Ejemplo n.º 1
0
/*
 * Find a pointer to type by looking in fp->ctf_ptrtab.  If we can't find a
 * pointer to the given type, see if we can compute a pointer to the type
 * resulting from resolving the type down to its base type and use that
 * instead.  This helps with cases where the CTF data includes "struct foo *"
 * but not "foo_t *" and the user accesses "foo_t *" in the debugger.
 */
ctf_id_t
ctf_type_pointer(ctf_file_t *fp, ctf_id_t type)
{
	ctf_file_t *ofp = fp;
	ctf_id_t ntype;

	if (ctf_lookup_by_id(&fp, type) == NULL)
		return (CTF_ERR); /* errno is set for us */

	if ((ntype = fp->ctf_ptrtab[CTF_TYPE_TO_INDEX(type)]) != 0)
		return (CTF_INDEX_TO_TYPE(ntype, (fp->ctf_flags & LCTF_CHILD)));

	if ((type = ctf_type_resolve(fp, type)) == CTF_ERR)
		return (ctf_set_errno(ofp, ECTF_NOTYPE));

	if (ctf_lookup_by_id(&fp, type) == NULL)
		return (ctf_set_errno(ofp, ECTF_NOTYPE));

	if ((ntype = fp->ctf_ptrtab[CTF_TYPE_TO_INDEX(type)]) != 0)
		return (CTF_INDEX_TO_TYPE(ntype, (fp->ctf_flags & LCTF_CHILD)));

	return (ctf_set_errno(ofp, ECTF_NOTYPE));
}
Ejemplo n.º 2
0
/*
 * Return the pointer to the internal CTF type data corresponding to the
 * given type ID.  If the ID is invalid, the function returns NULL.
 * This function is not exported outside of the library.
 */
const ctf_type_t *
ctf_lookup_by_id(ctf_file_t **fpp, ctf_id_t type)
{
	ctf_file_t *fp = *fpp; /* caller passes in starting CTF container */

	if ((fp->ctf_flags & LCTF_CHILD) && CTF_TYPE_ISPARENT(type) &&
	    (fp = fp->ctf_parent) == NULL) {
		(void) ctf_set_errno(*fpp, ECTF_NOPARENT);
		return (NULL);
	}

	type = CTF_TYPE_TO_INDEX(type);
	if (type > 0 && type <= fp->ctf_typemax) {
		*fpp = fp; /* function returns ending CTF container */
		return (LCTF_INDEX_TO_TYPEPTR(fp, type));
	}

	(void) ctf_set_errno(fp, ECTF_BADID);
	return (NULL);
}
Ejemplo n.º 3
0
/*
 * Discard all of the dynamic type definitions that have been added to the
 * container since the last call to ctf_update().  We locate such types by
 * scanning the list and deleting elements that have type IDs greater than
 * ctf_dtoldid, which is set by ctf_update(), above. Note that to work properly
 * with our reference counting schemes, we must delete the dynamic list in
 * reverse.
 */
int
ctf_discard(ctf_file_t *fp)
{
	ctf_dtdef_t *dtd, *ntd;

	if (!(fp->ctf_flags & LCTF_RDWR))
		return (ctf_set_errno(fp, ECTF_RDONLY));

	if (!(fp->ctf_flags & LCTF_DIRTY))
		return (0); /* no update required */

	for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
		ntd = ctf_list_prev(dtd);
		if (CTF_TYPE_TO_INDEX(dtd->dtd_type) <= fp->ctf_dtoldid)
			continue; /* skip types that have been committed */

		ctf_dtd_delete(fp, dtd);
	}

	fp->ctf_dtnextid = fp->ctf_dtoldid + 1;
	fp->ctf_flags &= ~LCTF_DIRTY;

	return (0);
}
Ejemplo n.º 4
0
/*
 * Initialize the type ID translation table with the byte offset of each type,
 * and initialize the hash tables of each named type.
 */
static int
init_types(ctf_file_t *fp, const ctf_header_t *cth)
{
	/* LINTED - pointer alignment */
	const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff);
	/* LINTED - pointer alignment */
	const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff);

	ulong_t pop[CTF_K_MAX + 1] = { 0 };
	const ctf_type_t *tp;
	ctf_hash_t *hp;
	ushort_t dst;
	ctf_id_t id;
	uint_t *xp;

	/*
	 * We initially determine whether the container is a child or a parent
	 * based on the value of cth_parname.  To support containers that pre-
	 * date cth_parname, we also scan the types themselves for references
	 * to values in the range reserved for child types in our first pass.
	 */
	int child = cth->cth_parname != 0;
	int nlstructs = 0, nlunions = 0;
	int err;

	/*
	 * We make two passes through the entire type section.  In this first
	 * pass, we count the number of each type and the total number of types.
	 */
	for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
		ssize_t size, increment;

		size_t vbytes;
		uint_t n;

		(void) ctf_get_ctt_size(fp, tp, &size, &increment);

		switch (kind) {
		case CTF_K_INTEGER:
		case CTF_K_FLOAT:
			vbytes = sizeof (uint_t);
			break;
		case CTF_K_ARRAY:
			vbytes = sizeof (ctf_array_t);
			break;
		case CTF_K_FUNCTION:
			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
			break;
		case CTF_K_STRUCT:
		case CTF_K_UNION:
			if (fp->ctf_version == CTF_VERSION_1 ||
			    size < CTF_LSTRUCT_THRESH) {
				ctf_member_t *mp = (ctf_member_t *)
				    ((uintptr_t)tp + increment);

				vbytes = sizeof (ctf_member_t) * vlen;
				for (n = vlen; n != 0; n--, mp++)
					child |= CTF_TYPE_ISCHILD(mp->ctm_type);
			} else {
				ctf_lmember_t *lmp = (ctf_lmember_t *)
				    ((uintptr_t)tp + increment);

				vbytes = sizeof (ctf_lmember_t) * vlen;
				for (n = vlen; n != 0; n--, lmp++)
					child |=
					    CTF_TYPE_ISCHILD(lmp->ctlm_type);
			}
			break;
		case CTF_K_ENUM:
			vbytes = sizeof (ctf_enum_t) * vlen;
			break;
		case CTF_K_FORWARD:
			/*
			 * For forward declarations, ctt_type is the CTF_K_*
			 * kind for the tag, so bump that population count too.
			 * If ctt_type is unknown, treat the tag as a struct.
			 */
			if (tp->ctt_type == CTF_K_UNKNOWN ||
			    tp->ctt_type >= CTF_K_MAX)
				pop[CTF_K_STRUCT]++;
			else
				pop[tp->ctt_type]++;
			/*FALLTHRU*/
		case CTF_K_UNKNOWN:
			vbytes = 0;
			break;
		case CTF_K_POINTER:
		case CTF_K_TYPEDEF:
		case CTF_K_VOLATILE:
		case CTF_K_CONST:
		case CTF_K_RESTRICT:
			child |= CTF_TYPE_ISCHILD(tp->ctt_type);
			vbytes = 0;
			break;
		default:
			ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
			return (ECTF_CORRUPT);
		}
		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
		pop[kind]++;
	}

	/*
	 * If we detected a reference to a child type ID, then we know this
	 * container is a child and may have a parent's types imported later.
	 */
	if (child) {
		ctf_dprintf("CTF container %p is a child\n", (void *)fp);
		fp->ctf_flags |= LCTF_CHILD;
	} else
		ctf_dprintf("CTF container %p is a parent\n", (void *)fp);

	/*
	 * Now that we've counted up the number of each type, we can allocate
	 * the hash tables, type translation table, and pointer table.
	 */
	if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
		return (err);

	if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
		return (err);

	if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
		return (err);

	if ((err = ctf_hash_create(&fp->ctf_names,
	    pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
	    pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
	    pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
		return (err);

	fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
	fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1));

	if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
		return (EAGAIN); /* memory allocation failed */

	xp = fp->ctf_txlate;
	*xp++ = 0; /* type id 0 is used as a sentinel value */

	bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
	bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1));

	/*
	 * In the second pass through the types, we fill in each entry of the
	 * type and pointer tables and add names to the appropriate hashes.
	 */
	for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
		ssize_t size, increment;

		const char *name;
		size_t vbytes;
		ctf_helem_t *hep;
		ctf_encoding_t cte;

		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
		name = ctf_strptr(fp, tp->ctt_name);

		switch (kind) {
		case CTF_K_INTEGER:
		case CTF_K_FLOAT:
			/*
			 * Only insert a new integer base type definition if
			 * this type name has not been defined yet.  We re-use
			 * the names with different encodings for bit-fields.
			 */
			if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
			    name, strlen(name))) == NULL) {
				err = ctf_hash_insert(&fp->ctf_names, fp,
				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
				if (err != 0 && err != ECTF_STRTAB)
					return (err);
			} else if (ctf_type_encoding(fp, hep->h_type,
			    &cte) == 0 && cte.cte_bits == 0) {
				/*
				 * Work-around SOS8 stabs bug: replace existing
				 * intrinsic w/ same name if it was zero bits.
				 */
				hep->h_type = CTF_INDEX_TO_TYPE(id, child);
			}
			vbytes = sizeof (uint_t);
			break;

		case CTF_K_ARRAY:
			vbytes = sizeof (ctf_array_t);
			break;

		case CTF_K_FUNCTION:
			err = ctf_hash_insert(&fp->ctf_names, fp,
			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
			if (err != 0 && err != ECTF_STRTAB)
				return (err);
			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
			break;

		case CTF_K_STRUCT:
			err = ctf_hash_define(&fp->ctf_structs, fp,
			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);

			if (err != 0 && err != ECTF_STRTAB)
				return (err);

			if (fp->ctf_version == CTF_VERSION_1 ||
			    size < CTF_LSTRUCT_THRESH)
				vbytes = sizeof (ctf_member_t) * vlen;
			else {
				vbytes = sizeof (ctf_lmember_t) * vlen;
				nlstructs++;
			}
			break;

		case CTF_K_UNION:
			err = ctf_hash_define(&fp->ctf_unions, fp,
			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);

			if (err != 0 && err != ECTF_STRTAB)
				return (err);

			if (fp->ctf_version == CTF_VERSION_1 ||
			    size < CTF_LSTRUCT_THRESH)
				vbytes = sizeof (ctf_member_t) * vlen;
			else {
				vbytes = sizeof (ctf_lmember_t) * vlen;
				nlunions++;
			}
			break;

		case CTF_K_ENUM:
			err = ctf_hash_define(&fp->ctf_enums, fp,
			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);

			if (err != 0 && err != ECTF_STRTAB)
				return (err);

			vbytes = sizeof (ctf_enum_t) * vlen;
			break;

		case CTF_K_TYPEDEF:
			err = ctf_hash_insert(&fp->ctf_names, fp,
			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
			if (err != 0 && err != ECTF_STRTAB)
				return (err);
			vbytes = 0;
			break;

		case CTF_K_FORWARD:
			/*
			 * Only insert forward tags into the given hash if the
			 * type or tag name is not already present.
			 */
			switch (tp->ctt_type) {
			case CTF_K_STRUCT:
				hp = &fp->ctf_structs;
				break;
			case CTF_K_UNION:
				hp = &fp->ctf_unions;
				break;
			case CTF_K_ENUM:
				hp = &fp->ctf_enums;
				break;
			default:
				hp = &fp->ctf_structs;
			}

			if (ctf_hash_lookup(hp, fp,
			    name, strlen(name)) == NULL) {
				err = ctf_hash_insert(hp, fp,
				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
				if (err != 0 && err != ECTF_STRTAB)
					return (err);
			}
			vbytes = 0;
			break;

		case CTF_K_POINTER:
			/*
			 * If the type referenced by the pointer is in this CTF
			 * container, then store the index of the pointer type
			 * in fp->ctf_ptrtab[ index of referenced type ].
			 */
			if (CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
				fp->ctf_ptrtab[
				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = id;
			/*FALLTHRU*/

		case CTF_K_VOLATILE:
		case CTF_K_CONST:
		case CTF_K_RESTRICT:
			err = ctf_hash_insert(&fp->ctf_names, fp,
			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
			if (err != 0 && err != ECTF_STRTAB)
				return (err);
			/*FALLTHRU*/

		default:
			vbytes = 0;
			break;
		}

		*xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
	}

	ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
	ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
	ctf_dprintf("%u struct names hashed (%d long)\n",
	    ctf_hash_size(&fp->ctf_structs), nlstructs);
	ctf_dprintf("%u union names hashed (%d long)\n",
	    ctf_hash_size(&fp->ctf_unions), nlunions);
	ctf_dprintf("%u base type names hashed\n",
	    ctf_hash_size(&fp->ctf_names));

	/*
	 * Make an additional pass through the pointer table to find pointers
	 * that point to anonymous typedef nodes.  If we find one, modify the
	 * pointer table so that the pointer is also known to point to the
	 * node that is referenced by the anonymous typedef node.
	 */
	for (id = 1; id <= fp->ctf_typemax; id++) {
		if ((dst = fp->ctf_ptrtab[id]) != 0) {
			tp = LCTF_INDEX_TO_TYPEPTR(fp, id);

			if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF &&
			    strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 &&
			    CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
				fp->ctf_ptrtab[
				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst;
		}
	}

	return (0);
}
Ejemplo n.º 5
0
/*
 * Attempt to convert the given C type name into the corresponding CTF type ID.
 * It is not possible to do complete and proper conversion of type names
 * without implementing a more full-fledged parser, which is necessary to
 * handle things like types that are function pointers to functions that
 * have arguments that are function pointers, and fun stuff like that.
 * Instead, this function implements a very simple conversion algorithm that
 * finds the things that we actually care about: structs, unions, enums,
 * integers, floats, typedefs, and pointers to any of these named types.
 */
ctf_id_t
ctf_lookup_by_name(ctf_file_t *fp, const char *name)
{
	static const char delimiters[] = " \t\n\r\v\f*";

	const ctf_lookup_t *lp;
	const ctf_helem_t *hp;
	const char *p, *q, *end;
	ctf_id_t type = 0;
	ctf_id_t ntype, ptype;

	if (name == NULL)
		return (ctf_set_errno(fp, EINVAL));

	for (p = name, end = name + strlen(name); *p != '\0'; p = q) {
		while (isspace((unsigned char)*p))
			p++; /* skip leading ws */

		if (p == end)
			break;

		if ((q = strpbrk(p + 1, delimiters)) == NULL)
			q = end; /* compare until end */

		if (*p == '*') {
			/*
			 * Find a pointer to type by looking in fp->ctf_ptrtab.
			 * If we can't find a pointer to the given type, see if
			 * we can compute a pointer to the type resulting from
			 * resolving the type down to its base type and use
			 * that instead.  This helps with cases where the CTF
			 * data includes "struct foo *" but not "foo_t *" and
			 * the user tries to access "foo_t *" in the debugger.
			 */
			ntype = fp->ctf_ptrtab[CTF_TYPE_TO_INDEX(type)];
			if (ntype == 0) {
				ntype = ctf_type_resolve(fp, type);
				if (ntype == CTF_ERR || (ntype = fp->ctf_ptrtab[
				    CTF_TYPE_TO_INDEX(ntype)]) == 0) {
					(void) ctf_set_errno(fp, ECTF_NOTYPE);
					goto err;
				}
			}

			type = CTF_INDEX_TO_TYPE(ntype,
			    (fp->ctf_flags & LCTF_CHILD));

			q = p + 1;
			continue;
		}

		if (isqualifier(p, (size_t)(q - p)))
			continue; /* skip qualifier keyword */

		for (lp = fp->ctf_lookups; lp->ctl_prefix != NULL; lp++) {
			if (lp->ctl_prefix[0] == '\0' ||
			    strncmp(p, lp->ctl_prefix, (size_t)(q - p)) == 0) {
				for (p += lp->ctl_len; isspace((unsigned char)*p); p++)
					continue; /* skip prefix and next ws */

				if ((q = strchr(p, '*')) == NULL)
					q = end;  /* compare until end */

				while (isspace((unsigned char)q[-1]))
					q--;	  /* exclude trailing ws */

				if ((hp = ctf_hash_lookup(lp->ctl_hash, fp, p,
				    (size_t)(q - p))) == NULL) {
					(void) ctf_set_errno(fp, ECTF_NOTYPE);
					goto err;
				}

				type = hp->h_type;
				break;
			}
		}

		if (lp->ctl_prefix == NULL) {
			(void) ctf_set_errno(fp, ECTF_NOTYPE);
			goto err;
		}
	}

	if (*p != '\0' || type == 0)
		return (ctf_set_errno(fp, ECTF_SYNTAX));

	return (type);

err:
	if (fp->ctf_parent != NULL &&
	    (ptype = ctf_lookup_by_name(fp->ctf_parent, name)) != CTF_ERR)
		return (ptype);

	return (CTF_ERR);
}
Ejemplo n.º 6
0
/*
 * The ctf_add_type routine is used to copy a type from a source CTF container
 * to a dynamic destination container.  This routine operates recursively by
 * following the source type's links and embedded member types.  If the
 * destination container already contains a named type which has the same
 * attributes, then we succeed and return this type but no changes occur.
 */
ctf_id_t
ctf_add_type(ctf_file_t *dst_fp, ctf_file_t *src_fp, ctf_id_t src_type)
{
	ctf_id_t dst_type = CTF_ERR;
	uint_t dst_kind = CTF_K_UNKNOWN;

	const ctf_type_t *tp;
	const char *name;
	uint_t kind, flag, vlen;

	ctf_bundle_t src, dst;
	ctf_encoding_t src_en, dst_en;
	ctf_arinfo_t src_ar, dst_ar;

	ctf_dtdef_t *dtd;
	ctf_funcinfo_t ctc;
	ssize_t size;

	ctf_hash_t *hp;
	ctf_helem_t *hep;

	if (dst_fp == src_fp)
		return (src_type);

	if (!(dst_fp->ctf_flags & LCTF_RDWR))
		return (ctf_set_errno(dst_fp, ECTF_RDONLY));

	if ((tp = ctf_lookup_by_id(&src_fp, src_type)) == NULL)
		return (ctf_set_errno(dst_fp, ctf_errno(src_fp)));

	name = ctf_strptr(src_fp, tp->ctt_name);
	kind = LCTF_INFO_KIND(src_fp, tp->ctt_info);
	flag = LCTF_INFO_ROOT(src_fp, tp->ctt_info);
	vlen = LCTF_INFO_VLEN(src_fp, tp->ctt_info);

	switch (kind) {
	case CTF_K_STRUCT:
		hp = &dst_fp->ctf_structs;
		break;
	case CTF_K_UNION:
		hp = &dst_fp->ctf_unions;
		break;
	case CTF_K_ENUM:
		hp = &dst_fp->ctf_enums;
		break;
	default:
		hp = &dst_fp->ctf_names;
		break;
	}

	/*
	 * If the source type has a name and is a root type (visible at the
	 * top-level scope), lookup the name in the destination container and
	 * verify that it is of the same kind before we do anything else.
	 */
	if ((flag & CTF_ADD_ROOT) && name[0] != '\0' &&
	    (hep = ctf_hash_lookup(hp, dst_fp, name, strlen(name))) != NULL) {
		dst_type = (ctf_id_t)hep->h_type;
		dst_kind = ctf_type_kind(dst_fp, dst_type);
	}

	/*
	 * If an identically named dst_type exists, fail with ECTF_CONFLICT
	 * unless dst_type is a forward declaration and src_type is a struct,
	 * union, or enum (i.e. the definition of the previous forward decl).
	 */
	if (dst_type != CTF_ERR && dst_kind != kind) {
		if (dst_kind != CTF_K_FORWARD || (kind != CTF_K_ENUM &&
		    kind != CTF_K_STRUCT && kind != CTF_K_UNION))
			return (ctf_set_errno(dst_fp, ECTF_CONFLICT));
		else
			dst_type = CTF_ERR;
	}

	/*
	 * If the non-empty name was not found in the appropriate hash, search
	 * the list of pending dynamic definitions that are not yet committed.
	 * If a matching name and kind are found, assume this is the type that
	 * we are looking for.  This is necessary to permit ctf_add_type() to
	 * operate recursively on entities such as a struct that contains a
	 * pointer member that refers to the same struct type.
	 *
	 * In the case of integer and floating point types, we match using the
	 * type encoding as well - else we may incorrectly return a bitfield
	 * type, for instance.
	 */
	if (dst_type == CTF_ERR && name[0] != '\0') {
		for (dtd = ctf_list_prev(&dst_fp->ctf_dtdefs); dtd != NULL &&
		    CTF_TYPE_TO_INDEX(dtd->dtd_type) > dst_fp->ctf_dtoldid;
		    dtd = ctf_list_prev(dtd)) {
			if (CTF_INFO_KIND(dtd->dtd_data.ctt_info) != kind ||
			    dtd->dtd_name == NULL ||
			    strcmp(dtd->dtd_name, name) != 0)
				continue;
			if (kind == CTF_K_INTEGER || kind == CTF_K_FLOAT) {
				if (ctf_type_encoding(src_fp, src_type,
				    &src_en) != 0)
					continue;
				if (bcmp(&src_en, &dtd->dtd_u.dtu_enc,
				    sizeof (ctf_encoding_t)) != 0)
					continue;
			}
			return (dtd->dtd_type);
		}
	}

	src.ctb_file = src_fp;
	src.ctb_type = src_type;
	src.ctb_dtd = NULL;

	dst.ctb_file = dst_fp;
	dst.ctb_type = dst_type;
	dst.ctb_dtd = NULL;

	/*
	 * Now perform kind-specific processing.  If dst_type is CTF_ERR, then
	 * we add a new type with the same properties as src_type to dst_fp.
	 * If dst_type is not CTF_ERR, then we verify that dst_type has the
	 * same attributes as src_type.  We recurse for embedded references.
	 */
	switch (kind) {
	case CTF_K_INTEGER:
	case CTF_K_FLOAT:
		if (ctf_type_encoding(src_fp, src_type, &src_en) != 0)
			return (ctf_set_errno(dst_fp, ctf_errno(src_fp)));

		if (dst_type != CTF_ERR) {
			if (ctf_type_encoding(dst_fp, dst_type, &dst_en) != 0)
				return (CTF_ERR); /* errno is set for us */

			if (bcmp(&src_en, &dst_en, sizeof (ctf_encoding_t)))
				return (ctf_set_errno(dst_fp, ECTF_CONFLICT));

		} else if (kind == CTF_K_INTEGER) {
			dst_type = ctf_add_integer(dst_fp, flag, name, &src_en);
		} else
			dst_type = ctf_add_float(dst_fp, flag, name, &src_en);
		break;

	case CTF_K_POINTER:
	case CTF_K_VOLATILE:
	case CTF_K_CONST:
	case CTF_K_RESTRICT:
		src_type = ctf_type_reference(src_fp, src_type);
		src_type = ctf_add_type(dst_fp, src_fp, src_type);

		if (src_type == CTF_ERR)
			return (CTF_ERR); /* errno is set for us */

		dst_type = ctf_add_reftype(dst_fp, flag, src_type, kind);
		break;

	case CTF_K_ARRAY:
		if (ctf_array_info(src_fp, src_type, &src_ar) == CTF_ERR)
			return (ctf_set_errno(dst_fp, ctf_errno(src_fp)));

		src_ar.ctr_contents =
		    ctf_add_type(dst_fp, src_fp, src_ar.ctr_contents);
		src_ar.ctr_index =
		    ctf_add_type(dst_fp, src_fp, src_ar.ctr_index);
		src_ar.ctr_nelems = src_ar.ctr_nelems;

		if (src_ar.ctr_contents == CTF_ERR ||
		    src_ar.ctr_index == CTF_ERR)
			return (CTF_ERR); /* errno is set for us */

		if (dst_type != CTF_ERR) {
			if (ctf_array_info(dst_fp, dst_type, &dst_ar) != 0)
				return (CTF_ERR); /* errno is set for us */

			if (bcmp(&src_ar, &dst_ar, sizeof (ctf_arinfo_t)))
				return (ctf_set_errno(dst_fp, ECTF_CONFLICT));
		} else
			dst_type = ctf_add_array(dst_fp, flag, &src_ar);
		break;

	case CTF_K_FUNCTION:
		ctc.ctc_return = ctf_add_type(dst_fp, src_fp, tp->ctt_type);
		ctc.ctc_argc = 0;
		ctc.ctc_flags = 0;

		if (ctc.ctc_return == CTF_ERR)
			return (CTF_ERR); /* errno is set for us */

		dst_type = ctf_add_function(dst_fp, flag, &ctc, NULL);
		break;

	case CTF_K_STRUCT:
	case CTF_K_UNION: {
		ctf_dmdef_t *dmd;
		int errs = 0;

		/*
		 * Technically to match a struct or union we need to check both
		 * ways (src members vs. dst, dst members vs. src) but we make
		 * this more optimal by only checking src vs. dst and comparing
		 * the total size of the structure (which we must do anyway)
		 * which covers the possibility of dst members not in src.
		 * This optimization can be defeated for unions, but is so
		 * pathological as to render it irrelevant for our purposes.
		 */
		if (dst_type != CTF_ERR && dst_kind != CTF_K_FORWARD) {
			if (ctf_type_size(src_fp, src_type) !=
			    ctf_type_size(dst_fp, dst_type))
				return (ctf_set_errno(dst_fp, ECTF_CONFLICT));

			if (ctf_member_iter(src_fp, src_type, membcmp, &dst))
				return (ctf_set_errno(dst_fp, ECTF_CONFLICT));

			break;
		}

		/*
		 * Unlike the other cases, copying structs and unions is done
		 * manually so as to avoid repeated lookups in ctf_add_member
		 * and to ensure the exact same member offsets as in src_type.
		 */
		dst_type = ctf_add_generic(dst_fp, flag, name, &dtd);
		if (dst_type == CTF_ERR)
			return (CTF_ERR); /* errno is set for us */

		dst.ctb_type = dst_type;
		dst.ctb_dtd = dtd;

		if (ctf_member_iter(src_fp, src_type, membadd, &dst) != 0)
			errs++; /* increment errs and fail at bottom of case */

		if ((size = ctf_type_size(src_fp, src_type)) > CTF_MAX_SIZE) {
			dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
			dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI(size);
			dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO(size);
		} else
			dtd->dtd_data.ctt_size = (ushort_t)size;

		dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, vlen);

		/*
		 * Make a final pass through the members changing each dmd_type
		 * (a src_fp type) to an equivalent type in dst_fp.  We pass
		 * through all members, leaving any that fail set to CTF_ERR.
		 */
		for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
		    dmd != NULL; dmd = ctf_list_next(dmd)) {
			if ((dmd->dmd_type = ctf_add_type(dst_fp, src_fp,
			    dmd->dmd_type)) == CTF_ERR)
				errs++;
		}

		if (errs)
			return (CTF_ERR); /* errno is set for us */

		/*
		 * Now that we know that we can't fail, we go through and bump
		 * all the reference counts on the member types.
		 */
		for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members);
		    dmd != NULL; dmd = ctf_list_next(dmd))
			ctf_ref_inc(dst_fp, dmd->dmd_type);
		break;
	}

	case CTF_K_ENUM:
		if (dst_type != CTF_ERR && dst_kind != CTF_K_FORWARD) {
			if (ctf_enum_iter(src_fp, src_type, enumcmp, &dst) ||
			    ctf_enum_iter(dst_fp, dst_type, enumcmp, &src))
				return (ctf_set_errno(dst_fp, ECTF_CONFLICT));
		} else {
			dst_type = ctf_add_enum(dst_fp, flag, name);
			if ((dst.ctb_type = dst_type) == CTF_ERR ||
			    ctf_enum_iter(src_fp, src_type, enumadd, &dst))
				return (CTF_ERR); /* errno is set for us */
		}
		break;

	case CTF_K_FORWARD:
		if (dst_type == CTF_ERR) {
			dst_type = ctf_add_forward(dst_fp,
			    flag, name, CTF_K_STRUCT); /* assume STRUCT */
		}
		break;

	case CTF_K_TYPEDEF:
		src_type = ctf_type_reference(src_fp, src_type);
		src_type = ctf_add_type(dst_fp, src_fp, src_type);

		if (src_type == CTF_ERR)
			return (CTF_ERR); /* errno is set for us */

		/*
		 * If dst_type is not CTF_ERR at this point, we should check if
		 * ctf_type_reference(dst_fp, dst_type) != src_type and if so
		 * fail with ECTF_CONFLICT.  However, this causes problems with
		 * <sys/types.h> typedefs that vary based on things like if
		 * _ILP32x then pid_t is int otherwise long.  We therefore omit
		 * this check and assume that if the identically named typedef
		 * already exists in dst_fp, it is correct or equivalent.
		 */
		if (dst_type == CTF_ERR) {
			dst_type = ctf_add_typedef(dst_fp, flag,
			    name, src_type);
		}
		break;

	default:
		return (ctf_set_errno(dst_fp, ECTF_CORRUPT));
	}

	return (dst_type);
}
Ejemplo n.º 7
0
Archivo: ctf.c Proyecto: DataIX/src
static int
write_type(void *arg1, void *arg2)
{
	tdesc_t *tp = arg1;
	ctf_buf_t *b = arg2;
	elist_t *ep;
	mlist_t *mp;
	intr_t *ip;

	size_t offset;
	uint_t encoding;
	uint_t data;
	int isroot = tp->t_flags & TDESC_F_ISROOT;
	int i;

	ctf_type_t ctt;
	ctf_array_t cta;
	ctf_member_t ctm;
	ctf_lmember_t ctlm;
	ctf_enum_t cte;
	ushort_t id;

	ctlm.ctlm_pad = 0;

	/*
	 * There shouldn't be any holes in the type list (where a hole is
	 * defined as two consecutive tdescs without consecutive ids), but
	 * check for them just in case.  If we do find holes, we need to make
	 * fake entries to fill the holes, or we won't be able to reconstruct
	 * the tree from the written data.
	 */
	if (++b->nptent < CTF_TYPE_TO_INDEX(tp->t_id)) {
		debug(2, "genctf: type hole from %d < x < %d\n",
		    b->nptent - 1, CTF_TYPE_TO_INDEX(tp->t_id));

		ctt.ctt_name = CTF_TYPE_NAME(CTF_STRTAB_0, 0);
		ctt.ctt_info = CTF_TYPE_INFO(0, 0, 0);
		while (b->nptent < CTF_TYPE_TO_INDEX(tp->t_id)) {
			write_sized_type_rec(b, &ctt, 0);
			b->nptent++;
		}
	}

	offset = strtab_insert(&b->ctb_strtab, tp->t_name);
	ctt.ctt_name = CTF_TYPE_NAME(CTF_STRTAB_0, offset);

	switch (tp->t_type) {
	case INTRINSIC:
		ip = tp->t_intr;
		if (ip->intr_type == INTR_INT)
			ctt.ctt_info = CTF_TYPE_INFO(CTF_K_INTEGER,
			    isroot, 1);
		else
			ctt.ctt_info = CTF_TYPE_INFO(CTF_K_FLOAT, isroot, 1);
		write_sized_type_rec(b, &ctt, tp->t_size);

		encoding = 0;

		if (ip->intr_type == INTR_INT) {
			if (ip->intr_signed)
				encoding |= CTF_INT_SIGNED;
			if (ip->intr_iformat == 'c')
				encoding |= CTF_INT_CHAR;
			else if (ip->intr_iformat == 'b')
				encoding |= CTF_INT_BOOL;
			else if (ip->intr_iformat == 'v')
				encoding |= CTF_INT_VARARGS;
		} else
			encoding = ip->intr_fformat;

		data = CTF_INT_DATA(encoding, ip->intr_offset, ip->intr_nbits);
		if (target_requires_swap) {
			SWAP_32(data);
		}
		ctf_buf_write(b, &data, sizeof (data));
		break;

	case POINTER:
		ctt.ctt_info = CTF_TYPE_INFO(CTF_K_POINTER, isroot, 0);
		ctt.ctt_type = tp->t_tdesc->t_id;
		write_unsized_type_rec(b, &ctt);
		break;

	case ARRAY:
		ctt.ctt_info = CTF_TYPE_INFO(CTF_K_ARRAY, isroot, 1);
		write_sized_type_rec(b, &ctt, tp->t_size);

		cta.cta_contents = tp->t_ardef->ad_contents->t_id;
		cta.cta_index = tp->t_ardef->ad_idxtype->t_id;
		cta.cta_nelems = tp->t_ardef->ad_nelems;
		if (target_requires_swap) {
			SWAP_16(cta.cta_contents);
			SWAP_16(cta.cta_index);
			SWAP_32(cta.cta_nelems);
		}
		ctf_buf_write(b, &cta, sizeof (cta));
		break;

	case STRUCT:
	case UNION:
		for (i = 0, mp = tp->t_members; mp != NULL; mp = mp->ml_next)
			i++; /* count up struct or union members */

		if (i > CTF_MAX_VLEN) {
			terminate("sou %s has too many members: %d > %d\n",
			    tdesc_name(tp), i, CTF_MAX_VLEN);
		}

		if (tp->t_type == STRUCT)
			ctt.ctt_info = CTF_TYPE_INFO(CTF_K_STRUCT, isroot, i);
		else
			ctt.ctt_info = CTF_TYPE_INFO(CTF_K_UNION, isroot, i);

		write_sized_type_rec(b, &ctt, tp->t_size);

		if (tp->t_size < CTF_LSTRUCT_THRESH) {
			for (mp = tp->t_members; mp != NULL; mp = mp->ml_next) {
				offset = strtab_insert(&b->ctb_strtab,
				    mp->ml_name);

				ctm.ctm_name = CTF_TYPE_NAME(CTF_STRTAB_0,
				    offset);
				ctm.ctm_type = mp->ml_type->t_id;
				ctm.ctm_offset = mp->ml_offset;
				if (target_requires_swap) {
					SWAP_32(ctm.ctm_name);
					SWAP_16(ctm.ctm_type);
					SWAP_16(ctm.ctm_offset);
				}
				ctf_buf_write(b, &ctm, sizeof (ctm));
			}
		} else {
			for (mp = tp->t_members; mp != NULL; mp = mp->ml_next) {
				offset = strtab_insert(&b->ctb_strtab,
				    mp->ml_name);

				ctlm.ctlm_name = CTF_TYPE_NAME(CTF_STRTAB_0,
				    offset);
				ctlm.ctlm_type = mp->ml_type->t_id;
				ctlm.ctlm_offsethi =
				    CTF_OFFSET_TO_LMEMHI(mp->ml_offset);
				ctlm.ctlm_offsetlo =
				    CTF_OFFSET_TO_LMEMLO(mp->ml_offset);

				if (target_requires_swap) {
					SWAP_32(ctlm.ctlm_name);
					SWAP_16(ctlm.ctlm_type);
					SWAP_32(ctlm.ctlm_offsethi);
					SWAP_32(ctlm.ctlm_offsetlo);
				}

				ctf_buf_write(b, &ctlm, sizeof (ctlm));
			}
		}
		break;

	case ENUM:
		for (i = 0, ep = tp->t_emem; ep != NULL; ep = ep->el_next)
			i++; /* count up enum members */

		if (i > CTF_MAX_VLEN) {
			warning("enum %s has too many values: %d > %d\n",
			    tdesc_name(tp), i, CTF_MAX_VLEN);
			i = CTF_MAX_VLEN;
		}

		ctt.ctt_info = CTF_TYPE_INFO(CTF_K_ENUM, isroot, i);
		write_sized_type_rec(b, &ctt, tp->t_size);

		for (ep = tp->t_emem; ep != NULL && i > 0; ep = ep->el_next) {
			offset = strtab_insert(&b->ctb_strtab, ep->el_name);
			cte.cte_name = CTF_TYPE_NAME(CTF_STRTAB_0, offset);
			cte.cte_value = ep->el_number;

			if (target_requires_swap) {
				SWAP_32(cte.cte_name);
				SWAP_32(cte.cte_value);
			}

			ctf_buf_write(b, &cte, sizeof (cte));
			i--;
		}
		break;

	case FORWARD:
		ctt.ctt_info = CTF_TYPE_INFO(CTF_K_FORWARD, isroot, 0);
		ctt.ctt_type = 0;
		write_unsized_type_rec(b, &ctt);
		break;

	case TYPEDEF:
		ctt.ctt_info = CTF_TYPE_INFO(CTF_K_TYPEDEF, isroot, 0);
		ctt.ctt_type = tp->t_tdesc->t_id;
		write_unsized_type_rec(b, &ctt);
		break;

	case VOLATILE:
		ctt.ctt_info = CTF_TYPE_INFO(CTF_K_VOLATILE, isroot, 0);
		ctt.ctt_type = tp->t_tdesc->t_id;
		write_unsized_type_rec(b, &ctt);
		break;

	case CONST:
		ctt.ctt_info = CTF_TYPE_INFO(CTF_K_CONST, isroot, 0);
		ctt.ctt_type = tp->t_tdesc->t_id;
		write_unsized_type_rec(b, &ctt);
		break;

	case FUNCTION:
		i = tp->t_fndef->fn_nargs + tp->t_fndef->fn_vargs;

		if (i > CTF_MAX_VLEN) {
			terminate("function %s has too many args: %d > %d\n",
			    tdesc_name(tp), i, CTF_MAX_VLEN);
		}

		ctt.ctt_info = CTF_TYPE_INFO(CTF_K_FUNCTION, isroot, i);
		ctt.ctt_type = tp->t_fndef->fn_ret->t_id;
		write_unsized_type_rec(b, &ctt);

		for (i = 0; i < (int) tp->t_fndef->fn_nargs; i++) {
			id = tp->t_fndef->fn_args[i]->t_id;

			if (target_requires_swap) {
				SWAP_16(id);
			}

			ctf_buf_write(b, &id, sizeof (id));
		}

		if (tp->t_fndef->fn_vargs) {
			id = 0;
			ctf_buf_write(b, &id, sizeof (id));
			i++;
		}

		if (i & 1) {
			id = 0;
			ctf_buf_write(b, &id, sizeof (id));
		}
		break;

	case RESTRICT:
		ctt.ctt_info = CTF_TYPE_INFO(CTF_K_RESTRICT, isroot, 0);
		ctt.ctt_type = tp->t_tdesc->t_id;
		write_unsized_type_rec(b, &ctt);
		break;

	default:
		warning("Can't write unknown type %d\n", tp->t_type);
	}

	debug(3, "Wrote type %d %s\n", tp->t_id, tdesc_name(tp));

	return (1);
}