVert *mvert;
	MDeformVert *dvert;
	int direction = dmd->direction;
	int defgrp_index;
	float (*tex_co)[3];
	float weight = 1.0f; /* init value unused but some compilers may complain */
	const float delta_fixed = 1.0f - dmd->midlevel;  /* when no texture is used, we fallback to white */
	float (*vert_clnors)[3] = NULL;

	if (!dmd->texture && dmd->direction == MOD_DISP_DIR_RGB_XYZ) return;
	if (dmd->strength == 0.0f) return;

	mvert = CDDM_get_verts(dm);
	modifier_get_vgroup(ob, dm, dmd->defgrp_name, &dvert, &defgrp_index);

	if (dmd->texture) {
		tex_co = MEM_callocN(sizeof(*tex_co) * numVerts,
		                     "displaceModifier_do tex_co");
		get_texture_coords((MappingInfoModifierData *)dmd, ob, dm, vertexCos, tex_co, numVerts);

		modifier_init_texture(dmd->modifier.scene, dmd->texture);
	}
	else {
		tex_co = NULL;
	}

	if (direction == MOD_DISP_DIR_CLNOR) {
		CustomData *ldata = dm->getLoopDataLayout(dm);

		if (CustomData_has_layer(ldata, CD_CUSTOMLOOPNORMAL)) {
			float (*clnors)[3] = NULL;

			if ((dm->dirty & DM_DIRTY_NORMALS) || !CustomData_has_layer(ldata, CD_NORMAL)) {
				dm->calcLoopNormals(dm, true, (float)M_PI);
			}

			clnors = CustomData_get_layer(ldata, CD_NORMAL);
			vert_clnors = MEM_mallocN(sizeof(*vert_clnors) * (size_t)numVerts, __func__);
			BKE_mesh_normals_loop_to_vertex(numVerts, dm->getLoopArray(dm), dm->getNumLoops(dm),
			                                (const float (*)[3])clnors, vert_clnors);
		}
		else {
			direction = MOD_DISP_DIR_NOR;
		}
	}

	for (i = 0; i < numVerts; i++) {
		TexResult texres;
		float strength = dmd->strength;
		float delta;

		if (dvert) {
			weight = defvert_find_weight(dvert + i, defgrp_index);
			if (weight == 0.0f) continue;
		}

		if (dmd->texture) {
			texres.nor = NULL;
			BKE_texture_get_value(dmd->modifier.scene, dmd->texture, tex_co[i], &texres, false);
			delta = texres.tin - dmd->midlevel;
		}
		else {
			delta = delta_fixed;  /* (1.0f - dmd->midlevel) */  /* never changes */
		}

		if (dvert) strength *= weight;

		delta *= strength;
		CLAMP(delta, -10000, 10000);

		switch (direction) {
			case MOD_DISP_DIR_X:
				vertexCos[i][0] += delta;
				break;
			case MOD_DISP_DIR_Y:
				vertexCos[i][1] += delta;
				break;
			case MOD_DISP_DIR_Z:
				vertexCos[i][2] += delta;
				break;
			case MOD_DISP_DIR_RGB_XYZ:
				vertexCos[i][0] += (texres.tr - dmd->midlevel) * strength;
				vertexCos[i][1] += (texres.tg - dmd->midlevel) * strength;
				vertexCos[i][2] += (texres.tb - dmd->midlevel) * strength;
				break;
			case MOD_DISP_DIR_NOR:
				vertexCos[i][0] += delta * (mvert[i].no[0] / 32767.0f);
				vertexCos[i][1] += delta * (mvert[i].no[1] / 32767.0f);
				vertexCos[i][2] += delta * (mvert[i].no[2] / 32767.0f);
				break;
			case MOD_DISP_DIR_CLNOR:
				madd_v3_v3fl(vertexCos[i], vert_clnors[i], delta);
				break;
		}
	}

	if (tex_co) {
		MEM_freeN(tex_co);
	}

	if (vert_clnors) {
		MEM_freeN(vert_clnors);
	}
}
Ejemplo n.º 4
0
/* read .bobj.gz file into a fluidsimDerivedMesh struct */
static DerivedMesh *fluidsim_read_obj(const char *filename, const MPoly *mp_example)
{
	int wri = 0, i;
	int gotBytes;
	gzFile gzf;
	int numverts = 0, numfaces = 0;
	DerivedMesh *dm = NULL;
	MPoly *mp;
	MLoop *ml;
	MVert *mv;
	short *normals, *no_s;
	float no[3];

	const short mp_mat_nr = mp_example->mat_nr;
	const char mp_flag =   mp_example->flag;

	// ------------------------------------------------
	// get numverts + numfaces first
	// ------------------------------------------------
	gzf = BLI_gzopen(filename, "rb");
	if (!gzf) {
		return NULL;
	}

	// read numverts
	gotBytes = gzread(gzf, &wri, sizeof(wri));
	numverts = wri;

	// skip verts
	gotBytes = gzseek(gzf, numverts * 3 * sizeof(float), SEEK_CUR) != -1;


	// read number of normals
	if (gotBytes)
		gotBytes = gzread(gzf, &wri, sizeof(wri));

	// skip normals
	gotBytes = gzseek(gzf, numverts * 3 * sizeof(float), SEEK_CUR) != -1;

	/* get no. of triangles */
	if (gotBytes)
		gotBytes = gzread(gzf, &wri, sizeof(wri));
	numfaces = wri;

	gzclose(gzf);
	// ------------------------------------------------

	if (!numfaces || !numverts || !gotBytes)
		return NULL;

	gzf = BLI_gzopen(filename, "rb");
	if (!gzf) {
		return NULL;
	}

	dm = CDDM_new(numverts, 0, 0, numfaces * 3, numfaces);

	if (!dm) {
		gzclose(gzf);
		return NULL;
	}

	// read numverts
	gotBytes = gzread(gzf, &wri, sizeof(wri));

	// read vertex position from file
	mv = CDDM_get_verts(dm);

	for (i = 0; i < numverts; i++, mv++)
		gotBytes = gzread(gzf, mv->co, sizeof(float) * 3);

	// should be the same as numverts
	gotBytes = gzread(gzf, &wri, sizeof(wri));
	if (wri != numverts) {
		if (dm)
			dm->release(dm);
		gzclose(gzf);
		return NULL;
	}

	normals = MEM_callocN(sizeof(short) * numverts * 3, "fluid_tmp_normals");
	if (!normals) {
		if (dm)
			dm->release(dm);
		gzclose(gzf);
		return NULL;
	}

	// read normals from file (but don't save them yet)
	for (i = numverts, no_s = normals; i > 0; i--, no_s += 3) {
		gotBytes = gzread(gzf, no, sizeof(float) * 3);
		normal_float_to_short_v3(no_s, no);
	}

	/* read no. of triangles */
	gotBytes = gzread(gzf, &wri, sizeof(wri));

	if (wri != numfaces) {
		printf("Fluidsim: error in reading data from file.\n");
		if (dm)
			dm->release(dm);
		gzclose(gzf);
		MEM_freeN(normals);
		return NULL;
	}

	// read triangles from file
	mp = CDDM_get_polys(dm);
	ml = CDDM_get_loops(dm);
	for (i = 0; i < numfaces; i++, mp++, ml += 3) {
		int face[3];

		gotBytes = gzread(gzf, face, sizeof(int) * 3);

		/* initialize from existing face */
		mp->mat_nr = mp_mat_nr;
		mp->flag =   mp_flag;

		mp->loopstart = i * 3;
		mp->totloop = 3;

		ml[0].v = face[0];
		ml[1].v = face[1];
		ml[2].v = face[2];

	}

	gzclose(gzf);

	CDDM_calc_edges(dm);

	CDDM_apply_vert_normals(dm, (short (*)[3])normals);
	MEM_freeN(normals);

	// CDDM_calc_normals(result);
	return dm;
}
Ejemplo n.º 5
0
/* read .bobj.gz file into a fluidsimDerivedMesh struct */
static DerivedMesh *fluidsim_read_obj(const char *filename)
{
	int wri = 0,i;
	int gotBytes;
	gzFile gzf;
	int numverts = 0, numfaces = 0;
	DerivedMesh *dm = NULL;
	MFace *mf;
	MVert *mv;
	short *normals, *no_s;
	float no[3];

	// ------------------------------------------------
	// get numverts + numfaces first
	// ------------------------------------------------
	gzf = gzopen(filename, "rb");
	if (!gzf)
	{
		return NULL;
	}

	// read numverts
	gotBytes = gzread(gzf, &wri, sizeof(wri));
	numverts = wri;

	// skip verts
	gotBytes = gzseek(gzf, numverts * 3 * sizeof(float), SEEK_CUR) != -1;


	// read number of normals
	if(gotBytes)
		gotBytes = gzread(gzf, &wri, sizeof(wri));

	// skip normals
	gotBytes = gzseek(gzf, numverts * 3 * sizeof(float), SEEK_CUR) != -1;

	/* get no. of triangles */
	if(gotBytes)
		gotBytes = gzread(gzf, &wri, sizeof(wri));
	numfaces = wri;

	gzclose( gzf );
	// ------------------------------------------------

	if(!numfaces || !numverts || !gotBytes)
		return NULL;

	gzf = gzopen(filename, "rb");
	if (!gzf)
	{
		return NULL;
	}

	dm = CDDM_new(numverts, 0, numfaces);

	if(!dm)
	{
		gzclose( gzf );
		return NULL;
	}

	// read numverts
	gotBytes = gzread(gzf, &wri, sizeof(wri));

	// read vertex position from file
	mv = CDDM_get_verts(dm);

	for(i=0; i<numverts; i++, mv++)
		gotBytes = gzread(gzf, mv->co, sizeof(float) * 3);

	// should be the same as numverts
	gotBytes = gzread(gzf, &wri, sizeof(wri));
	if(wri != numverts)
	{
		if(dm)
			dm->release(dm);
		gzclose( gzf );
		return NULL;
	}

	normals = MEM_callocN(sizeof(short) * numverts * 3, "fluid_tmp_normals" );
	if(!normals)
	{
		if(dm)
			dm->release(dm);
		gzclose( gzf );
		return NULL;
	}

	// read normals from file (but don't save them yet)
	for(i=numverts, no_s= normals; i>0; i--, no_s += 3)
	{
		gotBytes = gzread(gzf, no, sizeof(float) * 3);
		normal_float_to_short_v3(no_s, no);
	}

	/* read no. of triangles */
	gotBytes = gzread(gzf, &wri, sizeof(wri));

	if(wri!=numfaces) {
		printf("Fluidsim: error in reading data from file.\n");
		if(dm)
			dm->release(dm);
		gzclose( gzf );
		MEM_freeN(normals);
		return NULL;
	}

	// read triangles from file
	mf = CDDM_get_faces(dm);
	for(i=numfaces; i>0; i--, mf++)
	{
		int face[3];

		gotBytes = gzread(gzf, face, sizeof(int) * 3);

		// check if 3rd vertex has index 0 (not allowed in blender)
		if(face[2])
		{
			mf->v1 = face[0];
			mf->v2 = face[1];
			mf->v3 = face[2];
		}
		else
		{
			mf->v1 = face[1];
			mf->v2 = face[2];
			mf->v3 = face[0];
		}
		mf->v4 = 0;

		test_index_face(mf, NULL, 0, 3);
	}

	gzclose( gzf );

	CDDM_calc_edges(dm);

	CDDM_apply_vert_normals(dm, (short (*)[3])normals);
	MEM_freeN(normals);

	// CDDM_calc_normals(result);

	return dm;
}
Ejemplo n.º 6
0
static DerivedMesh *doMirrorOnAxis(MirrorModifierData *mmd,
                                   Object *ob,
                                   DerivedMesh *dm,
                                   int axis)
{
    const float tolerance_sq = mmd->tolerance * mmd->tolerance;
    const int do_vtargetmap = !(mmd->flag & MOD_MIR_NO_MERGE);
    int is_vtargetmap = FALSE; /* true when it should be used */

    DerivedMesh *result;
    const int maxVerts = dm->getNumVerts(dm);
    const int maxEdges = dm->getNumEdges(dm);
    const int maxLoops = dm->getNumLoops(dm);
    const int maxPolys = dm->getNumPolys(dm);
    MVert *mv, *mv_prev;
    MEdge *me;
    MLoop *ml;
    MPoly *mp;
    float mtx[4][4];
    int i, j;
    int a, totshape;
    int *vtargetmap = NULL, *vtmap_a = NULL, *vtmap_b = NULL;

    /* mtx is the mirror transformation */
    unit_m4(mtx);
    mtx[axis][axis] = -1.0f;

    if (mmd->mirror_ob) {
        float tmp[4][4];
        float itmp[4][4];

        /* tmp is a transform from coords relative to the object's own origin,
         * to coords relative to the mirror object origin */
        invert_m4_m4(tmp, mmd->mirror_ob->obmat);
        mult_m4_m4m4(tmp, tmp, ob->obmat);

        /* itmp is the reverse transform back to origin-relative coordinates */
        invert_m4_m4(itmp, tmp);

        /* combine matrices to get a single matrix that translates coordinates into
         * mirror-object-relative space, does the mirror, and translates back to
         * origin-relative space */
        mult_m4_m4m4(mtx, mtx, tmp);
        mult_m4_m4m4(mtx, itmp, mtx);
    }

    result = CDDM_from_template(dm, maxVerts * 2, maxEdges * 2, 0, maxLoops * 2, maxPolys * 2);

    /*copy customdata to original geometry*/
    DM_copy_vert_data(dm, result, 0, 0, maxVerts);
    DM_copy_edge_data(dm, result, 0, 0, maxEdges);
    DM_copy_loop_data(dm, result, 0, 0, maxLoops);
    DM_copy_poly_data(dm, result, 0, 0, maxPolys);


    /* subsurf for eg wont have mesh data in the */
    /* now add mvert/medge/mface layers */

    if (!CustomData_has_layer(&dm->vertData, CD_MVERT)) {
        dm->copyVertArray(dm, CDDM_get_verts(result));
    }
    if (!CustomData_has_layer(&dm->edgeData, CD_MEDGE)) {
        dm->copyEdgeArray(dm, CDDM_get_edges(result));
    }
    if (!CustomData_has_layer(&dm->polyData, CD_MPOLY)) {
        dm->copyLoopArray(dm, CDDM_get_loops(result));
        dm->copyPolyArray(dm, CDDM_get_polys(result));
    }

    /* copy customdata to new geometry,
     * copy from its self because this data may have been created in the checks above */
    DM_copy_vert_data(result, result, 0, maxVerts, maxVerts);
    DM_copy_edge_data(result, result, 0, maxEdges, maxEdges);
    /* loops are copied later */
    DM_copy_poly_data(result, result, 0, maxPolys, maxPolys);

    if (do_vtargetmap) {
        /* second half is filled with -1 */
        vtargetmap = MEM_mallocN(sizeof(int) * maxVerts * 2, "MOD_mirror tarmap");

        vtmap_a = vtargetmap;
        vtmap_b = vtargetmap + maxVerts;
    }

    /* mirror vertex coordinates */
    mv_prev = CDDM_get_verts(result);
    mv = mv_prev + maxVerts;
    for (i = 0; i < maxVerts; i++, mv++, mv_prev++) {
        mul_m4_v3(mtx, mv->co);

        if (do_vtargetmap) {
            /* compare location of the original and mirrored vertex, to see if they
             * should be mapped for merging */
            if (UNLIKELY(len_squared_v3v3(mv_prev->co, mv->co) < tolerance_sq)) {
                *vtmap_a = maxVerts + i;
                is_vtargetmap = TRUE;
            }
            else {
                *vtmap_a = -1;
            }

            *vtmap_b = -1; /* fill here to avoid 2x loops */

            vtmap_a++;
            vtmap_b++;
        }
    }

    /* handle shape keys */
    totshape = CustomData_number_of_layers(&result->vertData, CD_SHAPEKEY);
    for (a = 0; a < totshape; a++) {
        float (*cos)[3] = CustomData_get_layer_n(&result->vertData, CD_SHAPEKEY, a);
        for (i = maxVerts; i < result->numVertData; i++) {
            mul_m4_v3(mtx, cos[i]);
        }
    }

    /* adjust mirrored edge vertex indices */
    me = CDDM_get_edges(result) + maxEdges;
    for (i = 0; i < maxEdges; i++, me++) {
        me->v1 += maxVerts;
        me->v2 += maxVerts;
    }

    /* adjust mirrored poly loopstart indices, and reverse loop order (normals) */
    mp = CDDM_get_polys(result) + maxPolys;
    ml = CDDM_get_loops(result);
    for (i = 0; i < maxPolys; i++, mp++) {
        MLoop *ml2;
        int e;

        /* reverse the loop, but we keep the first vertex in the face the same,
         * to ensure that quads are split the same way as on the other side */
        DM_copy_loop_data(result, result, mp->loopstart, mp->loopstart + maxLoops, 1);
        for (j = 1; j < mp->totloop; j++)
            DM_copy_loop_data(result, result, mp->loopstart + j, mp->loopstart + maxLoops + mp->totloop - j, 1);

        ml2 = ml + mp->loopstart + maxLoops;
        e = ml2[0].e;
        for (j = 0; j < mp->totloop - 1; j++) {
            ml2[j].e = ml2[j + 1].e;
        }
        ml2[mp->totloop - 1].e = e;

        mp->loopstart += maxLoops;
    }

    /* adjust mirrored loop vertex and edge indices */
    ml = CDDM_get_loops(result) + maxLoops;
    for (i = 0; i < maxLoops; i++, ml++) {
        ml->v += maxVerts;
        ml->e += maxEdges;
    }

    /* handle uvs,
     * let tessface recalc handle updating the MTFace data */
    if (mmd->flag & (MOD_MIR_MIRROR_U | MOD_MIR_MIRROR_V)) {
        const int do_mirr_u = (mmd->flag & MOD_MIR_MIRROR_U) != 0;
        const int do_mirr_v = (mmd->flag & MOD_MIR_MIRROR_V) != 0;

        const int totuv = CustomData_number_of_layers(&result->loopData, CD_MLOOPUV);

        for (a = 0; a < totuv; a++) {
            MLoopUV *dmloopuv = CustomData_get_layer_n(&result->loopData, CD_MLOOPUV, a);
            int j = maxLoops;
            dmloopuv += j; /* second set of loops only */
            for (; j-- > 0; dmloopuv++) {
                if (do_mirr_u) dmloopuv->uv[0] = 1.0f - dmloopuv->uv[0];
                if (do_mirr_v) dmloopuv->uv[1] = 1.0f - dmloopuv->uv[1];
            }
        }
    }

    /* handle vgroup stuff */
    if ((mmd->flag & MOD_MIR_VGROUP) && CustomData_has_layer(&result->vertData, CD_MDEFORMVERT)) {
        MDeformVert *dvert = (MDeformVert *) CustomData_get_layer(&result->vertData, CD_MDEFORMVERT) + maxVerts;
        int *flip_map = NULL, flip_map_len = 0;

        flip_map = defgroup_flip_map(ob, &flip_map_len, FALSE);

        if (flip_map) {
            for (i = 0; i < maxVerts; dvert++, i++) {
                /* merged vertices get both groups, others get flipped */
                if (do_vtargetmap && (vtargetmap[i] != -1))
                    defvert_flip_merged(dvert, flip_map, flip_map_len);
                else
                    defvert_flip(dvert, flip_map, flip_map_len);
            }

            MEM_freeN(flip_map);
        }
    }

    if (do_vtargetmap) {
        /* slow - so only call if one or more merge verts are found,
         * users may leave this on and not realize there is nothing to merge - campbell */
        if (is_vtargetmap) {
            result = CDDM_merge_verts(result, vtargetmap);
        }
        MEM_freeN(vtargetmap);
    }

    return result;
}
Ejemplo n.º 7
0
/* dm must be a CDDerivedMesh */
static void displaceModifier_do(
        DisplaceModifierData *dmd, Object *ob,
        DerivedMesh *dm, float (*vertexCos)[3], int numVerts)
{
	int i;
	MVert *mvert;
	MDeformVert *dvert;
	int defgrp_index;
	float (*tex_co)[3];
	float weight = 1.0f; /* init value unused but some compilers may complain */
	const float delta_fixed = 1.0f - dmd->midlevel;  /* when no texture is used, we fallback to white */

	if (!dmd->texture && dmd->direction == MOD_DISP_DIR_RGB_XYZ) return;
	if (dmd->strength == 0.0f) return;

	mvert = CDDM_get_verts(dm);
	modifier_get_vgroup(ob, dm, dmd->defgrp_name, &dvert, &defgrp_index);

	if (dmd->texture) {
		tex_co = MEM_callocN(sizeof(*tex_co) * numVerts,
		                     "displaceModifier_do tex_co");
		get_texture_coords((MappingInfoModifierData *)dmd, ob, dm, vertexCos, tex_co, numVerts);

		modifier_init_texture(dmd->modifier.scene, dmd->texture);
	}
	else {
		tex_co = NULL;
	}

	for (i = 0; i < numVerts; i++) {
		TexResult texres;
		float strength = dmd->strength;
		float delta;

		if (dvert) {
			weight = defvert_find_weight(dvert + i, defgrp_index);
			if (weight == 0.0f) continue;
		}

		if (dmd->texture) {
			texres.nor = NULL;
			BKE_texture_get_value(dmd->modifier.scene, dmd->texture, tex_co[i], &texres, false);
			delta = texres.tin - dmd->midlevel;
		}
		else {
			delta = delta_fixed;  /* (1.0f - dmd->midlevel) */  /* never changes */
		}

		if (dvert) strength *= weight;

		delta *= strength;
		CLAMP(delta, -10000, 10000);

		switch (dmd->direction) {
			case MOD_DISP_DIR_X:
				vertexCos[i][0] += delta;
				break;
			case MOD_DISP_DIR_Y:
				vertexCos[i][1] += delta;
				break;
			case MOD_DISP_DIR_Z:
				vertexCos[i][2] += delta;
				break;
			case MOD_DISP_DIR_RGB_XYZ:
				vertexCos[i][0] += (texres.tr - dmd->midlevel) * strength;
				vertexCos[i][1] += (texres.tg - dmd->midlevel) * strength;
				vertexCos[i][2] += (texres.tb - dmd->midlevel) * strength;
				break;
			case MOD_DISP_DIR_NOR:
				vertexCos[i][0] += delta * (mvert[i].no[0] / 32767.0f);
				vertexCos[i][1] += delta * (mvert[i].no[1] / 32767.0f);
				vertexCos[i][2] += delta * (mvert[i].no[2] / 32767.0f);
				break;
		}
	}

	if (tex_co) {
		MEM_freeN(tex_co);
	}
}
Ejemplo n.º 8
0
static DerivedMesh *arrayModifier_doArray(
        ArrayModifierData *amd,
        Scene *scene, Object *ob, DerivedMesh *dm,
        ModifierApplyFlag flag)
{
	const float eps = 1e-6f;
	const MVert *src_mvert;
	MVert *mv, *mv_prev, *result_dm_verts;

	MEdge *me;
	MLoop *ml;
	MPoly *mp;
	int i, j, c, count;
	float length = amd->length;
	/* offset matrix */
	float offset[4][4];
	float scale[3];
	bool offset_has_scale;
	float current_offset[4][4];
	float final_offset[4][4];
	int *full_doubles_map = NULL;
	int tot_doubles;

	const bool use_merge = (amd->flags & MOD_ARR_MERGE) != 0;
	const bool use_recalc_normals = (dm->dirty & DM_DIRTY_NORMALS) || use_merge;
	const bool use_offset_ob = ((amd->offset_type & MOD_ARR_OFF_OBJ) && amd->offset_ob);
	/* allow pole vertices to be used by many faces */
	const bool with_follow = use_offset_ob;

	int start_cap_nverts = 0, start_cap_nedges = 0, start_cap_npolys = 0, start_cap_nloops = 0;
	int end_cap_nverts = 0, end_cap_nedges = 0, end_cap_npolys = 0, end_cap_nloops = 0;
	int result_nverts = 0, result_nedges = 0, result_npolys = 0, result_nloops = 0;
	int chunk_nverts, chunk_nedges, chunk_nloops, chunk_npolys;
	int first_chunk_start, first_chunk_nverts, last_chunk_start, last_chunk_nverts;

	DerivedMesh *result, *start_cap_dm = NULL, *end_cap_dm = NULL;

	chunk_nverts = dm->getNumVerts(dm);
	chunk_nedges = dm->getNumEdges(dm);
	chunk_nloops = dm->getNumLoops(dm);
	chunk_npolys = dm->getNumPolys(dm);

	count = amd->count;

	if (amd->start_cap && amd->start_cap != ob && amd->start_cap->type == OB_MESH) {
		start_cap_dm = get_dm_for_modifier(amd->start_cap, flag);
		if (start_cap_dm) {
			start_cap_nverts = start_cap_dm->getNumVerts(start_cap_dm);
			start_cap_nedges = start_cap_dm->getNumEdges(start_cap_dm);
			start_cap_nloops = start_cap_dm->getNumLoops(start_cap_dm);
			start_cap_npolys = start_cap_dm->getNumPolys(start_cap_dm);
		}
	}
	if (amd->end_cap && amd->end_cap != ob && amd->end_cap->type == OB_MESH) {
		end_cap_dm = get_dm_for_modifier(amd->end_cap, flag);
		if (end_cap_dm) {
			end_cap_nverts = end_cap_dm->getNumVerts(end_cap_dm);
			end_cap_nedges = end_cap_dm->getNumEdges(end_cap_dm);
			end_cap_nloops = end_cap_dm->getNumLoops(end_cap_dm);
			end_cap_npolys = end_cap_dm->getNumPolys(end_cap_dm);
		}
	}

	/* Build up offset array, cumulating all settings options */

	unit_m4(offset);
	src_mvert = dm->getVertArray(dm);

	if (amd->offset_type & MOD_ARR_OFF_CONST)
		add_v3_v3v3(offset[3], offset[3], amd->offset);

	if (amd->offset_type & MOD_ARR_OFF_RELATIVE) {
		for (j = 0; j < 3; j++)
			offset[3][j] += amd->scale[j] * vertarray_size(src_mvert, chunk_nverts, j);
	}

	if (use_offset_ob) {
		float obinv[4][4];
		float result_mat[4][4];

		if (ob)
			invert_m4_m4(obinv, ob->obmat);
		else
			unit_m4(obinv);

		mul_m4_series(result_mat, offset,
		              obinv, amd->offset_ob->obmat);
		copy_m4_m4(offset, result_mat);
	}

	/* Check if there is some scaling.  If scaling, then we will not translate mapping */
	mat4_to_size(scale, offset);
	offset_has_scale = !is_one_v3(scale);

	if (amd->fit_type == MOD_ARR_FITCURVE && amd->curve_ob) {
		Curve *cu = amd->curve_ob->data;
		if (cu) {
#ifdef CYCLIC_DEPENDENCY_WORKAROUND
			if (amd->curve_ob->curve_cache == NULL) {
				BKE_displist_make_curveTypes(scene, amd->curve_ob, false);
			}
#endif

			if (amd->curve_ob->curve_cache && amd->curve_ob->curve_cache->path) {
				float scale = mat4_to_scale(amd->curve_ob->obmat);
				length = scale * amd->curve_ob->curve_cache->path->totdist;
			}
		}
	}

	/* calculate the maximum number of copies which will fit within the
	 * prescribed length */
	if (amd->fit_type == MOD_ARR_FITLENGTH || amd->fit_type == MOD_ARR_FITCURVE) {
		float dist = len_v3(offset[3]);

		if (dist > eps) {
			/* this gives length = first copy start to last copy end
			 * add a tiny offset for floating point rounding errors */
			count = (length + eps) / dist;
		}
		else {
			/* if the offset has no translation, just make one copy */
			count = 1;
		}
	}

	if (count < 1)
		count = 1;

	/* The number of verts, edges, loops, polys, before eventually merging doubles */
	result_nverts = chunk_nverts * count + start_cap_nverts + end_cap_nverts;
	result_nedges = chunk_nedges * count + start_cap_nedges + end_cap_nedges;
	result_nloops = chunk_nloops * count + start_cap_nloops + end_cap_nloops;
	result_npolys = chunk_npolys * count + start_cap_npolys + end_cap_npolys;

	/* Initialize a result dm */
	result = CDDM_from_template(dm, result_nverts, result_nedges, 0, result_nloops, result_npolys);
	result_dm_verts = CDDM_get_verts(result);

	if (use_merge) {
		/* Will need full_doubles_map for handling merge */
		full_doubles_map = MEM_mallocN(sizeof(int) * result_nverts, "mod array doubles map");
		fill_vn_i(full_doubles_map, result_nverts, -1);
	}

	/* copy customdata to original geometry */
	DM_copy_vert_data(dm, result, 0, 0, chunk_nverts);
	DM_copy_edge_data(dm, result, 0, 0, chunk_nedges);
	DM_copy_loop_data(dm, result, 0, 0, chunk_nloops);
	DM_copy_poly_data(dm, result, 0, 0, chunk_npolys);

	/* subsurf for eg wont have mesh data in the
	 * now add mvert/medge/mface layers */

	if (!CustomData_has_layer(&dm->vertData, CD_MVERT)) {
		dm->copyVertArray(dm, result_dm_verts);
	}
	if (!CustomData_has_layer(&dm->edgeData, CD_MEDGE)) {
		dm->copyEdgeArray(dm, CDDM_get_edges(result));
	}
	if (!CustomData_has_layer(&dm->polyData, CD_MPOLY)) {
		dm->copyLoopArray(dm, CDDM_get_loops(result));
		dm->copyPolyArray(dm, CDDM_get_polys(result));
	}

	/* Remember first chunk, in case of cap merge */
	first_chunk_start = 0;
	first_chunk_nverts = chunk_nverts;

	unit_m4(current_offset);
	for (c = 1; c < count; c++) {
		/* copy customdata to new geometry */
		DM_copy_vert_data(result, result, 0, c * chunk_nverts, chunk_nverts);
		DM_copy_edge_data(result, result, 0, c * chunk_nedges, chunk_nedges);
		DM_copy_loop_data(result, result, 0, c * chunk_nloops, chunk_nloops);
		DM_copy_poly_data(result, result, 0, c * chunk_npolys, chunk_npolys);

		mv_prev = result_dm_verts;
		mv = mv_prev + c * chunk_nverts;

		/* recalculate cumulative offset here */
		mul_m4_m4m4(current_offset, current_offset, offset);

		/* apply offset to all new verts */
		for (i = 0; i < chunk_nverts; i++, mv++, mv_prev++) {
			mul_m4_v3(current_offset, mv->co);

			/* We have to correct normals too, if we do not tag them as dirty! */
			if (!use_recalc_normals) {
				float no[3];
				normal_short_to_float_v3(no, mv->no);
				mul_mat3_m4_v3(current_offset, no);
				normalize_v3(no);
				normal_float_to_short_v3(mv->no, no);
			}
		}

		/* adjust edge vertex indices */
		me = CDDM_get_edges(result) + c * chunk_nedges;
		for (i = 0; i < chunk_nedges; i++, me++) {
			me->v1 += c * chunk_nverts;
			me->v2 += c * chunk_nverts;
		}

		mp = CDDM_get_polys(result) + c * chunk_npolys;
		for (i = 0; i < chunk_npolys; i++, mp++) {
			mp->loopstart += c * chunk_nloops;
		}

		/* adjust loop vertex and edge indices */
		ml = CDDM_get_loops(result) + c * chunk_nloops;
		for (i = 0; i < chunk_nloops; i++, ml++) {
			ml->v += c * chunk_nverts;
			ml->e += c * chunk_nedges;
		}

		/* Handle merge between chunk n and n-1 */
		if (use_merge && (c >= 1)) {
			if (!offset_has_scale && (c >= 2)) {
				/* Mapping chunk 3 to chunk 2 is a translation of mapping 2 to 1
				 * ... that is except if scaling makes the distance grow */
				int k;
				int this_chunk_index = c * chunk_nverts;
				int prev_chunk_index = (c - 1) * chunk_nverts;
				for (k = 0; k < chunk_nverts; k++, this_chunk_index++, prev_chunk_index++) {
					int target = full_doubles_map[prev_chunk_index];
					if (target != -1) {
						target += chunk_nverts; /* translate mapping */
						if (full_doubles_map[target] != -1) {
							if (with_follow) {
								target = full_doubles_map[target];
							}
							else {
								/* The rule here is to not follow mapping to chunk N-2, which could be too far
								 * so if target vertex was itself mapped, then this vertex is not mapped */
								target = -1;
							}
						}
					}
					full_doubles_map[this_chunk_index] = target;
				}
			}
			else {
				dm_mvert_map_doubles(
				        full_doubles_map,
				        result_dm_verts,
				        (c - 1) * chunk_nverts,
				        chunk_nverts,
				        c * chunk_nverts,
				        chunk_nverts,
				        amd->merge_dist,
				        with_follow);
			}
		}
	}

	last_chunk_start = (count - 1) * chunk_nverts;
	last_chunk_nverts = chunk_nverts;

	copy_m4_m4(final_offset, current_offset);

	if (use_merge && (amd->flags & MOD_ARR_MERGEFINAL) && (count > 1)) {
		/* Merge first and last copies */
		dm_mvert_map_doubles(
		        full_doubles_map,
		        result_dm_verts,
		        last_chunk_start,
		        last_chunk_nverts,
		        first_chunk_start,
		        first_chunk_nverts,
		        amd->merge_dist,
		        with_follow);
	}

	/* start capping */
	if (start_cap_dm) {
		float start_offset[4][4];
		int start_cap_start = result_nverts - start_cap_nverts - end_cap_nverts;
		invert_m4_m4(start_offset, offset);
		dm_merge_transform(
		        result, start_cap_dm, start_offset,
		        result_nverts - start_cap_nverts - end_cap_nverts,
		        result_nedges - start_cap_nedges - end_cap_nedges,
		        result_nloops - start_cap_nloops - end_cap_nloops,
		        result_npolys - start_cap_npolys - end_cap_npolys,
		        start_cap_nverts, start_cap_nedges, start_cap_nloops, start_cap_npolys);
		/* Identify doubles with first chunk */
		if (use_merge) {
			dm_mvert_map_doubles(
			        full_doubles_map,
			        result_dm_verts,
			        first_chunk_start,
			        first_chunk_nverts,
			        start_cap_start,
			        start_cap_nverts,
			        amd->merge_dist,
			        false);
		}
	}

	if (end_cap_dm) {
		float end_offset[4][4];
		int end_cap_start = result_nverts - end_cap_nverts;
		mul_m4_m4m4(end_offset, current_offset, offset);
		dm_merge_transform(
		        result, end_cap_dm, end_offset,
		        result_nverts - end_cap_nverts,
		        result_nedges - end_cap_nedges,
		        result_nloops - end_cap_nloops,
		        result_npolys - end_cap_npolys,
		        end_cap_nverts, end_cap_nedges, end_cap_nloops, end_cap_npolys);
		/* Identify doubles with last chunk */
		if (use_merge) {
			dm_mvert_map_doubles(
			        full_doubles_map,
			        result_dm_verts,
			        last_chunk_start,
			        last_chunk_nverts,
			        end_cap_start,
			        end_cap_nverts,
			        amd->merge_dist,
			        false);
		}
	}
	/* done capping */

	/* Handle merging */
	tot_doubles = 0;
	if (use_merge) {
		for (i = 0; i < result_nverts; i++) {
			if (full_doubles_map[i] != -1) {
				if (i == full_doubles_map[i]) {
					full_doubles_map[i] = -1;
				}
				else {
					tot_doubles++;
				}
			}
		}
		if (tot_doubles > 0) {
			result = CDDM_merge_verts(result, full_doubles_map, tot_doubles, CDDM_MERGE_VERTS_DUMP_IF_EQUAL);
		}
		MEM_freeN(full_doubles_map);
	}

	/* In case org dm has dirty normals, or we made some merging, mark normals as dirty in new dm!
	 * TODO: we may need to set other dirty flags as well?
	 */
	if (use_recalc_normals) {
		result->dirty |= DM_DIRTY_NORMALS;
	}

	return result;
}
Ejemplo n.º 9
0
DerivedMesh *BME_bmesh_to_derivedmesh(BME_Mesh *bm, DerivedMesh *dm)
{
	MFace *mface, *mf;
	MEdge *medge, *me;
	MVert *mvert, *mv;
	int *origindex;
	int totface,totedge,totvert,i,bmeshok,len, numTex, numCol;

	BME_Vert *v1=NULL;
	BME_Edge *e=NULL, *oe=NULL;
	BME_Poly *f=NULL;
	
	DerivedMesh *result;
	EdgeHash *edge_hash = BLI_edgehash_new();

	totvert = BLI_countlist(&(bm->verts));
	totedge = 0;
	
	/*we cannot have double edges in a derived mesh!*/
	for(i=0, v1=bm->verts.first; v1; v1=v1->next, i++) v1->tflag1 = i;
	for(e=bm->edges.first; e; e=e->next){
		oe = BLI_edgehash_lookup(edge_hash,e->v1->tflag1, e->v2->tflag1);
		if(!oe){
			totedge++;
			BLI_edgehash_insert(edge_hash,e->v1->tflag1,e->v2->tflag1,e);
			e->tflag2 = 1;
		}
		else{
			e->tflag2 = 0;
		}
	}
	
	/*count quads and tris*/
	totface = 0;
	bmeshok = 1;
	for(f=bm->polys.first;f;f=f->next){
		len = BME_cycle_length(f->loopbase);
		if(len == 3 || len == 4) totface++;
	}
	
	/*convert back to mesh*/
	result = CDDM_from_template(dm,totvert,totedge,totface);
	CustomData_merge(&bm->vdata, &result->vertData, CD_MASK_BMESH, CD_CALLOC, totvert);
	CustomData_merge(&bm->edata, &result->edgeData, CD_MASK_BMESH, CD_CALLOC, totedge);
	CustomData_merge(&bm->pdata, &result->faceData, CD_MASK_BMESH, CD_CALLOC, totface);
	CustomData_from_bmeshpoly(&result->faceData, &bm->pdata, &bm->ldata,totface);
	numTex = CustomData_number_of_layers(&bm->pdata, CD_MTEXPOLY);
	numCol = CustomData_number_of_layers(&bm->ldata, CD_MLOOPCOL);


	/*Make Verts*/
	mvert = CDDM_get_verts(result);
	origindex = result->getVertDataArray(result, CD_ORIGINDEX);
	for(i=0,v1=bm->verts.first,mv=mvert;v1;v1=v1->next,i++,mv++){
		VECCOPY(mv->co,v1->co);
		mv->flag = (unsigned char)v1->flag;
		mv->bweight = (char)(255.0*v1->bweight);
		CustomData_from_bmesh_block(&bm->vdata, &result->vertData, &v1->data, i);
		origindex[i] = ORIGINDEX_NONE;
	}
	medge = CDDM_get_edges(result);
	origindex = result->getEdgeDataArray(result, CD_ORIGINDEX);
	i=0;
	for(e=bm->edges.first,me=medge;e;e=e->next){
		if(e->tflag2){
			if(e->v1->tflag1 < e->v2->tflag1){
				me->v1 = e->v1->tflag1;
				me->v2 = e->v2->tflag1;
			}
			else{
				me->v1 = e->v2->tflag1;
				me->v2 = e->v1->tflag1;
			}
		
			me->crease = (char)(255.0*e->crease);
			me->bweight = (char)(255.0*e->bweight);
			me->flag = e->flag;
			CustomData_from_bmesh_block(&bm->edata, &result->edgeData, &e->data, i);
			origindex[i] = ORIGINDEX_NONE;
			me++;
			i++;
		}
	}
	if(totface){
		mface = CDDM_get_faces(result);
		origindex = result->getFaceDataArray(result, CD_ORIGINDEX);
		/*make faces*/
		for(i=0,f=bm->polys.first;f;f=f->next){
			mf = &mface[i];
			len = BME_cycle_length(f->loopbase);
			if(len==3 || len==4){
				mf->v1 = f->loopbase->v->tflag1;
				mf->v2 = f->loopbase->next->v->tflag1;
				mf->v3 = f->loopbase->next->next->v->tflag1;
				if(len == 4){
					mf->v4 = f->loopbase->prev->v->tflag1;
				}
				/* test and rotate indexes if necessary so that verts 3 and 4 aren't index 0 */
				if(mf->v3 == 0 || (len == 4 && mf->v4 == 0)){
					test_index_face(mf, NULL, i, len);
				}
				mf->mat_nr = (unsigned char)f->mat_nr;
				mf->flag = (unsigned char)f->flag;
				CustomData_from_bmesh_block(&bm->pdata, &result->faceData, &f->data, i);
				BME_DMloops_to_corners(bm, &result->faceData, i, f,numCol,numTex);
				origindex[i] = ORIGINDEX_NONE;
				i++;
			}
		}
	}
	BLI_edgehash_free(edge_hash, NULL);
	return result;
}
Ejemplo n.º 10
0
static void dm_merge_transform(
        DerivedMesh *result, DerivedMesh *cap_dm, float cap_offset[4][4],
        unsigned int cap_verts_index, unsigned int cap_edges_index, int cap_loops_index, int cap_polys_index,
        int cap_nverts, int cap_nedges, int cap_nloops, int cap_npolys)
{
	int *index_orig;
	int i;
	MVert *mv;
	MEdge *me;
	MLoop *ml;
	MPoly *mp;

	/* needed for subsurf so arrays are allocated */
	cap_dm->getVertArray(cap_dm);
	cap_dm->getEdgeArray(cap_dm);
	cap_dm->getLoopArray(cap_dm);
	cap_dm->getPolyArray(cap_dm);

	DM_copy_vert_data(cap_dm, result, 0, cap_verts_index, cap_nverts);
	DM_copy_edge_data(cap_dm, result, 0, cap_edges_index, cap_nedges);
	DM_copy_loop_data(cap_dm, result, 0, cap_loops_index, cap_nloops);
	DM_copy_poly_data(cap_dm, result, 0, cap_polys_index, cap_npolys);

	mv = CDDM_get_verts(result) + cap_verts_index;

	for (i = 0; i < cap_nverts; i++, mv++) {
		mul_m4_v3(cap_offset, mv->co);
		/* Reset MVert flags for caps */
		mv->flag = mv->bweight = 0;
	}

	/* adjust cap edge vertex indices */
	me = CDDM_get_edges(result) + cap_edges_index;
	for (i = 0; i < cap_nedges; i++, me++) {
		me->v1 += cap_verts_index;
		me->v2 += cap_verts_index;
	}

	/* adjust cap poly loopstart indices */
	mp = CDDM_get_polys(result) + cap_polys_index;
	for (i = 0; i < cap_npolys; i++, mp++) {
		mp->loopstart += cap_loops_index;
	}

	/* adjust cap loop vertex and edge indices */
	ml = CDDM_get_loops(result) + cap_loops_index;
	for (i = 0; i < cap_nloops; i++, ml++) {
		ml->v += cap_verts_index;
		ml->e += cap_edges_index;
	}

	/* set origindex */
	index_orig = result->getVertDataArray(result, CD_ORIGINDEX);
	if (index_orig) {
		fill_vn_i(index_orig + cap_verts_index, cap_nverts, ORIGINDEX_NONE);
	}

	index_orig = result->getEdgeDataArray(result, CD_ORIGINDEX);
	if (index_orig) {
		fill_vn_i(index_orig + cap_edges_index, cap_nedges, ORIGINDEX_NONE);
	}

	index_orig = result->getPolyDataArray(result, CD_ORIGINDEX);
	if (index_orig) {
		fill_vn_i(index_orig + cap_polys_index, cap_npolys, ORIGINDEX_NONE);
	}

	index_orig = result->getLoopDataArray(result, CD_ORIGINDEX);
	if (index_orig) {
		fill_vn_i(index_orig + cap_loops_index, cap_nloops, ORIGINDEX_NONE);
	}
}
Ejemplo n.º 11
0
static DerivedMesh *applyModifier(
        ModifierData *md, Object *ob,
        DerivedMesh *dm,
        ModifierApplyFlag UNUSED(flag))
{
	DerivedMesh *result;
	const SolidifyModifierData *smd = (SolidifyModifierData *) md;

	MVert *mv, *mvert, *orig_mvert;
	MEdge *ed, *medge, *orig_medge;
	MLoop *ml, *mloop, *orig_mloop;
	MPoly *mp, *mpoly, *orig_mpoly;
	const unsigned int numVerts = (unsigned int)dm->getNumVerts(dm);
	const unsigned int numEdges = (unsigned int)dm->getNumEdges(dm);
	const unsigned int numFaces = (unsigned int)dm->getNumPolys(dm);
	const unsigned int numLoops = (unsigned int)dm->getNumLoops(dm);
	unsigned int newLoops = 0, newFaces = 0, newEdges = 0, newVerts = 0, rimVerts = 0;

	/* only use material offsets if we have 2 or more materials  */
	const short mat_nr_max = ob->totcol > 1 ? ob->totcol - 1 : 0;
	const short mat_ofs = mat_nr_max ? smd->mat_ofs : 0;
	const short mat_ofs_rim = mat_nr_max ? smd->mat_ofs_rim : 0;

	/* use for edges */
	/* over-alloc new_vert_arr, old_vert_arr */
	unsigned int *new_vert_arr = NULL;
	STACK_DECLARE(new_vert_arr);

	unsigned int *new_edge_arr = NULL;
	STACK_DECLARE(new_edge_arr);

	unsigned int *old_vert_arr = MEM_callocN(sizeof(*old_vert_arr) * (size_t)numVerts, "old_vert_arr in solidify");

	unsigned int *edge_users = NULL;
	char *edge_order = NULL;

	float (*vert_nors)[3] = NULL;
	float (*face_nors)[3] = NULL;

	const bool need_face_normals = (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) || (smd->flag & MOD_SOLIDIFY_EVEN);

	const float ofs_orig = -(((-smd->offset_fac + 1.0f) * 0.5f) * smd->offset);
	const float ofs_new  = smd->offset + ofs_orig;
	const float offset_fac_vg = smd->offset_fac_vg;
	const float offset_fac_vg_inv = 1.0f - smd->offset_fac_vg;
	const bool do_flip = (smd->flag & MOD_SOLIDIFY_FLIP) != 0;
	const bool do_clamp = (smd->offset_clamp != 0.0f);
	const bool do_shell = ((smd->flag & MOD_SOLIDIFY_RIM) && (smd->flag & MOD_SOLIDIFY_NOSHELL)) == 0;

	/* weights */
	MDeformVert *dvert;
	const bool defgrp_invert = (smd->flag & MOD_SOLIDIFY_VGROUP_INV) != 0;
	int defgrp_index;

	/* array size is doubled in case of using a shell */
	const unsigned int stride = do_shell ? 2 : 1;

	modifier_get_vgroup(ob, dm, smd->defgrp_name, &dvert, &defgrp_index);

	orig_mvert = dm->getVertArray(dm);
	orig_medge = dm->getEdgeArray(dm);
	orig_mloop = dm->getLoopArray(dm);
	orig_mpoly = dm->getPolyArray(dm);

	if (need_face_normals) {
		/* calculate only face normals */
		face_nors = MEM_mallocN(sizeof(*face_nors) * (size_t)numFaces, __func__);
		BKE_mesh_calc_normals_poly(
		            orig_mvert, NULL, (int)numVerts,
		            orig_mloop, orig_mpoly,
		            (int)numLoops, (int)numFaces,
		            face_nors, true);
	}

	STACK_INIT(new_vert_arr, numVerts * 2);
	STACK_INIT(new_edge_arr, numEdges * 2);

	if (smd->flag & MOD_SOLIDIFY_RIM) {
		BLI_bitmap *orig_mvert_tag = BLI_BITMAP_NEW(numVerts, __func__);
		unsigned int eidx;
		unsigned int i;

#define INVALID_UNUSED ((unsigned int)-1)
#define INVALID_PAIR ((unsigned int)-2)

		new_vert_arr = MEM_mallocN(sizeof(*new_vert_arr) * (size_t)(numVerts * 2), __func__);
		new_edge_arr = MEM_mallocN(sizeof(*new_edge_arr) * (size_t)((numEdges * 2) + numVerts), __func__);

		edge_users = MEM_mallocN(sizeof(*edge_users) * (size_t)numEdges, "solid_mod edges");
		edge_order = MEM_mallocN(sizeof(*edge_order) * (size_t)numEdges, "solid_mod eorder");


		/* save doing 2 loops here... */
#if 0
		copy_vn_i(edge_users, numEdges, INVALID_UNUSED);
#endif

		for (eidx = 0, ed = orig_medge; eidx < numEdges; eidx++, ed++) {
			edge_users[eidx] = INVALID_UNUSED;
		}

		for (i = 0, mp = orig_mpoly; i < numFaces; i++, mp++) {
			MLoop *ml_prev;
			int j;

			ml = orig_mloop + mp->loopstart;
			ml_prev = ml + (mp->totloop - 1);

			for (j = 0; j < mp->totloop; j++, ml++) {
				/* add edge user */
				eidx = ml_prev->e;
				if (edge_users[eidx] == INVALID_UNUSED) {
					ed = orig_medge + eidx;
					BLI_assert(ELEM(ml_prev->v,    ed->v1, ed->v2) &&
					           ELEM(ml->v, ed->v1, ed->v2));
					edge_users[eidx] = (ml_prev->v > ml->v) == (ed->v1 < ed->v2) ? i : (i + numFaces);
					edge_order[eidx] = j;
				}
				else {
					edge_users[eidx] = INVALID_PAIR;
				}
				ml_prev = ml;
			}
		}

		for (eidx = 0, ed = orig_medge; eidx < numEdges; eidx++, ed++) {
			if (!ELEM(edge_users[eidx], INVALID_UNUSED, INVALID_PAIR)) {
				BLI_BITMAP_ENABLE(orig_mvert_tag, ed->v1);
				BLI_BITMAP_ENABLE(orig_mvert_tag, ed->v2);
				STACK_PUSH(new_edge_arr, eidx);
				newFaces++;
				newLoops += 4;
			}
		}

		for (i = 0; i < numVerts; i++) {
			if (BLI_BITMAP_TEST(orig_mvert_tag, i)) {
				old_vert_arr[i] = STACK_SIZE(new_vert_arr);
				STACK_PUSH(new_vert_arr, i);
				rimVerts++;
			}
			else {
				old_vert_arr[i] = INVALID_UNUSED;
			}
		}

		MEM_freeN(orig_mvert_tag);
	}

	if (do_shell == false) {
		/* only add rim vertices */
		newVerts = rimVerts;
		/* each extruded face needs an opposite edge */
		newEdges = newFaces;
	}
	else {
		/* (stride == 2) in this case, so no need to add newVerts/newEdges */
		BLI_assert(newVerts == 0);
		BLI_assert(newEdges == 0);
	}

	if (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) {
		vert_nors = MEM_callocN(sizeof(float) * (size_t)numVerts * 3, "mod_solid_vno_hq");
		dm_calc_normal(dm, face_nors, vert_nors);
	}

	result = CDDM_from_template(dm,
	                            (int)((numVerts * stride) + newVerts),
	                            (int)((numEdges * stride) + newEdges + rimVerts), 0,
	                            (int)((numLoops * stride) + newLoops),
	                            (int)((numFaces * stride) + newFaces));

	mpoly = CDDM_get_polys(result);
	mloop = CDDM_get_loops(result);
	medge = CDDM_get_edges(result);
	mvert = CDDM_get_verts(result);

	if (do_shell) {
		DM_copy_vert_data(dm, result, 0, 0, (int)numVerts);
		DM_copy_vert_data(dm, result, 0, (int)numVerts, (int)numVerts);

		DM_copy_edge_data(dm, result, 0, 0, (int)numEdges);
		DM_copy_edge_data(dm, result, 0, (int)numEdges, (int)numEdges);

		DM_copy_loop_data(dm, result, 0, 0, (int)numLoops);
		DM_copy_loop_data(dm, result, 0, (int)numLoops, (int)numLoops);

		DM_copy_poly_data(dm, result, 0, 0, (int)numFaces);
		DM_copy_poly_data(dm, result, 0, (int)numFaces, (int)numFaces);
	}
	else {
		int i, j;
		DM_copy_vert_data(dm, result, 0, 0, (int)numVerts);
		for (i = 0, j = (int)numVerts; i < numVerts; i++) {
			if (old_vert_arr[i] != INVALID_UNUSED) {
				DM_copy_vert_data(dm, result, i, j, 1);
				j++;
			}
		}

		DM_copy_edge_data(dm, result, 0, 0, (int)numEdges);

		for (i = 0, j = (int)numEdges; i < numEdges; i++) {
			if (!ELEM(edge_users[i], INVALID_UNUSED, INVALID_PAIR)) {
				MEdge *ed_src, *ed_dst;
				DM_copy_edge_data(dm, result, i, j, 1);

				ed_src = &medge[i];
				ed_dst = &medge[j];
				ed_dst->v1 = old_vert_arr[ed_src->v1] + numVerts;
				ed_dst->v2 = old_vert_arr[ed_src->v2] + numVerts;
				j++;
			}
		}

		/* will be created later */
		DM_copy_loop_data(dm, result, 0, 0, (int)numLoops);
		DM_copy_poly_data(dm, result, 0, 0, (int)numFaces);
	}

#undef INVALID_UNUSED
#undef INVALID_PAIR


	/* initializes: (i_end, do_shell_align, mv)  */
#define INIT_VERT_ARRAY_OFFSETS(test) \
	if (((ofs_new >= ofs_orig) == do_flip) == test) { \
		i_end = numVerts; \
		do_shell_align = true; \
		mv = mvert; \
	} \
	else { \
		if (do_shell) { \
			i_end = numVerts; \
			do_shell_align = true; \
		} \
		else { \
			i_end = newVerts ; \
			do_shell_align = false; \
		} \
		mv = &mvert[numVerts]; \
	} (void)0


	/* flip normals */

	if (do_shell) {
		unsigned int i;

		mp = mpoly + numFaces;
		for (i = 0; i < dm->numPolyData; i++, mp++) {
			MLoop *ml2;
			unsigned int e;
			int j;

			/* reverses the loop direction (MLoop.v as well as custom-data)
			 * MLoop.e also needs to be corrected too, done in a separate loop below. */
			ml2 = mloop + mp->loopstart + dm->numLoopData;
			for (j = 0; j < mp->totloop; j++) {
				CustomData_copy_data(&dm->loopData, &result->loopData, mp->loopstart + j,
				                     mp->loopstart + (mp->totloop - j - 1) + dm->numLoopData, 1);
			}

			if (mat_ofs) {
				mp->mat_nr += mat_ofs;
				CLAMP(mp->mat_nr, 0, mat_nr_max);
			}

			e = ml2[0].e;
			for (j = 0; j < mp->totloop - 1; j++) {
				ml2[j].e = ml2[j + 1].e;
			}
			ml2[mp->totloop - 1].e = e;

			mp->loopstart += dm->numLoopData;

			for (j = 0; j < mp->totloop; j++) {
				ml2[j].e += numEdges;
				ml2[j].v += numVerts;
			}
		}

		for (i = 0, ed = medge + numEdges; i < numEdges; i++, ed++) {
			ed->v1 += numVerts;
			ed->v2 += numVerts;
		}
	}

	/* note, copied vertex layers don't have flipped normals yet. do this after applying offset */
	if ((smd->flag & MOD_SOLIDIFY_EVEN) == 0) {
		/* no even thickness, very simple */
		float scalar_short;
		float scalar_short_vgroup;

		/* for clamping */
		float *vert_lens = NULL;
		const float offset    = fabsf(smd->offset) * smd->offset_clamp;
		const float offset_sq = offset * offset;

		if (do_clamp) {
			unsigned int i;

			vert_lens = MEM_mallocN(sizeof(float) * numVerts, "vert_lens");
			copy_vn_fl(vert_lens, (int)numVerts, FLT_MAX);
			for (i = 0; i < numEdges; i++) {
				const float ed_len_sq = len_squared_v3v3(mvert[medge[i].v1].co, mvert[medge[i].v2].co);
				vert_lens[medge[i].v1] = min_ff(vert_lens[medge[i].v1], ed_len_sq);
				vert_lens[medge[i].v2] = min_ff(vert_lens[medge[i].v2], ed_len_sq);
			}
		}

		if (ofs_new != 0.0f) {
			unsigned int i_orig, i_end;
			bool do_shell_align;

			scalar_short = scalar_short_vgroup = ofs_new / 32767.0f;

			INIT_VERT_ARRAY_OFFSETS(false);

			for (i_orig = 0; i_orig < i_end; i_orig++, mv++) {
				const unsigned int i = do_shell_align ? i_orig : new_vert_arr[i_orig];
				if (dvert) {
					MDeformVert *dv = &dvert[i];
					if (defgrp_invert) scalar_short_vgroup = 1.0f - defvert_find_weight(dv, defgrp_index);
					else scalar_short_vgroup = defvert_find_weight(dv, defgrp_index);
					scalar_short_vgroup = (offset_fac_vg + (scalar_short_vgroup * offset_fac_vg_inv)) * scalar_short;
				}
				if (do_clamp) {
					/* always reset becaise we may have set before */
					if (dvert == NULL) {
						scalar_short_vgroup = scalar_short;
					}
					if (vert_lens[i] < offset_sq) {
						float scalar = sqrtf(vert_lens[i]) / offset;
						scalar_short_vgroup *= scalar;
					}
				}
				madd_v3v3short_fl(mv->co, mv->no, scalar_short_vgroup);
			}
		}

		if (ofs_orig != 0.0f) {
			unsigned int i_orig, i_end;
			bool do_shell_align;

			scalar_short = scalar_short_vgroup = ofs_orig / 32767.0f;

			/* as above but swapped */
			INIT_VERT_ARRAY_OFFSETS(true);

			for (i_orig = 0; i_orig < i_end; i_orig++, mv++) {
				const unsigned int i = do_shell_align ? i_orig : new_vert_arr[i_orig];
				if (dvert) {
					MDeformVert *dv = &dvert[i];
					if (defgrp_invert) scalar_short_vgroup = 1.0f - defvert_find_weight(dv, defgrp_index);
					else scalar_short_vgroup = defvert_find_weight(dv, defgrp_index);
					scalar_short_vgroup = (offset_fac_vg + (scalar_short_vgroup * offset_fac_vg_inv)) * scalar_short;
				}
				if (do_clamp) {
					/* always reset becaise we may have set before */
					if (dvert == NULL) {
						scalar_short_vgroup = scalar_short;
					}
					if (vert_lens[i] < offset_sq) {
						float scalar = sqrtf(vert_lens[i]) / offset;
						scalar_short_vgroup *= scalar;
					}
				}
				madd_v3v3short_fl(mv->co, mv->no, scalar_short_vgroup);
			}
		}

		if (do_clamp) {
			MEM_freeN(vert_lens);
		}
	}
	else {
#ifdef USE_NONMANIFOLD_WORKAROUND
		const bool check_non_manifold = (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) != 0;
#endif
		/* same as EM_solidify() in editmesh_lib.c */
		float *vert_angles = MEM_callocN(sizeof(float) * numVerts * 2, "mod_solid_pair"); /* 2 in 1 */
		float *vert_accum = vert_angles + numVerts;
		unsigned int vidx;
		unsigned int i;

		if (vert_nors == NULL) {
			vert_nors = MEM_mallocN(sizeof(float) * numVerts * 3, "mod_solid_vno");
			for (i = 0, mv = mvert; i < numVerts; i++, mv++) {
				normal_short_to_float_v3(vert_nors[i], mv->no);
			}
		}

		for (i = 0, mp = mpoly; i < numFaces; i++, mp++) {
			/* #BKE_mesh_calc_poly_angles logic is inlined here */
			float nor_prev[3];
			float nor_next[3];

			int i_curr = mp->totloop - 1;
			int i_next = 0;

			ml = &mloop[mp->loopstart];

			sub_v3_v3v3(nor_prev, mvert[ml[i_curr - 1].v].co, mvert[ml[i_curr].v].co);
			normalize_v3(nor_prev);

			while (i_next < mp->totloop) {
				float angle;
				sub_v3_v3v3(nor_next, mvert[ml[i_curr].v].co, mvert[ml[i_next].v].co);
				normalize_v3(nor_next);
				angle = angle_normalized_v3v3(nor_prev, nor_next);


				/* --- not related to angle calc --- */
				if (angle < FLT_EPSILON) {
					angle = FLT_EPSILON;
				}

				vidx = ml[i_curr].v;
				vert_accum[vidx] += angle;

#ifdef USE_NONMANIFOLD_WORKAROUND
				/* skip 3+ face user edges */
				if ((check_non_manifold == false) ||
				    LIKELY(((orig_medge[ml[i_curr].e].flag & ME_EDGE_TMP_TAG) == 0) &&
				           ((orig_medge[ml[i_next].e].flag & ME_EDGE_TMP_TAG) == 0)))
				{
					vert_angles[vidx] += shell_v3v3_normalized_to_dist(vert_nors[vidx], face_nors[i]) * angle;
				}
				else {
					vert_angles[vidx] += angle;
				}
#else
				vert_angles[vidx] += shell_v3v3_normalized_to_dist(vert_nors[vidx], face_nors[i]) * angle;
#endif
				/* --- end non-angle-calc section --- */


				/* step */
				copy_v3_v3(nor_prev, nor_next);
				i_curr = i_next;
				i_next++;
			}
		}

		/* vertex group support */
		if (dvert) {
			MDeformVert *dv = dvert;
			float scalar;

			if (defgrp_invert) {
				for (i = 0; i < numVerts; i++, dv++) {
					scalar = 1.0f - defvert_find_weight(dv, defgrp_index);
					scalar = offset_fac_vg + (scalar * offset_fac_vg_inv);
					vert_angles[i] *= scalar;
				}
			}
			else {
				for (i = 0; i < numVerts; i++, dv++) {
					scalar = defvert_find_weight(dv, defgrp_index);
					scalar = offset_fac_vg + (scalar * offset_fac_vg_inv);
					vert_angles[i] *= scalar;
				}
			}
		}

		if (do_clamp) {
			float *vert_lens_sq = MEM_mallocN(sizeof(float) * numVerts, "vert_lens");
			const float offset    = fabsf(smd->offset) * smd->offset_clamp;
			const float offset_sq = offset * offset;
			copy_vn_fl(vert_lens_sq, (int)numVerts, FLT_MAX);
			for (i = 0; i < numEdges; i++) {
				const float ed_len = len_squared_v3v3(mvert[medge[i].v1].co, mvert[medge[i].v2].co);
				vert_lens_sq[medge[i].v1] = min_ff(vert_lens_sq[medge[i].v1], ed_len);
				vert_lens_sq[medge[i].v2] = min_ff(vert_lens_sq[medge[i].v2], ed_len);
			}
			for (i = 0; i < numVerts; i++) {
				if (vert_lens_sq[i] < offset_sq) {
					float scalar = sqrtf(vert_lens_sq[i]) / offset;
					vert_angles[i] *= scalar;
				}
			}
			MEM_freeN(vert_lens_sq);
		}

		if (ofs_new != 0.0f) {
			unsigned int i_orig, i_end;
			bool do_shell_align;

			INIT_VERT_ARRAY_OFFSETS(false);

			for (i_orig = 0; i_orig < i_end; i_orig++, mv++) {
				const unsigned int i_other = do_shell_align ? i_orig : new_vert_arr[i_orig];
				if (vert_accum[i_other]) { /* zero if unselected */
					madd_v3_v3fl(mv->co, vert_nors[i_other], ofs_new * (vert_angles[i_other] / vert_accum[i_other]));
				}
			}
		}

		if (ofs_orig != 0.0f) {
			unsigned int i_orig, i_end;
			bool do_shell_align;

			/* same as above but swapped, intentional use of 'ofs_new' */
			INIT_VERT_ARRAY_OFFSETS(true);

			for (i_orig = 0; i_orig < i_end; i_orig++, mv++) {
				const unsigned int i_other = do_shell_align ? i_orig : new_vert_arr[i_orig];
				if (vert_accum[i_other]) { /* zero if unselected */
					madd_v3_v3fl(mv->co, vert_nors[i_other], ofs_orig * (vert_angles[i_other] / vert_accum[i_other]));
				}
			}
		}

		MEM_freeN(vert_angles);
	}

	if (vert_nors)
		MEM_freeN(vert_nors);

	/* must recalculate normals with vgroups since they can displace unevenly [#26888] */
	if ((dm->dirty & DM_DIRTY_NORMALS) || (smd->flag & MOD_SOLIDIFY_RIM) || dvert) {
		result->dirty |= DM_DIRTY_NORMALS;
	}
	else if (do_shell) {
		unsigned int i;
		/* flip vertex normals for copied verts */
		mv = mvert + numVerts;
		for (i = 0; i < numVerts; i++, mv++) {
			negate_v3_short(mv->no);
		}
	}

	if (smd->flag & MOD_SOLIDIFY_RIM) {
		unsigned int i;

		/* bugger, need to re-calculate the normals for the new edge faces.
		 * This could be done in many ways, but probably the quickest way
		 * is to calculate the average normals for side faces only.
		 * Then blend them with the normals of the edge verts.
		 *
		 * at the moment its easiest to allocate an entire array for every vertex,
		 * even though we only need edge verts - campbell
		 */

#define SOLIDIFY_SIDE_NORMALS

#ifdef SOLIDIFY_SIDE_NORMALS
		const bool do_side_normals = !(result->dirty & DM_DIRTY_NORMALS);
		/* annoying to allocate these since we only need the edge verts, */
		float (*edge_vert_nos)[3] = do_side_normals ? MEM_callocN(sizeof(float) * numVerts * 3, __func__) : NULL;
		float nor[3];
#endif
		const unsigned char crease_rim = smd->crease_rim * 255.0f;
		const unsigned char crease_outer = smd->crease_outer * 255.0f;
		const unsigned char crease_inner = smd->crease_inner * 255.0f;

		int *origindex_edge;
		int *orig_ed;
		unsigned int j;

		if (crease_rim || crease_outer || crease_inner) {
			result->cd_flag |= ME_CDFLAG_EDGE_CREASE;
		}

		/* add faces & edges */
		origindex_edge = result->getEdgeDataArray(result, CD_ORIGINDEX);
		ed = &medge[(numEdges * stride) + newEdges];  /* start after copied edges */
		orig_ed = &origindex_edge[(numEdges * stride) + newEdges];
		for (i = 0; i < rimVerts; i++, ed++, orig_ed++) {
			ed->v1 = new_vert_arr[i];
			ed->v2 = (do_shell ? new_vert_arr[i] : i) + numVerts;
			ed->flag |= ME_EDGEDRAW;

			*orig_ed = ORIGINDEX_NONE;

			if (crease_rim) {
				ed->crease = crease_rim;
			}
		}

		/* faces */
		mp = mpoly + (numFaces * stride);
		ml = mloop + (numLoops * stride);
		j = 0;
		for (i = 0; i < newFaces; i++, mp++) {
			unsigned int eidx = new_edge_arr[i];
			unsigned int fidx = edge_users[eidx];
			int k1, k2;
			bool flip;

			if (fidx >= numFaces) {
				fidx -= numFaces;
				flip = true;
			}
			else {
				flip = false;
			}

			ed = medge + eidx;

			/* copy most of the face settings */
			DM_copy_poly_data(dm, result, (int)fidx, (int)((numFaces * stride) + i), 1);
			mp->loopstart = (int)(j + (numLoops * stride));
			mp->flag = mpoly[fidx].flag;

			/* notice we use 'mp->totloop' which is later overwritten,
			 * we could lookup the original face but theres no point since this is a copy
			 * and will have the same value, just take care when changing order of assignment */
			k1 = mpoly[fidx].loopstart + (((edge_order[eidx] - 1) + mp->totloop) % mp->totloop);  /* prev loop */
			k2 = mpoly[fidx].loopstart +   (edge_order[eidx]);

			mp->totloop = 4;

			CustomData_copy_data(&dm->loopData, &result->loopData, k2, (int)((numLoops * stride) + j + 0), 1);
			CustomData_copy_data(&dm->loopData, &result->loopData, k1, (int)((numLoops * stride) + j + 1), 1);
			CustomData_copy_data(&dm->loopData, &result->loopData, k1, (int)((numLoops * stride) + j + 2), 1);
			CustomData_copy_data(&dm->loopData, &result->loopData, k2, (int)((numLoops * stride) + j + 3), 1);

			if (flip == false) {
				ml[j].v = ed->v1;
				ml[j++].e = eidx;

				ml[j].v = ed->v2;
				ml[j++].e = (numEdges * stride) + old_vert_arr[ed->v2] + newEdges;

				ml[j].v = (do_shell ? ed->v2 : old_vert_arr[ed->v2]) + numVerts;
				ml[j++].e = (do_shell ? eidx : i) + numEdges;

				ml[j].v = (do_shell ? ed->v1 : old_vert_arr[ed->v1]) + numVerts;
				ml[j++].e = (numEdges * stride) + old_vert_arr[ed->v1] + newEdges;
			}
			else {
				ml[j].v = ed->v2;
				ml[j++].e = eidx;

				ml[j].v = ed->v1;
				ml[j++].e = (numEdges * stride) + old_vert_arr[ed->v1] + newEdges;

				ml[j].v = (do_shell ? ed->v1 : old_vert_arr[ed->v1]) + numVerts;
				ml[j++].e = (do_shell ? eidx : i) + numEdges;

				ml[j].v = (do_shell ? ed->v2 : old_vert_arr[ed->v2]) + numVerts;
				ml[j++].e = (numEdges * stride) + old_vert_arr[ed->v2] + newEdges;
			}

			origindex_edge[ml[j - 3].e] = ORIGINDEX_NONE;
			origindex_edge[ml[j - 1].e] = ORIGINDEX_NONE;

			/* use the next material index if option enabled */
			if (mat_ofs_rim) {
				mp->mat_nr += mat_ofs_rim;
				CLAMP(mp->mat_nr, 0, mat_nr_max);
			}
			if (crease_outer) {
				/* crease += crease_outer; without wrapping */
				char *cr = &(ed->crease);
				int tcr = *cr + crease_outer;
				*cr = tcr > 255 ? 255 : tcr;
			}

			if (crease_inner) {
				/* crease += crease_inner; without wrapping */
				char *cr = &(medge[numEdges + (do_shell ? eidx : i)].crease);
				int tcr = *cr + crease_inner;
				*cr = tcr > 255 ? 255 : tcr;
			}

#ifdef SOLIDIFY_SIDE_NORMALS
			if (do_side_normals) {
				normal_quad_v3(nor,
				               mvert[ml[j - 4].v].co,
				               mvert[ml[j - 3].v].co,
				               mvert[ml[j - 2].v].co,
				               mvert[ml[j - 1].v].co);

				add_v3_v3(edge_vert_nos[ed->v1], nor);
				add_v3_v3(edge_vert_nos[ed->v2], nor);
			}
#endif
		}

#ifdef SOLIDIFY_SIDE_NORMALS
		if (do_side_normals) {
			ed = medge + (numEdges * stride);
			for (i = 0; i < rimVerts; i++, ed++) {
				float nor_cpy[3];
				short *nor_short;
				int k;

				/* note, only the first vertex (lower half of the index) is calculated */
				normalize_v3_v3(nor_cpy, edge_vert_nos[ed->v1]);

				for (k = 0; k < 2; k++) { /* loop over both verts of the edge */
					nor_short = mvert[*(&ed->v1 + k)].no;
					normal_short_to_float_v3(nor, nor_short);
					add_v3_v3(nor, nor_cpy);
					normalize_v3(nor);
					normal_float_to_short_v3(nor_short, nor);
				}
			}

			MEM_freeN(edge_vert_nos);
		}
#endif

		MEM_freeN(new_vert_arr);
		MEM_freeN(new_edge_arr);

		MEM_freeN(edge_users);
		MEM_freeN(edge_order);
	}

	if (old_vert_arr)
		MEM_freeN(old_vert_arr);

	if (face_nors)
		MEM_freeN(face_nors);

	if (numFaces == 0 && numEdges != 0) {
		modifier_setError(md, "Faces needed for useful output");
	}

	return result;
}
Ejemplo n.º 12
0
static DerivedMesh *applyModifier(
        ModifierData *md, Object *ob,
        DerivedMesh *dm,
        ModifierApplyFlag UNUSED(flag))
{
	MaskModifierData *mmd = (MaskModifierData *)md;
	const bool found_test = (mmd->flag & MOD_MASK_INV) == 0;
	DerivedMesh *result = NULL;
	GHash *vertHash = NULL, *edgeHash, *polyHash;
	GHashIterator gh_iter;
	MDeformVert *dvert, *dv;
	int numPolys = 0, numLoops = 0, numEdges = 0, numVerts = 0;
	int maxVerts, maxEdges, maxPolys;
	int i;

	const MVert *mvert_src;
	const MEdge *medge_src;
	const MPoly *mpoly_src;
	const MLoop *mloop_src;

	MPoly *mpoly_dst;
	MLoop *mloop_dst;
	MEdge *medge_dst;
	MVert *mvert_dst;

	int *loop_mapping;

	dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
	if (dvert == NULL) {
		return found_test ? CDDM_from_template(dm, 0, 0, 0, 0, 0) : dm;
	}

	/* Overview of Method:
	 *	1. Get the vertices that are in the vertexgroup of interest
	 *	2. Filter out unwanted geometry (i.e. not in vertexgroup), by populating mappings with new vs old indices
	 *	3. Make a new mesh containing only the mapping data
	 */

	/* get original number of verts, edges, and faces */
	maxVerts = dm->getNumVerts(dm);
	maxEdges = dm->getNumEdges(dm);
	maxPolys = dm->getNumPolys(dm);

	/* check if we can just return the original mesh
	 *	- must have verts and therefore verts assigned to vgroups to do anything useful
	 */
	if (!(ELEM(mmd->mode, MOD_MASK_MODE_ARM, MOD_MASK_MODE_VGROUP)) ||
	    (maxVerts == 0) || BLI_listbase_is_empty(&ob->defbase))
	{
		return dm;
	}

	/* if mode is to use selected armature bones, aggregate the bone groups */
	if (mmd->mode == MOD_MASK_MODE_ARM) { /* --- using selected bones --- */
		Object *oba = mmd->ob_arm;
		bPoseChannel *pchan;
		bDeformGroup *def;
		bool *bone_select_array;
		int bone_select_tot = 0;
		const int defbase_tot = BLI_listbase_count(&ob->defbase);

		/* check that there is armature object with bones to use, otherwise return original mesh */
		if (ELEM(NULL, oba, oba->pose, ob->defbase.first))
			return dm;

		/* determine whether each vertexgroup is associated with a selected bone or not
		 * - each cell is a boolean saying whether bone corresponding to the ith group is selected
		 * - groups that don't match a bone are treated as not existing (along with the corresponding ungrouped verts)
		 */
		bone_select_array = MEM_malloc_arrayN((size_t)defbase_tot, sizeof(char), "mask array");

		for (i = 0, def = ob->defbase.first; def; def = def->next, i++) {
			pchan = BKE_pose_channel_find_name(oba->pose, def->name);
			if (pchan && pchan->bone && (pchan->bone->flag & BONE_SELECTED)) {
				bone_select_array[i] = true;
				bone_select_tot++;
			}
			else {
				bone_select_array[i] = false;
			}
		}

		/* verthash gives mapping from original vertex indices to the new indices (including selected matches only)
		 * key = oldindex, value = newindex
		 */
		vertHash = BLI_ghash_int_new_ex("mask vert gh", (unsigned int)maxVerts);

		/* add vertices which exist in vertexgroups into vertHash for filtering
		 * - dv = for each vertex, what vertexgroups does it belong to
		 * - dw = weight that vertex was assigned to a vertexgroup it belongs to
		 */
		for (i = 0, dv = dvert; i < maxVerts; i++, dv++) {
			MDeformWeight *dw = dv->dw;
			bool found = false;
			int j;

			/* check the groups that vertex is assigned to, and see if it was any use */
			for (j = 0; j < dv->totweight; j++, dw++) {
				if (dw->def_nr < defbase_tot) {
					if (bone_select_array[dw->def_nr]) {
						if (dw->weight != 0.0f) {
							found = true;
							break;
						}
					}
				}
			}

			if (found_test != found) {
				continue;
			}

			/* add to ghash for verts (numVerts acts as counter for mapping) */
			BLI_ghash_insert(vertHash, SET_INT_IN_POINTER(i), SET_INT_IN_POINTER(numVerts));
			numVerts++;
		}

		/* free temp hashes */
		MEM_freeN(bone_select_array);
	}
	else {  /* --- Using Nominated VertexGroup only --- */
		int defgrp_index = defgroup_name_index(ob, mmd->vgroup);

		/* if no vgroup (i.e. dverts) found, return the initial mesh */
		if (defgrp_index == -1)
			return dm;

		/* hashes for quickly providing a mapping from old to new - use key=oldindex, value=newindex */
		vertHash = BLI_ghash_int_new_ex("mask vert2 bh", (unsigned int)maxVerts);

		/* add vertices which exist in vertexgroup into ghash for filtering */
		for (i = 0, dv = dvert; i < maxVerts; i++, dv++) {
			const bool found = defvert_find_weight(dv, defgrp_index) != 0.0f;
			if (found_test != found) {
				continue;
			}

			/* add to ghash for verts (numVerts acts as counter for mapping) */
			BLI_ghash_insert(vertHash, SET_INT_IN_POINTER(i), SET_INT_IN_POINTER(numVerts));
			numVerts++;
		}
	}

	/* hashes for quickly providing a mapping from old to new - use key=oldindex, value=newindex */
	edgeHash = BLI_ghash_int_new_ex("mask ed2 gh", (unsigned int)maxEdges);
	polyHash = BLI_ghash_int_new_ex("mask fa2 gh", (unsigned int)maxPolys);

	mvert_src = dm->getVertArray(dm);
	medge_src = dm->getEdgeArray(dm);
	mpoly_src = dm->getPolyArray(dm);
	mloop_src = dm->getLoopArray(dm);

	/* overalloc, assume all polys are seen */
	loop_mapping = MEM_malloc_arrayN((size_t)maxPolys, sizeof(int), "mask loopmap");

	/* loop over edges and faces, and do the same thing to
	 * ensure that they only reference existing verts
	 */
	for (i = 0; i < maxEdges; i++) {
		const MEdge *me = &medge_src[i];

		/* only add if both verts will be in new mesh */
		if (BLI_ghash_haskey(vertHash, SET_INT_IN_POINTER(me->v1)) &&
		    BLI_ghash_haskey(vertHash, SET_INT_IN_POINTER(me->v2)))
		{
			BLI_ghash_insert(edgeHash, SET_INT_IN_POINTER(i), SET_INT_IN_POINTER(numEdges));
			numEdges++;
		}
	}
	for (i = 0; i < maxPolys; i++) {
		const MPoly *mp_src = &mpoly_src[i];
		const MLoop *ml_src = &mloop_src[mp_src->loopstart];
		bool ok = true;
		int j;

		for (j = 0; j < mp_src->totloop; j++, ml_src++) {
			if (!BLI_ghash_haskey(vertHash, SET_INT_IN_POINTER(ml_src->v))) {
				ok = false;
				break;
			}
		}

		/* all verts must be available */
		if (ok) {
			BLI_ghash_insert(polyHash, SET_INT_IN_POINTER(i), SET_INT_IN_POINTER(numPolys));
			loop_mapping[numPolys] = numLoops;
			numPolys++;
			numLoops += mp_src->totloop;
		}
	}


	/* now we know the number of verts, edges and faces,
	 * we can create the new (reduced) mesh
	 */
	result = CDDM_from_template(dm, numVerts, numEdges, 0, numLoops, numPolys);

	mpoly_dst = CDDM_get_polys(result);
	mloop_dst = CDDM_get_loops(result);
	medge_dst = CDDM_get_edges(result);
	mvert_dst = CDDM_get_verts(result);

	/* using ghash-iterators, map data into new mesh */
	/* vertices */
	GHASH_ITER (gh_iter, vertHash) {
		const MVert *v_src;
		MVert *v_dst;
		const int i_src = GET_INT_FROM_POINTER(BLI_ghashIterator_getKey(&gh_iter));
		const int i_dst = GET_INT_FROM_POINTER(BLI_ghashIterator_getValue(&gh_iter));

		v_src = &mvert_src[i_src];
		v_dst = &mvert_dst[i_dst];

		*v_dst = *v_src;
		DM_copy_vert_data(dm, result, i_src, i_dst, 1);
	}

	/* edges */
	GHASH_ITER (gh_iter, edgeHash) {
		const MEdge *e_src;
		MEdge *e_dst;
		const int i_src = GET_INT_FROM_POINTER(BLI_ghashIterator_getKey(&gh_iter));
		const int i_dst = GET_INT_FROM_POINTER(BLI_ghashIterator_getValue(&gh_iter));

		e_src = &medge_src[i_src];
		e_dst = &medge_dst[i_dst];

		DM_copy_edge_data(dm, result, i_src, i_dst, 1);
		*e_dst = *e_src;
		e_dst->v1 = GET_UINT_FROM_POINTER(BLI_ghash_lookup(vertHash, SET_UINT_IN_POINTER(e_src->v1)));
		e_dst->v2 = GET_UINT_FROM_POINTER(BLI_ghash_lookup(vertHash, SET_UINT_IN_POINTER(e_src->v2)));
	}

	/* faces */
	GHASH_ITER (gh_iter, polyHash) {
		const int i_src = GET_INT_FROM_POINTER(BLI_ghashIterator_getKey(&gh_iter));
		const int i_dst = GET_INT_FROM_POINTER(BLI_ghashIterator_getValue(&gh_iter));
		const MPoly *mp_src = &mpoly_src[i_src];
		MPoly *mp_dst = &mpoly_dst[i_dst];
		const int i_ml_src = mp_src->loopstart;
		const int i_ml_dst = loop_mapping[i_dst];
		const MLoop *ml_src = &mloop_src[i_ml_src];
		MLoop *ml_dst = &mloop_dst[i_ml_dst];

		DM_copy_poly_data(dm, result, i_src, i_dst, 1);
		DM_copy_loop_data(dm, result, i_ml_src, i_ml_dst, mp_src->totloop);

		*mp_dst = *mp_src;
		mp_dst->loopstart = i_ml_dst;
		for (i = 0; i < mp_src->totloop; i++) {
			ml_dst[i].v = GET_UINT_FROM_POINTER(BLI_ghash_lookup(vertHash, SET_UINT_IN_POINTER(ml_src[i].v)));
			ml_dst[i].e = GET_UINT_FROM_POINTER(BLI_ghash_lookup(edgeHash, SET_UINT_IN_POINTER(ml_src[i].e)));
		}
	}

	MEM_freeN(loop_mapping);

	/* why is this needed? - campbell */
	/* recalculate normals */
	result->dirty |= DM_DIRTY_NORMALS;

	/* free hashes */
	BLI_ghash_free(vertHash, NULL, NULL);
	BLI_ghash_free(edgeHash, NULL, NULL);
	BLI_ghash_free(polyHash, NULL, NULL);

	/* return the new mesh */
	return result;
}
Ejemplo n.º 13
0
/* read .bobj.gz file into a fluidsimDerivedMesh struct */
static DerivedMesh *fluidsim_read_obj(char *filename)
{
	int wri,i,j;
	float wrf;
	int gotBytes;
	gzFile gzf;
	int numverts = 0, numfaces = 0;
	DerivedMesh *dm = NULL;
	MFace *mface;
	MVert *mvert;
	short *normals;
		
	// ------------------------------------------------
	// get numverts + numfaces first
	// ------------------------------------------------
	gzf = gzopen(filename, "rb");
	if (!gzf) 
	{
		return NULL;
	}

	// read numverts
	gotBytes = gzread(gzf, &wri, sizeof(wri));
	numverts = wri;
	
	// skip verts
	for(i=0; i<numverts*3; i++) 
	{	
		gotBytes = gzread(gzf, &wrf, sizeof( wrf )); 
	}
	
	// read number of normals
	gotBytes = gzread(gzf, &wri, sizeof(wri));
	
	// skip normals
	for(i=0; i<numverts*3; i++) 
	{	
		gotBytes = gzread(gzf, &wrf, sizeof( wrf )); 
	}
	
	/* get no. of triangles */
	gotBytes = gzread(gzf, &wri, sizeof(wri));
	numfaces = wri;
	
	gzclose( gzf );
	// ------------------------------------------------
	
	if(!numfaces || !numverts)
		return NULL;
	
	gzf = gzopen(filename, "rb");
	if (!gzf) 
	{
		return NULL;
	}
	
	dm = CDDM_new(numverts, 0, numfaces);
	
	if(!dm)
	{
		gzclose( gzf );
		return NULL;
	}
	
	// read numverts
	gotBytes = gzread(gzf, &wri, sizeof(wri));

	// read vertex position from file
	mvert = CDDM_get_verts(dm);
	for(i=0; i<numverts; i++) 
	{
		MVert *mv = &mvert[i];
		
		for(j=0; j<3; j++) 
		{
			gotBytes = gzread(gzf, &wrf, sizeof( wrf )); 
			mv->co[j] = wrf;
		}
	}

	// should be the same as numverts
	gotBytes = gzread(gzf, &wri, sizeof(wri));
	if(wri != numverts) 
	{
		if(dm)
			dm->release(dm);
		gzclose( gzf );
		return NULL;
	}
	
	normals = MEM_callocN(sizeof(short) * numverts * 3, "fluid_tmp_normals" );	
	if(!normals)
	{
		if(dm)
			dm->release(dm);
		gzclose( gzf );
		return NULL;
	}	
	
	// read normals from file (but don't save them yet)
	for(i=0; i<numverts*3; i++) 
	{ 
		gotBytes = gzread(gzf, &wrf, sizeof( wrf )); 
		normals[i] = (short)(wrf*32767.0f);
	}
	
	/* read no. of triangles */
	gotBytes = gzread(gzf, &wri, sizeof(wri));
	
	if(wri!=numfaces)
		printf("Fluidsim: error in reading data from file.\n");
	
	// read triangles from file
	mface = CDDM_get_faces(dm);
	for(i=0; i<numfaces; i++) 
	{
		int face[4];
		MFace *mf = &mface[i];

		gotBytes = gzread(gzf, &(face[0]), sizeof( face[0] )); 
		gotBytes = gzread(gzf, &(face[1]), sizeof( face[1] )); 
		gotBytes = gzread(gzf, &(face[2]), sizeof( face[2] )); 
		face[3] = 0;

		// check if 3rd vertex has index 0 (not allowed in blender)
		if(face[2])
		{
			mf->v1 = face[0];
			mf->v2 = face[1];
			mf->v3 = face[2];
		}
		else
		{
			mf->v1 = face[1];
			mf->v2 = face[2];
			mf->v3 = face[0];
		}
		mf->v4 = face[3];
		
		test_index_face(mf, NULL, 0, 3);
	}
	
	gzclose( gzf );
	
	CDDM_calc_edges(dm);
	
	CDDM_apply_vert_normals(dm, (short (*)[3])normals);
	MEM_freeN(normals);
	
	// CDDM_calc_normals(result);

	return dm;
}
Ejemplo n.º 14
0
static DerivedMesh *arrayModifier_doArray(
        ArrayModifierData *amd,
        Scene *scene, Object *ob, DerivedMesh *dm,
        ModifierApplyFlag flag)
{
	const float eps = 1e-6f;
	const MVert *src_mvert;
	MVert *mv, *mv_prev, *result_dm_verts;

	MEdge *me;
	MLoop *ml;
	MPoly *mp;
	int i, j, c, count;
	float length = amd->length;
	/* offset matrix */
	float offset[4][4];
	float scale[3];
	bool offset_has_scale;
	float current_offset[4][4];
	float final_offset[4][4];
	int *full_doubles_map = NULL;
	int tot_doubles;

	const bool use_merge = (amd->flags & MOD_ARR_MERGE) != 0;
	const bool use_recalc_normals = (dm->dirty & DM_DIRTY_NORMALS) || use_merge;
	const bool use_offset_ob = ((amd->offset_type & MOD_ARR_OFF_OBJ) && amd->offset_ob);

	int start_cap_nverts = 0, start_cap_nedges = 0, start_cap_npolys = 0, start_cap_nloops = 0;
	int end_cap_nverts = 0, end_cap_nedges = 0, end_cap_npolys = 0, end_cap_nloops = 0;
	int result_nverts = 0, result_nedges = 0, result_npolys = 0, result_nloops = 0;
	int chunk_nverts, chunk_nedges, chunk_nloops, chunk_npolys;
	int first_chunk_start, first_chunk_nverts, last_chunk_start, last_chunk_nverts;

	DerivedMesh *result, *start_cap_dm = NULL, *end_cap_dm = NULL;

	int *vgroup_start_cap_remap = NULL;
	int vgroup_start_cap_remap_len = 0;
	int *vgroup_end_cap_remap = NULL;
	int vgroup_end_cap_remap_len = 0;

	chunk_nverts = dm->getNumVerts(dm);
	chunk_nedges = dm->getNumEdges(dm);
	chunk_nloops = dm->getNumLoops(dm);
	chunk_npolys = dm->getNumPolys(dm);

	count = amd->count;

	if (amd->start_cap && amd->start_cap != ob && amd->start_cap->type == OB_MESH) {
		vgroup_start_cap_remap = BKE_object_defgroup_index_map_create(amd->start_cap, ob, &vgroup_start_cap_remap_len);

		start_cap_dm = get_dm_for_modifier(amd->start_cap, flag);
		if (start_cap_dm) {
			start_cap_nverts = start_cap_dm->getNumVerts(start_cap_dm);
			start_cap_nedges = start_cap_dm->getNumEdges(start_cap_dm);
			start_cap_nloops = start_cap_dm->getNumLoops(start_cap_dm);
			start_cap_npolys = start_cap_dm->getNumPolys(start_cap_dm);
		}
	}
	if (amd->end_cap && amd->end_cap != ob && amd->end_cap->type == OB_MESH) {
		vgroup_end_cap_remap = BKE_object_defgroup_index_map_create(amd->end_cap, ob, &vgroup_end_cap_remap_len);

		end_cap_dm = get_dm_for_modifier(amd->end_cap, flag);
		if (end_cap_dm) {
			end_cap_nverts = end_cap_dm->getNumVerts(end_cap_dm);
			end_cap_nedges = end_cap_dm->getNumEdges(end_cap_dm);
			end_cap_nloops = end_cap_dm->getNumLoops(end_cap_dm);
			end_cap_npolys = end_cap_dm->getNumPolys(end_cap_dm);
		}
	}

	/* Build up offset array, cumulating all settings options */

	unit_m4(offset);
	src_mvert = dm->getVertArray(dm);

	if (amd->offset_type & MOD_ARR_OFF_CONST) {
		add_v3_v3(offset[3], amd->offset);
	}

	if (amd->offset_type & MOD_ARR_OFF_RELATIVE) {
		float min[3], max[3];
		const MVert *src_mv;

		INIT_MINMAX(min, max);
		for (src_mv = src_mvert, j = chunk_nverts; j--; src_mv++) {
			minmax_v3v3_v3(min, max, src_mv->co);
		}

		for (j = 3; j--; ) {
			offset[3][j] += amd->scale[j] * (max[j] - min[j]);
		}
	}

	if (use_offset_ob) {
		float obinv[4][4];
		float result_mat[4][4];

		if (ob)
			invert_m4_m4(obinv, ob->obmat);
		else
			unit_m4(obinv);

		mul_m4_series(result_mat, offset,
		              obinv, amd->offset_ob->obmat);
		copy_m4_m4(offset, result_mat);
	}

	/* Check if there is some scaling.  If scaling, then we will not translate mapping */
	mat4_to_size(scale, offset);
	offset_has_scale = !is_one_v3(scale);

	if (amd->fit_type == MOD_ARR_FITCURVE && amd->curve_ob) {
		Curve *cu = amd->curve_ob->data;
		if (cu) {
#ifdef CYCLIC_DEPENDENCY_WORKAROUND
			if (amd->curve_ob->curve_cache == NULL) {
				BKE_displist_make_curveTypes(scene, amd->curve_ob, false);
			}
#endif

			if (amd->curve_ob->curve_cache && amd->curve_ob->curve_cache->path) {
				float scale_fac = mat4_to_scale(amd->curve_ob->obmat);
				length = scale_fac * amd->curve_ob->curve_cache->path->totdist;
			}
		}
	}

	/* calculate the maximum number of copies which will fit within the
	 * prescribed length */
	if (amd->fit_type == MOD_ARR_FITLENGTH || amd->fit_type == MOD_ARR_FITCURVE) {
		float dist = len_v3(offset[3]);

		if (dist > eps) {
			/* this gives length = first copy start to last copy end
			 * add a tiny offset for floating point rounding errors */
			count = (length + eps) / dist + 1;
		}
		else {
			/* if the offset has no translation, just make one copy */
			count = 1;
		}
	}

	if (count < 1)
		count = 1;

	/* The number of verts, edges, loops, polys, before eventually merging doubles */
	result_nverts = chunk_nverts * count + start_cap_nverts + end_cap_nverts;
	result_nedges = chunk_nedges * count + start_cap_nedges + end_cap_nedges;
	result_nloops = chunk_nloops * count + start_cap_nloops + end_cap_nloops;
	result_npolys = chunk_npolys * count + start_cap_npolys + end_cap_npolys;

	/* Initialize a result dm */
	result = CDDM_from_template(dm, result_nverts, result_nedges, 0, result_nloops, result_npolys);
	result_dm_verts = CDDM_get_verts(result);

	if (use_merge) {
		/* Will need full_doubles_map for handling merge */
		full_doubles_map = MEM_malloc_arrayN(result_nverts, sizeof(int), "mod array doubles map");
		copy_vn_i(full_doubles_map, result_nverts, -1);
	}

	/* copy customdata to original geometry */
	DM_copy_vert_data(dm, result, 0, 0, chunk_nverts);
	DM_copy_edge_data(dm, result, 0, 0, chunk_nedges);
	DM_copy_loop_data(dm, result, 0, 0, chunk_nloops);
	DM_copy_poly_data(dm, result, 0, 0, chunk_npolys);

	/* Subsurf for eg won't have mesh data in the custom data arrays.
	 * now add mvert/medge/mpoly layers. */

	if (!CustomData_has_layer(&dm->vertData, CD_MVERT)) {
		dm->copyVertArray(dm, result_dm_verts);
	}
	if (!CustomData_has_layer(&dm->edgeData, CD_MEDGE)) {
		dm->copyEdgeArray(dm, CDDM_get_edges(result));
	}
	if (!CustomData_has_layer(&dm->polyData, CD_MPOLY)) {
		dm->copyLoopArray(dm, CDDM_get_loops(result));
		dm->copyPolyArray(dm, CDDM_get_polys(result));
	}

	/* Remember first chunk, in case of cap merge */
	first_chunk_start = 0;
	first_chunk_nverts = chunk_nverts;

	unit_m4(current_offset);
	for (c = 1; c < count; c++) {
		/* copy customdata to new geometry */
		DM_copy_vert_data(result, result, 0, c * chunk_nverts, chunk_nverts);
		DM_copy_edge_data(result, result, 0, c * chunk_nedges, chunk_nedges);
		DM_copy_loop_data(result, result, 0, c * chunk_nloops, chunk_nloops);
		DM_copy_poly_data(result, result, 0, c * chunk_npolys, chunk_npolys);

		mv_prev = result_dm_verts;
		mv = mv_prev + c * chunk_nverts;

		/* recalculate cumulative offset here */
		mul_m4_m4m4(current_offset, current_offset, offset);

		/* apply offset to all new verts */
		for (i = 0; i < chunk_nverts; i++, mv++, mv_prev++) {
			mul_m4_v3(current_offset, mv->co);

			/* We have to correct normals too, if we do not tag them as dirty! */
			if (!use_recalc_normals) {
				float no[3];
				normal_short_to_float_v3(no, mv->no);
				mul_mat3_m4_v3(current_offset, no);
				normalize_v3(no);
				normal_float_to_short_v3(mv->no, no);
			}
		}

		/* adjust edge vertex indices */
		me = CDDM_get_edges(result) + c * chunk_nedges;
		for (i = 0; i < chunk_nedges; i++, me++) {
			me->v1 += c * chunk_nverts;
			me->v2 += c * chunk_nverts;
		}

		mp = CDDM_get_polys(result) + c * chunk_npolys;
		for (i = 0; i < chunk_npolys; i++, mp++) {
			mp->loopstart += c * chunk_nloops;
		}

		/* adjust loop vertex and edge indices */
		ml = CDDM_get_loops(result) + c * chunk_nloops;
		for (i = 0; i < chunk_nloops; i++, ml++) {
			ml->v += c * chunk_nverts;
			ml->e += c * chunk_nedges;
		}

		/* Handle merge between chunk n and n-1 */
		if (use_merge && (c >= 1)) {
			if (!offset_has_scale && (c >= 2)) {
				/* Mapping chunk 3 to chunk 2 is a translation of mapping 2 to 1
				 * ... that is except if scaling makes the distance grow */
				int k;
				int this_chunk_index = c * chunk_nverts;
				int prev_chunk_index = (c - 1) * chunk_nverts;
				for (k = 0; k < chunk_nverts; k++, this_chunk_index++, prev_chunk_index++) {
					int target = full_doubles_map[prev_chunk_index];
					if (target != -1) {
						target += chunk_nverts; /* translate mapping */
						while (target != -1 && !ELEM(full_doubles_map[target], -1, target)) {
							/* If target is already mapped, we only follow that mapping if final target remains
							 * close enough from current vert (otherwise no mapping at all). */
							if (compare_len_v3v3(result_dm_verts[this_chunk_index].co,
							                     result_dm_verts[full_doubles_map[target]].co,
							                     amd->merge_dist))
							{
								target = full_doubles_map[target];
							}
							else {
								target = -1;
							}
						}
					}
					full_doubles_map[this_chunk_index] = target;
				}
			}
			else {
				dm_mvert_map_doubles(
				        full_doubles_map,
				        result_dm_verts,
				        (c - 1) * chunk_nverts,
				        chunk_nverts,
				        c * chunk_nverts,
				        chunk_nverts,
				        amd->merge_dist);
			}
		}
	}

	/* handle UVs */
	if (chunk_nloops > 0 && is_zero_v2(amd->uv_offset) == false) {
		const int totuv = CustomData_number_of_layers(&result->loopData, CD_MLOOPUV);
		for (i = 0; i < totuv; i++) {
			MLoopUV *dmloopuv = CustomData_get_layer_n(&result->loopData, CD_MLOOPUV, i);
			dmloopuv += chunk_nloops;
			for (c = 1; c < count; c++) {
				const float uv_offset[2] = {
					amd->uv_offset[0] * (float)c,
					amd->uv_offset[1] * (float)c,
				};
				int l_index = chunk_nloops;
				for (; l_index-- != 0; dmloopuv++) {
					dmloopuv->uv[0] += uv_offset[0];
					dmloopuv->uv[1] += uv_offset[1];
				}
			}
		}
	}

	last_chunk_start = (count - 1) * chunk_nverts;
	last_chunk_nverts = chunk_nverts;

	copy_m4_m4(final_offset, current_offset);

	if (use_merge && (amd->flags & MOD_ARR_MERGEFINAL) && (count > 1)) {
		/* Merge first and last copies */
		dm_mvert_map_doubles(
		        full_doubles_map,
		        result_dm_verts,
		        last_chunk_start,
		        last_chunk_nverts,
		        first_chunk_start,
		        first_chunk_nverts,
		        amd->merge_dist);
	}

	/* start capping */
	if (start_cap_dm) {
		float start_offset[4][4];
		int start_cap_start = result_nverts - start_cap_nverts - end_cap_nverts;
		invert_m4_m4(start_offset, offset);
		dm_merge_transform(
		        result, start_cap_dm, start_offset,
		        result_nverts - start_cap_nverts - end_cap_nverts,
		        result_nedges - start_cap_nedges - end_cap_nedges,
		        result_nloops - start_cap_nloops - end_cap_nloops,
		        result_npolys - start_cap_npolys - end_cap_npolys,
		        start_cap_nverts, start_cap_nedges, start_cap_nloops, start_cap_npolys,
		        vgroup_start_cap_remap, vgroup_start_cap_remap_len);
		/* Identify doubles with first chunk */
		if (use_merge) {
			dm_mvert_map_doubles(
			        full_doubles_map,
			        result_dm_verts,
			        first_chunk_start,
			        first_chunk_nverts,
			        start_cap_start,
			        start_cap_nverts,
			        amd->merge_dist);
		}
	}

	if (end_cap_dm) {
		float end_offset[4][4];
		int end_cap_start = result_nverts - end_cap_nverts;
		mul_m4_m4m4(end_offset, current_offset, offset);
		dm_merge_transform(
		        result, end_cap_dm, end_offset,
		        result_nverts - end_cap_nverts,
		        result_nedges - end_cap_nedges,
		        result_nloops - end_cap_nloops,
		        result_npolys - end_cap_npolys,
		        end_cap_nverts, end_cap_nedges, end_cap_nloops, end_cap_npolys,
		        vgroup_end_cap_remap, vgroup_end_cap_remap_len);
		/* Identify doubles with last chunk */
		if (use_merge) {
			dm_mvert_map_doubles(
			        full_doubles_map,
			        result_dm_verts,
			        last_chunk_start,
			        last_chunk_nverts,
			        end_cap_start,
			        end_cap_nverts,
			        amd->merge_dist);
		}
	}
	/* done capping */

	/* Handle merging */
	tot_doubles = 0;
	if (use_merge) {
		for (i = 0; i < result_nverts; i++) {
			int new_i = full_doubles_map[i];
			if (new_i != -1) {
				/* We have to follow chains of doubles (merge start/end especially is likely to create some),
				 * those are not supported at all by CDDM_merge_verts! */
				while (!ELEM(full_doubles_map[new_i], -1, new_i)) {
					new_i = full_doubles_map[new_i];
				}
				if (i == new_i) {
					full_doubles_map[i] = -1;
				}
				else {
					full_doubles_map[i] = new_i;
					tot_doubles++;
				}
			}
		}
		if (tot_doubles > 0) {
			result = CDDM_merge_verts(result, full_doubles_map, tot_doubles, CDDM_MERGE_VERTS_DUMP_IF_EQUAL);
		}
		MEM_freeN(full_doubles_map);
	}

	/* In case org dm has dirty normals, or we made some merging, mark normals as dirty in new dm!
	 * TODO: we may need to set other dirty flags as well?
	 */
	if (use_recalc_normals) {
		result->dirty |= DM_DIRTY_NORMALS;
	}

	if (vgroup_start_cap_remap) {
		MEM_freeN(vgroup_start_cap_remap);
	}
	if (vgroup_end_cap_remap) {
		MEM_freeN(vgroup_end_cap_remap);
	}

	return result;
}