Ejemplo n.º 1
0
int main(int argc, char **argv)
{
#if defined(OPENSSL_SYS_LINUX) || defined(OPENSSL_SYS_UNIX)
    char *p = NULL, *q = NULL;

    if (!CRYPTO_secure_malloc_init(4096, 32)) {
        perror("failed");
        return 1;
    }
    p = OPENSSL_secure_malloc(20);
    if (!CRYPTO_secure_allocated(p)) {
        perror("failed 1");
        return 1;
    }
    q = OPENSSL_malloc(20);
    if (CRYPTO_secure_allocated(q)) {
        perror("failed 1");
        return 1;
    }
    OPENSSL_secure_free(p);
    OPENSSL_free(q);
    CRYPTO_secure_malloc_done();
#else
    /* Should fail. */
    if (CRYPTO_secure_malloc_init(4096, 32)) {
        perror("failed");
        return 1;
    }
#endif
    return 0;
}
Ejemplo n.º 2
0
void CRYPTO_secure_clear_free(void *ptr, size_t num,
                              const char *file, int line)
{
#ifdef IMPLEMENTED
    size_t actual_size;

    if (ptr == NULL)
        return;
    if (!CRYPTO_secure_allocated(ptr)) {
        OPENSSL_cleanse(ptr, num);
        CRYPTO_free(ptr, file, line);
        return;
    }
    CRYPTO_THREAD_write_lock(sec_malloc_lock);
    actual_size = sh_actual_size(ptr);
    CLEAR(ptr, actual_size);
    secure_mem_used -= actual_size;
    sh_free(ptr);
    CRYPTO_THREAD_unlock(sec_malloc_lock);
#else
    if (ptr == NULL)
        return;
    OPENSSL_cleanse(ptr, num);
    CRYPTO_free(ptr, file, line);
#endif /* IMPLEMENTED */
}
Ejemplo n.º 3
0
/*
 * Allocate memory and initialize a new DRBG. The DRBG is allocated on
 * the secure heap if |secure| is nonzero and the secure heap is enabled.
 * The |parent|, if not NULL, will be used as random source for reseeding.
 *
 * Returns a pointer to the new DRBG instance on success, NULL on failure.
 */
static RAND_DRBG *rand_drbg_new(int secure,
                                int type,
                                unsigned int flags,
                                RAND_DRBG *parent)
{
    RAND_DRBG *drbg = secure ?
        OPENSSL_secure_zalloc(sizeof(*drbg)) : OPENSSL_zalloc(sizeof(*drbg));

    if (drbg == NULL) {
        RANDerr(RAND_F_RAND_DRBG_NEW, ERR_R_MALLOC_FAILURE);
        return NULL;
    }

    drbg->secure = secure && CRYPTO_secure_allocated(drbg);
    drbg->fork_count = rand_fork_count;
    drbg->parent = parent;

    if (parent == NULL) {
        drbg->reseed_interval = master_reseed_interval;
        drbg->reseed_time_interval = master_reseed_time_interval;
    } else {
        drbg->reseed_interval = slave_reseed_interval;
        drbg->reseed_time_interval = slave_reseed_time_interval;
    }

    if (RAND_DRBG_set(drbg, type, flags) == 0)
        goto err;

    if (parent != NULL) {
        rand_drbg_lock(parent);
        if (drbg->strength > parent->strength) {
            /*
             * We currently don't support the algorithm from NIST SP 800-90C
             * 10.1.2 to use a weaker DRBG as source
             */
            rand_drbg_unlock(parent);
            RANDerr(RAND_F_RAND_DRBG_NEW, RAND_R_PARENT_STRENGTH_TOO_WEAK);
            goto err;
        }
        rand_drbg_unlock(parent);
    }

    if (!RAND_DRBG_set_callbacks(drbg, rand_drbg_get_entropy,
                                 rand_drbg_cleanup_entropy,
                                 NULL, NULL))
        goto err;

    return drbg;

err:
    if (drbg->secure)
        OPENSSL_secure_free(drbg);
    else
        OPENSSL_free(drbg);

    return NULL;
}
Ejemplo n.º 4
0
void CRYPTO_secure_free(void *ptr, const char *file, int line)
{
#ifdef OPENSSL_SECURE_MEMORY
    size_t actual_size;

    if (ptr == NULL)
        return;
    if (!CRYPTO_secure_allocated(ptr)) {
        CRYPTO_free(ptr, file, line);
        return;
    }
    CRYPTO_THREAD_write_lock(sec_malloc_lock);
    actual_size = sh_actual_size(ptr);
    CLEAR(ptr, actual_size);
    secure_mem_used -= actual_size;
    sh_free(ptr);
    CRYPTO_THREAD_unlock(sec_malloc_lock);
#else
    CRYPTO_free(ptr, file, line);
#endif /* OPENSSL_SECURE_MEMORY */
}
Ejemplo n.º 5
0
static int test_sec_mem(void)
{
#if defined(OPENSSL_SYS_LINUX) || defined(OPENSSL_SYS_UNIX)
    int testresult = 0;
    char *p = NULL, *q = NULL, *r = NULL, *s = NULL;

    s = OPENSSL_secure_malloc(20);
    /* s = non-secure 20 */
    if (!TEST_ptr(s)
        || !TEST_false(CRYPTO_secure_allocated(s)))
        goto end;
    r = OPENSSL_secure_malloc(20);
    /* r = non-secure 20, s = non-secure 20 */
    if (!TEST_ptr(r)
        || !TEST_true(CRYPTO_secure_malloc_init(4096, 32))
        || !TEST_false(CRYPTO_secure_allocated(r)))
        goto end;
    p = OPENSSL_secure_malloc(20);
    if (!TEST_ptr(p)
        /* r = non-secure 20, p = secure 20, s = non-secure 20 */
        || !TEST_true(CRYPTO_secure_allocated(p))
        /* 20 secure -> 32-byte minimum allocation unit */
        || !TEST_size_t_eq(CRYPTO_secure_used(), 32))
        goto end;
    q = OPENSSL_malloc(20);
    if (!TEST_ptr(q))
        goto end;
    /* r = non-secure 20, p = secure 20, q = non-secure 20, s = non-secure 20 */
    if (!TEST_false(CRYPTO_secure_allocated(q)))
        goto end;
    OPENSSL_secure_clear_free(s, 20);
    s = OPENSSL_secure_malloc(20);
    if (!TEST_ptr(s)
        /* r = non-secure 20, p = secure 20, q = non-secure 20, s = secure 20 */
        || !TEST_true(CRYPTO_secure_allocated(s))
        /* 2 * 20 secure -> 64 bytes allocated */
        || !TEST_size_t_eq(CRYPTO_secure_used(), 64))
        goto end;
    OPENSSL_secure_clear_free(p, 20);
    p = NULL;
    /* 20 secure -> 32 bytes allocated */
    if (!TEST_size_t_eq(CRYPTO_secure_used(), 32))
        goto end;
    OPENSSL_free(q);
    q = NULL;
    /* should not complete, as secure memory is still allocated */
    if (!TEST_false(CRYPTO_secure_malloc_done())
        || !TEST_true(CRYPTO_secure_malloc_initialized()))
        goto end;
    OPENSSL_secure_free(s);
    s = NULL;
    /* secure memory should now be 0, so done should complete */
    if (!TEST_size_t_eq(CRYPTO_secure_used(), 0)
        || !TEST_true(CRYPTO_secure_malloc_done())
        || !TEST_false(CRYPTO_secure_malloc_initialized()))
        goto end;

    TEST_info("Possible infinite loop: allocate more than available");
    if (!TEST_true(CRYPTO_secure_malloc_init(32768, 16)))
        goto end;
    TEST_ptr_null(OPENSSL_secure_malloc((size_t)-1));
    TEST_true(CRYPTO_secure_malloc_done());

    /*
     * If init fails, then initialized should be false, if not, this
     * could cause an infinite loop secure_malloc, but we don't test it
     */
    if (TEST_false(CRYPTO_secure_malloc_init(16, 16)) &&
        !TEST_false(CRYPTO_secure_malloc_initialized())) {
        TEST_true(CRYPTO_secure_malloc_done());
        goto end;
    }

    /*-
     * There was also a possible infinite loop when the number of
     * elements was 1<<31, as |int i| was set to that, which is a
     * negative number. However, it requires minimum input values:
     *
     * CRYPTO_secure_malloc_init((size_t)1<<34, (size_t)1<<4);
     *
     * Which really only works on 64-bit systems, since it took 16 GB
     * secure memory arena to trigger the problem. It naturally takes
     * corresponding amount of available virtual and physical memory
     * for test to be feasible/representative. Since we can't assume
     * that every system is equipped with that much memory, the test
     * remains disabled. If the reader of this comment really wants
     * to make sure that infinite loop is fixed, they can enable the
     * code below.
     */
# if 0
    /*-
     * On Linux and BSD this test has a chance to complete in minimal
     * time and with minimum side effects, because mlock is likely to
     * fail because of RLIMIT_MEMLOCK, which is customarily [much]
     * smaller than 16GB. In other words Linux and BSD users can be
     * limited by virtual space alone...
     */
    if (sizeof(size_t) > 4) {
        TEST_info("Possible infinite loop: 1<<31 limit");
        if (TEST_true(CRYPTO_secure_malloc_init((size_t)1<<34, (size_t)1<<4) != 0))
            TEST_true(CRYPTO_secure_malloc_done());
    }
# endif

    /* this can complete - it was not really secure */
    testresult = 1;
 end:
    OPENSSL_secure_free(p);
    OPENSSL_free(q);
    OPENSSL_secure_free(r);
    OPENSSL_secure_free(s);
    return testresult;
#else
    /* Should fail. */
    return TEST_false(CRYPTO_secure_malloc_init(4096, 32));
#endif
}
Ejemplo n.º 6
0
/*
 * Allocate memory and initialize a new DRBG. The DRBG is allocated on
 * the secure heap if |secure| is nonzero and the secure heap is enabled.
 * The |parent|, if not NULL, will be used as random source for reseeding.
 *
 * Returns a pointer to the new DRBG instance on success, NULL on failure.
 */
static RAND_DRBG *rand_drbg_new(int secure,
                                int type,
                                unsigned int flags,
                                RAND_DRBG *parent)
{
    RAND_DRBG *drbg = secure ?
        OPENSSL_secure_zalloc(sizeof(*drbg)) : OPENSSL_zalloc(sizeof(*drbg));

    if (drbg == NULL) {
        RANDerr(RAND_F_RAND_DRBG_NEW, ERR_R_MALLOC_FAILURE);
        return NULL;
    }

    drbg->secure = secure && CRYPTO_secure_allocated(drbg);
    drbg->fork_count = rand_fork_count;
    drbg->parent = parent;

    if (parent == NULL) {
        drbg->get_entropy = rand_drbg_get_entropy;
        drbg->cleanup_entropy = rand_drbg_cleanup_entropy;
#ifndef RAND_DRBG_GET_RANDOM_NONCE
        drbg->get_nonce = rand_drbg_get_nonce;
        drbg->cleanup_nonce = rand_drbg_cleanup_nonce;
#endif

        drbg->reseed_interval = master_reseed_interval;
        drbg->reseed_time_interval = master_reseed_time_interval;
    } else {
        drbg->get_entropy = rand_drbg_get_entropy;
        drbg->cleanup_entropy = rand_drbg_cleanup_entropy;
        /*
         * Do not provide nonce callbacks, the child DRBGs will
         * obtain their nonce using random bits from the parent.
         */

        drbg->reseed_interval = slave_reseed_interval;
        drbg->reseed_time_interval = slave_reseed_time_interval;
    }

    if (RAND_DRBG_set(drbg, type, flags) == 0)
        goto err;

    if (parent != NULL) {
        rand_drbg_lock(parent);
        if (drbg->strength > parent->strength) {
            /*
             * We currently don't support the algorithm from NIST SP 800-90C
             * 10.1.2 to use a weaker DRBG as source
             */
            rand_drbg_unlock(parent);
            RANDerr(RAND_F_RAND_DRBG_NEW, RAND_R_PARENT_STRENGTH_TOO_WEAK);
            goto err;
        }
        rand_drbg_unlock(parent);
    }

    return drbg;

err:
    if (drbg->secure)
        OPENSSL_secure_free(drbg);
    else
        OPENSSL_free(drbg);

    return NULL;
}