Ejemplo n.º 1
0
/* CPLEX does not provide a function to directly get the dual multipliers
 * for second order cone constraint.
 * Example qcpdual.c illustrates how the dual multipliers for a
 * quadratic constraint can be computed from that constraint's slack.
 * However, for SOCP we can do something simpler: we can read those
 * multipliers directly from the dual slacks for the
 * cone head variables. For a second order cone constraint
 *    x[1] >= |(x[2], ..., x[n])|
 * the dual multiplier is the dual slack value for x[1].
 */
static int
getsocpconstrmultipliers (CPXCENVptr env, CPXCLPptr lp,
                          double *dslack, double *socppi)
{
   int status = 0;
   int const cols = CPXgetnumcols (env, lp);
   int const qs = CPXgetnumqconstrs (env, lp);
   double *dense = NULL, *val = NULL;
   int *ind = NULL;
   int j, q;
   qbuf_type qbuf;

   qbuf_init (&qbuf);

   if ( (dense = malloc (sizeof (*dense) * cols)) == NULL ) {
      status = CPXERR_NO_MEMORY;
      goto TERMINATE;
   }

   /* First of all get the dual slack vector. This is the sum of
    * dual multipliers for bound constraints (as returned by CPXgetdj())
    * and the per-constraint dual slack vectors (as returned by
    * CPXgetqconstrdslack()).
    */

   /* Get dual multipliers for bound constraints. */
   if ( (status = CPXgetdj (env, lp, dense, 0, cols - 1)) != 0 )
      goto TERMINATE;

   /* Create a dense vector that holds the sum of dual slacks for all
    * quadratic constraints.
    */
   if ( (val = malloc (cols * sizeof (val))) == NULL ||
        (ind = malloc (cols * sizeof (ind))) == NULL )
   {
      status = CPXERR_NO_MEMORY;
      goto TERMINATE;
   }
   for (q = 0; q < qs; ++q) {
      int len = 0, surp;

      if ( (status = CPXgetqconstrdslack (env, lp, q, &len, ind, val,
                                          cols, &surp)) != 0 )
         goto TERMINATE;
      for (j = 0; j < len; ++j) {
         dense[ind[j]] += val[j];
      }
   }

   /* Now go through the socp constraints. For each constraint find the
    * cone head variable (the one variable that has a negative coefficient)
    * and pick up its dual slack. This is the dual multiplier for the
    * constraint.
    */
   for (q = 0; q < qs; ++q) {
      if ( !getqconstr (env, lp, q, &qbuf) ) {
         status = CPXERR_BAD_ARGUMENT;
         goto TERMINATE;
      }
      for (j = 0; j < qbuf.qnz; ++j) {
         if ( qbuf.qval[j] < 0.0 ) {
            /* This is the cone head variable. */
            socppi[q] = dense[qbuf.qcol[j]];
            break;
         }
      }
   }

   /* If the caller wants to have the dual slack vector then copy it
    * to the output array.
    */
   if ( dslack != NULL )
      memcpy (dslack, dense, sizeof (*dslack) * cols);

 TERMINATE:
   free (ind);
   free (val);
   free (dense);

   qbuf_clear (&qbuf);

   return status;
}
Ejemplo n.º 2
0
void CplexSolver::rc(DoubleVector & result)const{
	result.resize(ncols());
	CPXgetdj(_env, _prob, result.data(), 0, ncols() - 1);
}
int
main (void)
{
   int status, solstat;
   CPXENVptr env;
   CPXLPptr lp;
   int i;
   double x[NUMCOLS];
   double cpi[NUMCOLS];
   double rpi[NUMROWS];
   double qpi[NUMQS];
   double slack[NUMROWS], qslack[NUMQS];
   double kktsum[NUMCOLS];

   /* ********************************************************************** *
    *                                                                        *
    *    S E T U P   P R O B L E M                                           *
    *                                                                        *
    * ********************************************************************** */

   /* Create CPLEX environment and enable screen output.
    */
   env = CPXopenCPLEX (&status);
   if ( status != 0 )
      goto TERMINATE;
   status = CPXsetintparam (env, CPXPARAM_ScreenOutput, CPX_ON);
   if ( status != 0 )
      goto TERMINATE;

   /* Create the problem object and populate it.
    */
   lp = CPXcreateprob (env, &status, "qcpdual");
   if ( status != 0 )
      goto TERMINATE;
   status = CPXnewcols (env, lp, NUMCOLS, obj, lb, ub, NULL, cname);
   if ( status != 0 )
      goto TERMINATE;
   status = CPXaddrows (env, lp, 0, NUMROWS, NUMNZS, rhs, sense,
                        rmatbeg, rmatind, rmatval, NULL, rname);
   if ( status != 0 )
      goto TERMINATE;
   for (i = 0; i < NUMQS; ++i) {
      int const linend = (i == NUMQS - 1) ? NUMLINNZ : linbeg[i + 1];
      int const quadend = (i == NUMQS - 1) ? NUMQUADNZ : quadbeg[i + 1];

      status = CPXaddqconstr (env, lp, linend - linbeg[i],
                              quadend - quadbeg[i], qrhs[i], qsense[i],
                              &linind[linbeg[i]], &linval[linbeg[i]],
                              &quadrow[quadbeg[i]], &quadcol[quadbeg[i]],
                              &quadval[quadbeg[i]], qname[i]);
      if ( status != 0 )
         goto TERMINATE;
   }

   /* ********************************************************************** *
    *                                                                        *
    *    O P T I M I Z E   P R O B L E M                                     *
    *                                                                        *
    * ********************************************************************** */
   status = CPXsetdblparam (env, CPXPARAM_Barrier_QCPConvergeTol, 1e-10);
   if ( status != 0 )
      goto TERMINATE;

   /* Solve the problem.
    */
   status = CPXbaropt (env, lp);
   if ( status != 0 )
      goto TERMINATE;

   solstat = CPXgetstat (env, lp);

   if ( solstat != CPX_STAT_OPTIMAL ) {
      fprintf (stderr, "No optimal solution found!\n");
      goto TERMINATE;
   }

   /* ********************************************************************** *
    *                                                                        *
    *    Q U E R Y   S O L U T I O N                                         *
    *                                                                        *
    * ********************************************************************** */

   /* Optimal solution and slacks for linear and quadratic constraints. */
   status = CPXgetx (env, lp, x, 0, NUMCOLS - 1);
   if ( status != 0 )
      goto TERMINATE;
   status = CPXgetslack (env, lp, slack, 0, NUMROWS - 1);
   if ( status != 0 )
      goto TERMINATE;
   status = CPXgetqconstrslack (env, lp, qslack, 0, NUMQS - 1);
   if ( status != 0 )
      goto TERMINATE;
   /* Dual multipliers for linear constraints and bound constraints. */
   status = CPXgetdj (env, lp, cpi, 0, NUMCOLS - 1);
   if ( status != 0 )
      goto TERMINATE;
   status = CPXgetpi (env, lp, rpi, 0, NUMROWS - 1);
   if ( status != 0 )
      goto TERMINATE;
   status = getqconstrmultipliers (env, lp, x, qpi, ZEROTOL);
   if ( status != 0 )
      goto TERMINATE;

   /* ********************************************************************** *
    *                                                                        *
    *    C H E C K   K K T   C O N D I T I O N S                             *
    *                                                                        *
    *    Here we verify that the optimal solution computed by CPLEX (and     *
    *    the qpi[] values computed above) satisfy the KKT conditions.        *
    *                                                                        *
    * ********************************************************************** */

   /* Primal feasibility: This example is about duals so we skip this test. */

   /* Dual feasibility: We must verify
    * - for <= constraints (linear or quadratic) the dual
    *   multiplier is non-positive.
    * - for >= constraints (linear or quadratic) the dual
    *   multiplier is non-negative.
    */
   for (i = 0; i < NUMROWS; ++i) {
      switch (sense[i]) {
      case 'E': /* nothing */ break;
      case 'R': /* nothing */ break;
      case 'L':
         if ( rpi[i] > ZEROTOL ) {
            fprintf (stderr,
                     "Dual feasibility test failed for <= row %d: %f\n",
                     i, rpi[i]);
            status = -1;
            goto TERMINATE;
         }
         break;
      case 'G':
         if ( rpi[i] < -ZEROTOL ) {
            fprintf (stderr,
                     "Dual feasibility test failed for >= row %d: %f\n",
                     i, rpi[i]);
            status = -1;
            goto TERMINATE;
         }
         break;
      }
   }
   for (i = 0; i < NUMQS; ++i) {
      switch (qsense[i]) {
      case 'E': /* nothing */ break;
      case 'L':
         if ( qpi[i] > ZEROTOL ) {
            fprintf (stderr,
                     "Dual feasibility test failed for <= quad %d: %f\n",
                     i, qpi[i]);
            status = -1;
            goto TERMINATE;
         }
         break;
      case 'G':
         if ( qpi[i] < -ZEROTOL ) {
            fprintf (stderr,
                     "Dual feasibility test failed for >= quad %d: %f\n",
                     i, qpi[i]);
            status = -1;
            goto TERMINATE;
         }
         break;
      }
   }

   /* Complementary slackness.
    * For any constraint the product of primal slack and dual multiplier
    * must be 0.
    */
   for (i = 0; i < NUMROWS; ++i) {
      if ( sense[i] != 'E' && fabs (slack[i] * rpi[i]) > ZEROTOL ) {
         fprintf (stderr,
                  "Complementary slackness test failed for row %d: %f\n",
                  i, fabs (slack[i] * rpi[i]));
         status = -1;
         goto TERMINATE;
      }
   }
   for (i = 0; i < NUMQS; ++i) {
      if ( qsense[i] != 'E' && fabs (qslack[i] * qpi[i]) > ZEROTOL ) {
         fprintf (stderr,
                  "Complementary slackness test failed for quad %d: %f\n",
                  i, fabs (qslack[i] * qpi[i]));
         status = -1;
         goto TERMINATE;
      }
   }
   for (i = 0; i < NUMCOLS; ++i) {
      if ( ub[i] < CPX_INFBOUND ) {
         double const slk = ub[i] - x[i];
         double const dual = cpi[i] < -ZEROTOL ? cpi[i] : 0.0;
         if ( fabs (slk * dual) > ZEROTOL ) {
            fprintf (stderr,
                     "Complementary slackness test failed for ub %d: %f\n",
                     i, fabs (slk * dual));
            status = -1;
            goto TERMINATE;
         }
      }
      if ( lb[i] > -CPX_INFBOUND ) {
         double const slk = x[i] - lb[i];
         double const dual = cpi[i] > ZEROTOL ? cpi[i] : 0.0;
         if ( fabs (slk * dual) > ZEROTOL ) {
            printf ("lb=%f, x=%f, cpi=%f\n", lb[i], x[i], cpi[i]);
            fprintf (stderr,
                     "Complementary slackness test failed for lb %d: %f\n",
                     i, fabs (slk * dual));
            status = -1;
            goto TERMINATE;
         }
      }
   }

   /* Stationarity.
    * The difference between objective function and gradient at optimal
    * solution multiplied by dual multipliers must be 0, i.e., for the
    * optimal solution x
    * 0 == c
    *      - sum(r in rows)  r'(x)*rpi[r]
    *      - sum(q in quads) q'(x)*qpi[q]
    *      - sum(c in cols)  b'(x)*cpi[c]
    * where r' and q' are the derivatives of a row or quadratic constraint,
    * x is the optimal solution and rpi[r] and qpi[q] are the dual
    * multipliers for row r and quadratic constraint q.
    * b' is the derivative of a bound constraint and cpi[c] the dual bound
    * multiplier for column c.
    */

   /* Objective function. */
   for (i = 0; i < NUMCOLS; ++i)
      kktsum[i] = obj[i];

   /* Linear constraints.
    * The derivative of a linear constraint ax - b (<)= 0 is just a.
    */
   for (i = 0; i < NUMROWS; ++i) {
      int const end = (i == NUMROWS - 1) ? NUMNZS : rmatbeg[i + 1];
      int k;

      for (k = rmatbeg[i]; k < end; ++k)
         kktsum[rmatind[k]] -= rpi[i] * rmatval[k];
   }

   /* Quadratic constraints.
    * The derivative of a constraint xQx + ax - b <= 0 is
    * Qx + Q'x + a.
    */
   for (i = 0; i < NUMQS; ++i) {
      int j;
      int k;

      for (j = linbeg[i]; j < linbeg[i] + linnzcnt[i]; ++j)
         kktsum[linind[j]] -= qpi[i] * linval[j];
      for (k = quadbeg[i]; k < quadbeg[i] + quadnzcnt[i]; ++k) {
         kktsum[quadrow[k]] -= qpi[i] * x[quadcol[k]] * quadval[k];
         kktsum[quadcol[k]] -= qpi[i] * x[quadrow[k]] * quadval[k];
      }
   }

   /* Bounds.
    * The derivative for lower bounds is -1 and that for upper bounds
    * is 1.
    * CPLEX already returns dj with the appropriate sign so there is
    * no need to distinguish between different bound types here.
    */
   for (i = 0; i < NUMCOLS; ++i) {
      kktsum[i] -= cpi[i];
   }

   for (i = 0; i < NUMCOLS; ++i) {
      if ( fabs (kktsum[i]) > ZEROTOL ) {
         fprintf (stderr, "Stationarity test failed at index %d: %f\n",
                  i, kktsum[i]);
         status = -1;
         goto TERMINATE;
      }
   }

   /* KKT conditions satisfied. Dump out the optimal solutions and
    * the dual values.
    */

   printf ("Optimal solution satisfies KKT conditions.\n");
   printf ("  x[] =");
   for (i = 0; i < NUMCOLS; ++i)
      printf (" %7.3f", x[i]);
   printf ("\n");
   printf ("cpi[] =");
   for (i = 0; i < NUMCOLS; ++i)
      printf (" %7.3f", cpi[i]);
   printf ("\n");
   printf ("rpi[] =");
   for (i = 0; i < NUMROWS; ++i)
      printf (" %7.3f", rpi[i]);
   printf ("\n");
   printf ("qpi[] =");
   for (i = 0; i < NUMQS; ++i)
      printf (" %7.3f", qpi[i]);
   printf ("\n");
   
 TERMINATE:
   /* ********************************************************************** *
    *                                                                        *
    *    C L E A N U P                                                       *
    *                                                                        *
    * ********************************************************************** */

   status = CPXfreeprob (env, &lp);
   if ( status != 0 ) {
      fprintf (stderr, "WARNING: Failed to free problem: %d\n", status);
   }
   status = CPXcloseCPLEX (&env);
   if ( status != 0 ) {
      fprintf (stderr, "WARNING: Failed to close CPLEX: %d\n", status);
   }

   return status;
}