Ejemplo n.º 1
0
void CLMS::processNoise()
{
	float scl1 = 1.0F - m_adaptationRate * m_leakage;

	unsigned int n = CXBhave(m_signal);

	for (unsigned int i = 0; i < n; i++) {
		m_delayLine[m_delayLinePtr] = CXBreal(m_signal, i);
		float accum = 0.0F;
		float sum_sq = 0.0F;

		unsigned int j;
		for (j = 0; j < m_adaptiveFilterSize; j++) {
			unsigned int k = (j + m_delay + m_delayLinePtr) & m_mask;
			sum_sq += m_delayLine[k] * m_delayLine[k];
			accum += m_adaptiveFilter[j] * m_delayLine[k];
		}

		float error = CXBreal(m_signal, i) - accum;

		CXBreal(m_signal, i) = accum;
		CXBimag(m_signal, i) = accum;

		float scl2 = m_adaptationRate / (sum_sq + 1e-10);
		error *= scl2;

		for (j = 0; j < m_adaptiveFilterSize; j++) {
			unsigned int k = (j + m_delay + m_delayLinePtr) & m_mask;
			m_adaptiveFilter[j] = m_adaptiveFilter[j] * scl1 + error * m_delayLine[k];
		}

		m_delayLinePtr = (m_delayLinePtr + m_mask) & m_mask;
	}
}
Ejemplo n.º 2
0
void
correctIQ (CXB sigbuf, IQ iq, BOOLEAN isTX, int subchan)
{
	int i;
	REAL doit;
	if (IQdoit == 0) return;
	if (subchan == 0) doit = iq->mu;
	else doit = 0;
	if(!isTX)
	{
		// if (subchan == 0) // removed so that sub rx's will get IQ correction
		for (i = 0; i < CXBhave (sigbuf); i++)
		{
			iq->del[iq->index] = CXBdata(sigbuf,i);
			iq->y[iq->index] = Cadd(iq->del[iq->index],Cmul(iq->w[0],Conjg(iq->del[iq->index])));
			iq->y[iq->index] = Cadd(iq->y[iq->index],Cmul(iq->w[1],Conjg(iq->y[iq->index])));
			iq->w[1] = Csub(iq->w[1], Cscl(Cmul(iq->y[iq->index],iq->y[iq->index]), doit));  // this is where the adaption happens

			CXBdata(sigbuf,i)=iq->y[iq->index];
			iq->index = (iq->index+iq->MASK)&iq->MASK;
		}
		//fprintf(stderr, "w1 real: %g, w1 imag: %g\n", iq->w[1].re, iq->w[1].im); fflush(stderr); 
	}
	else
	{
		for (i = 0; i < CXBhave (sigbuf); i++)
		{
			CXBimag (sigbuf, i) += iq->phase * CXBreal (sigbuf, i);
			CXBreal (sigbuf, i) *= iq->gain;
		}
	}

}
Ejemplo n.º 3
0
/* ---------------------------------------------------------------------------- */
void
FMDemod(FMD fm) {
  int i;
  for (i = 0; i < CXBhave(fm->ibuf); i++) {
    pll(fm, CXBdata(fm->ibuf, i));
    fm->afc = (REAL) (0.9999 * fm->afc + 0.0001 * fm->pll.freq.f);
    CXBreal(fm->obuf, i) =
      CXBimag(fm->obuf, i) = (fm->pll.freq.f - fm->afc) * fm->cvt;
  }
}
Ejemplo n.º 4
0
// snapshot of current signal
void
snap_spectrum (SpecBlock * sb, int label)
{
	int i, j;

	// where most recent signal started
	j = sb->fill;

	// copy starting from there in circular fashion,
	// applying window as we go
	if (!sb->polyphase)
	{
		for (i = 0; i < sb->size; i++)
		{
			CXBdata (sb->timebuf, i) =
				Cscl (CXBdata (sb->accum, j), sb->window[i]);
			j = (++j & sb->mask);
		}
	}
	else
	{
		int k;
		for (i = 0; i < sb->size; i++)
		{
			CXBreal (sb->timebuf, i) = CXBreal (sb->accum, j) * sb->window[i];
			CXBimag (sb->timebuf, i) = CXBimag (sb->accum, j) * sb->window[i];
			for (k = 1; k < 8; k++)
			{
				int accumidx = (j + k * sb->size) & sb->mask;
				int winidx = i + k * sb->size;
				CXBreal (sb->timebuf, i) +=
					CXBreal (sb->accum, accumidx) * sb->window[winidx];
				CXBimag (sb->timebuf, i) +=
					CXBimag (sb->accum, accumidx) * sb->window[winidx];
			}
			j = (++j & sb->mask);
		}

	}
	sb->label = label;
}
Ejemplo n.º 5
0
void CDCBlock::block()
{
	unsigned int n = CXBhave(m_buf);

	for (unsigned int i = 0; i < n; i++) {
		float x = CXBreal(m_buf, i);
		float y = x - m_xm1 + 0.995F * m_ym1;

		m_xm1 = x;
		m_ym1 = y;

		CXBdata(m_buf, i) = Cmplx(y, 0.0F);
	}
}
Ejemplo n.º 6
0
void CFMDemod::demodulate()
{
	unsigned int n = CXBhave(m_ibuf);

	for (unsigned int i = 0; i < n; i++) {
		pll(CXBdata(m_ibuf, i));

		m_afc = float(0.9999 * m_afc + 0.0001F * m_pllFreqF);

		CXBreal(m_obuf, i) = CXBimag(m_obuf, i) = (m_pllFreqF - m_afc) * m_cvt;
	}

	CXBhave(m_obuf) = n;
}
Ejemplo n.º 7
0
// generated tone -> output ringbuffer
void
send_tone (void)
{  
	if (ringb_float_write_space (lring) < TONE_SIZE)
	{
		cw_ring_reset = TRUE;
	}
	else
	{
		int i;
		EnterCriticalSection (cs_cw);
		correctIQ(gen->buf, tx[1].iqfix);
		for (i = 0; i < gen->size; i++)
		{
			float r = (float) CXBreal (gen->buf, i),
				l = (float) CXBimag (gen->buf, i);
			ringb_float_write (lring, (float *) &l, 1);
			ringb_float_write (rring, (float *) &r, 1);
		}
		LeaveCriticalSection (cs_cw);
	}
}
Ejemplo n.º 8
0
void
correctIQ (CXB sigbuf, IQ iq)
{
	int i;															// SV1EIA AIR
	if (CXBhave (sigbuf)!= DEFSPEC)									// SV1EIA AIR
	{																// SV1EIA AIR
		if (iq->buffer_counter>DEFSPEC-1) iq->buffer_counter = 0;	// SV1EIA AIR
		iq->buffer_length[iq->buffer_counter] = CXBhave (sigbuf);	// SV1EIA AIR
		iq->buffer_counter++;										// SV1EIA AIR
	}																// SV1EIA AIR
	iq->im_max_actual = 0;											// SV1EIA AIR
	iq->im_max_test = 0;											// SV1EIA AIR
	iq->im_min_actual = 0;											// SV1EIA AIR
	iq->im_min_test = 0;											// SV1EIA AIR
	iq->re_max_actual = 0;											// SV1EIA AIR
	iq->re_max_test = 0;											// SV1EIA AIR
	iq->re_min_actual = 0;											// SV1EIA AIR
	iq->re_min_test = 0;											// SV1EIA AIR

	for (i = 0; i < CXBhave (sigbuf); i++)							// SV1EIA AIR
	{																// SV1EIA AIR
		if (CXBimag (sigbuf, i) >= iq->im_max_actual)				// SV1EIA AIR
		{															// SV1EIA AIR
			iq->im_max_actual = CXBimag (sigbuf, i);				// SV1EIA AIR
			iq->im_max_bin_actual = i;								// SV1EIA AIR
		}															// SV1EIA AIR
		if (CXBreal (sigbuf, i) >= iq->re_max_actual)				// SV1EIA AIR
		{															// SV1EIA AIR
			iq->re_max_actual = CXBreal (sigbuf, i);				// SV1EIA AIR
			iq->re_max_bin_actual = i;								// SV1EIA AIR
		}															// SV1EIA AIR
		if (CXBimag (sigbuf, i) <= iq->im_min_actual)				// SV1EIA AIR
		{															// SV1EIA AIR
			iq->im_min_actual = CXBimag (sigbuf, i);				// SV1EIA AIR
			iq->im_min_bin_actual = i;								// SV1EIA AIR
		}															// SV1EIA AIR
		if (CXBreal (sigbuf, i) <= iq->re_min_actual)				// SV1EIA AIR
		{															// SV1EIA AIR
			iq->re_min_actual = CXBreal (sigbuf, i);				// SV1EIA AIR
			iq->re_min_bin_actual = i;								// SV1EIA AIR
		}															// SV1EIA AIR
		iq->im_actual[i] = CXBimag (sigbuf, i);						// SV1EIA AIR
		iq->re_actual[i] = CXBreal (sigbuf, i);						// SV1EIA AIR
		CXBimag (sigbuf, i) += iq->phase[i] * CXBreal (sigbuf, i);	// SV1EIA AIR
		CXBreal (sigbuf, i) *= iq->gain[i];							// SV1EIA AIR
		iq->im_test[i] = CXBimag (sigbuf, i);						// SV1EIA AIR
		iq->re_test[i] = CXBreal (sigbuf, i);						// SV1EIA AIR
		if (CXBimag (sigbuf, i) >= iq->im_max_test)					// SV1EIA AIR
		{															// SV1EIA AIR
			iq->im_max_test = CXBimag (sigbuf, i);					// SV1EIA AIR
			iq->im_max_bin_test = i;								// SV1EIA AIR
		}															// SV1EIA AIR
		if (CXBreal (sigbuf, i) >= iq->re_max_test)					// SV1EIA AIR
		{															// SV1EIA AIR
			iq->re_max_test = CXBreal (sigbuf, i);					// SV1EIA AIR
			iq->re_max_bin_test = i;								// SV1EIA AIR
		}															// SV1EIA AIR
		if (CXBimag (sigbuf, i) <= iq->im_min_test)					// SV1EIA AIR
		{															// SV1EIA AIR
			iq->im_min_test = CXBimag (sigbuf, i);					// SV1EIA AIR
			iq->im_min_bin_test = i;								// SV1EIA AIR
		}															// SV1EIA AIR
		if (CXBreal (sigbuf, i) <= iq->re_min_test)					// SV1EIA AIR
		{															// SV1EIA AIR
			iq->re_min_test = CXBreal (sigbuf, i);					// SV1EIA AIR
			iq->re_min_bin_test = i;								// SV1EIA AIR
		}															// SV1EIA AIR
	}																// SV1EIA AIR
//	if (iq->spec > 0)
//	{
//	}
}
Ejemplo n.º 9
0
Archivo: TX.cpp Proyecto: g4klx/uWSDR
void CTX::process(float* bufi, float* bufq, unsigned int n)
{
	for (unsigned int i = 0U; i < n; i++) {
		CXBreal(m_iBuf, i) = bufi[i];
		CXBimag(m_iBuf, i) = bufq[i];
	}
	CXBhave(m_iBuf) = n;

	CXBscl(m_iBuf, m_micGain);

/*
	unsigned int n = CXBhave(m_iBuf);

	for (unsigned int i = 0; i < n; i++)
		CXBdata(m_iBuf, i) = Cmplx(CXBimag(m_iBuf, i), 0.0F);
*/
	if (m_dcBlockFlag && (m_mode == USB || m_mode == LSB))
		m_dcBlock->block();

	spectrum(m_iBuf, SPEC_TX_MIC);
	meter(m_iBuf, TX_MIC);

	if (m_equaliserFlag && (m_mode == USB || m_mode == LSB || m_mode == AM || m_mode == SAM || m_mode == FMN))
		m_equaliser->process();

	if (m_speechProcFlag && (m_mode == USB || m_mode == LSB))
		m_speechProc->process();

	spectrum(m_iBuf, SPEC_TX_POST_COMP);
	meter(m_iBuf, TX_COMP);

	m_alc->process();

	spectrum(m_iBuf, SPEC_TX_POST_ALC);
	meter(m_iBuf, TX_ALC);

	m_modulator->modulate();

	if (m_tick == 0UL)
		m_filter->reset();

	// Only active for the third method and zero-IF
	m_oscillator2->mix();

	m_filter->filter();
	CXBhave(m_oBuf) = CXBhave(m_iBuf);

	spectrum(m_oBuf, SPEC_TX_POST_FILT);

	m_oscillator1->mix();

	m_iq->process();

	CXBscl(m_oBuf, m_power);

	meter(m_oBuf, TX_PWR);

	n = CXBhave(m_oBuf);
	if (m_swapIQ) {
		for (unsigned int i = 0U; i < n; i++) {
			bufq[i] = CXBreal(m_oBuf, i);
			bufi[i] = CXBimag(m_oBuf, i);
		}
	} else {
		for (unsigned int i = 0U; i < n; i++) {
			bufi[i] = CXBreal(m_oBuf, i);
			bufq[i] = CXBimag(m_oBuf, i);
		}
	}

	m_tick++;
}