int main(int argc,char **argv) { PetscErrorCode ierr; DS ds; PetscScalar *A; PetscInt i,j,n=10,ld; PetscViewer viewer; PetscBool verbose; SlepcInitialize(&argc,&argv,(char*)0,help); ierr = PetscOptionsGetInt(NULL,"-n",&n,NULL);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"Compute symmetric matrix exponential - dimension %D.\n",n);CHKERRQ(ierr); ierr = PetscOptionsHasName(NULL,"-verbose",&verbose);CHKERRQ(ierr); /* Create DS object */ ierr = DSCreate(PETSC_COMM_WORLD,&ds);CHKERRQ(ierr); ierr = DSSetType(ds,DSHEP);CHKERRQ(ierr); ierr = DSSetFromOptions(ds);CHKERRQ(ierr); ld = n+2; /* test leading dimension larger than n */ ierr = DSAllocate(ds,ld);CHKERRQ(ierr); ierr = DSSetDimensions(ds,n,0,0,0);CHKERRQ(ierr); /* Set up viewer */ ierr = PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&viewer);CHKERRQ(ierr); ierr = PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_INFO_DETAIL);CHKERRQ(ierr); ierr = DSView(ds,viewer);CHKERRQ(ierr); ierr = PetscViewerPopFormat(viewer);CHKERRQ(ierr); if (verbose) { ierr = PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_MATLAB);CHKERRQ(ierr); } /* Fill with a symmetric Toeplitz matrix */ ierr = DSGetArray(ds,DS_MAT_A,&A);CHKERRQ(ierr); for (i=0;i<n;i++) A[i+i*ld]=2.0; for (j=1;j<3;j++) { for (i=0;i<n-j;i++) { A[i+(i+j)*ld]=1.0; A[(i+j)+i*ld]=1.0; } } ierr = DSRestoreArray(ds,DS_MAT_A,&A);CHKERRQ(ierr); ierr = DSSetState(ds,DS_STATE_RAW);CHKERRQ(ierr); if (verbose) { ierr = PetscPrintf(PETSC_COMM_WORLD,"Matrix A - - - - - - - -\n");CHKERRQ(ierr); ierr = DSView(ds,viewer);CHKERRQ(ierr); } /* Compute matrix exponential */ ierr = DSComputeFunction(ds,SLEPC_FUNCTION_EXP);CHKERRQ(ierr); if (verbose) { ierr = PetscPrintf(PETSC_COMM_WORLD,"Computed f(A) - - - - - - -\n");CHKERRQ(ierr); ierr = DSViewMat(ds,viewer,DS_MAT_F);CHKERRQ(ierr); } ierr = DSDestroy(&ds);CHKERRQ(ierr); ierr = SlepcFinalize(); return 0; }
/*@ EPSSetDS - Associates a direct solver object to the eigensolver. Collective on EPS Input Parameters: + eps - eigensolver context obtained from EPSCreate() - ds - the direct solver object Note: Use EPSGetDS() to retrieve the direct solver context (for example, to free it at the end of the computations). Level: advanced .seealso: EPSGetDS() @*/ PetscErrorCode EPSSetDS(EPS eps,DS ds) { PetscErrorCode ierr; PetscFunctionBegin; PetscValidHeaderSpecific(eps,EPS_CLASSID,1); PetscValidHeaderSpecific(ds,DS_CLASSID,2); PetscCheckSameComm(eps,1,ds,2); ierr = PetscObjectReference((PetscObject)ds); CHKERRQ(ierr); ierr = DSDestroy(&eps->ds); CHKERRQ(ierr); eps->ds = ds; ierr = PetscLogObjectParent((PetscObject)eps,(PetscObject)eps->ds); CHKERRQ(ierr); PetscFunctionReturn(0); }
/*@C EPSDestroy - Destroys the EPS context. Collective on EPS Input Parameter: . eps - eigensolver context obtained from EPSCreate() Level: beginner .seealso: EPSCreate(), EPSSetUp(), EPSSolve() @*/ PetscErrorCode EPSDestroy(EPS *eps) { PetscErrorCode ierr; PetscFunctionBegin; if (!*eps) PetscFunctionReturn(0); PetscValidHeaderSpecific(*eps,EPS_CLASSID,1); if (--((PetscObject)(*eps))->refct > 0) { *eps = 0; PetscFunctionReturn(0); } ierr = EPSReset(*eps); CHKERRQ(ierr); if ((*eps)->ops->destroy) { ierr = (*(*eps)->ops->destroy)(*eps); CHKERRQ(ierr); } ierr = STDestroy(&(*eps)->st); CHKERRQ(ierr); ierr = RGDestroy(&(*eps)->rg); CHKERRQ(ierr); ierr = DSDestroy(&(*eps)->ds); CHKERRQ(ierr); ierr = PetscRandomDestroy(&(*eps)->rand); CHKERRQ(ierr); ierr = PetscFree((*eps)->sc); CHKERRQ(ierr); /* just in case the initial vectors have not been used */ ierr = SlepcBasisDestroy_Private(&(*eps)->nds,&(*eps)->defl); CHKERRQ(ierr); ierr = SlepcBasisDestroy_Private(&(*eps)->nini,&(*eps)->IS); CHKERRQ(ierr); if ((*eps)->convergeddestroy) { ierr = (*(*eps)->convergeddestroy)((*eps)->convergedctx); CHKERRQ(ierr); } ierr = EPSMonitorCancel(*eps); CHKERRQ(ierr); ierr = PetscHeaderDestroy(eps); CHKERRQ(ierr); PetscFunctionReturn(0); }
int main(int argc,char **argv) { PetscErrorCode ierr; DS ds; SlepcSC sc; PetscScalar *A,*B,*wr,*wi; PetscReal re,im; PetscInt i,j,n=10,ld; PetscViewer viewer; PetscBool verbose; SlepcInitialize(&argc,&argv,(char*)0,help); ierr = PetscOptionsGetInt(NULL,"-n",&n,NULL);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"Solve a Dense System of type GNHEP - dimension %D.\n",n);CHKERRQ(ierr); ierr = PetscOptionsHasName(NULL,"-verbose",&verbose);CHKERRQ(ierr); /* Create DS object */ ierr = DSCreate(PETSC_COMM_WORLD,&ds);CHKERRQ(ierr); ierr = DSSetType(ds,DSGNHEP);CHKERRQ(ierr); ierr = DSSetFromOptions(ds);CHKERRQ(ierr); ld = n+2; /* test leading dimension larger than n */ ierr = DSAllocate(ds,ld);CHKERRQ(ierr); ierr = DSSetDimensions(ds,n,0,0,0);CHKERRQ(ierr); /* Set up viewer */ ierr = PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&viewer);CHKERRQ(ierr); ierr = PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_INFO_DETAIL);CHKERRQ(ierr); ierr = DSView(ds,viewer);CHKERRQ(ierr); ierr = PetscViewerPopFormat(viewer);CHKERRQ(ierr); if (verbose) { ierr = PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_MATLAB);CHKERRQ(ierr); } /* Fill A with Grcar matrix */ ierr = DSGetArray(ds,DS_MAT_A,&A);CHKERRQ(ierr); ierr = PetscMemzero(A,sizeof(PetscScalar)*ld*n);CHKERRQ(ierr); for (i=1;i<n;i++) A[i+(i-1)*ld]=-1.0; for (j=0;j<4;j++) { for (i=0;i<n-j;i++) A[i+(i+j)*ld]=1.0; } ierr = DSRestoreArray(ds,DS_MAT_A,&A);CHKERRQ(ierr); /* Fill B with an identity matrix */ ierr = DSGetArray(ds,DS_MAT_B,&B);CHKERRQ(ierr); ierr = PetscMemzero(B,sizeof(PetscScalar)*ld*n);CHKERRQ(ierr); for (i=0;i<n;i++) B[i+i*ld]=1.0; ierr = DSRestoreArray(ds,DS_MAT_B,&B);CHKERRQ(ierr); if (verbose) { ierr = PetscPrintf(PETSC_COMM_WORLD,"Initial - - - - - - - - -\n");CHKERRQ(ierr); ierr = DSView(ds,viewer);CHKERRQ(ierr); } /* Solve */ ierr = PetscMalloc2(n,&wr,n,&wi);CHKERRQ(ierr); ierr = DSGetSlepcSC(ds,&sc);CHKERRQ(ierr); sc->comparison = SlepcCompareLargestMagnitude; sc->comparisonctx = NULL; sc->map = NULL; sc->mapobj = NULL; ierr = DSSolve(ds,wr,wi);CHKERRQ(ierr); ierr = DSSort(ds,wr,wi,NULL,NULL,NULL);CHKERRQ(ierr); if (verbose) { ierr = PetscPrintf(PETSC_COMM_WORLD,"After solve - - - - - - - - -\n");CHKERRQ(ierr); ierr = DSView(ds,viewer);CHKERRQ(ierr); } /* Print eigenvalues */ ierr = PetscPrintf(PETSC_COMM_WORLD,"Computed eigenvalues =\n",n);CHKERRQ(ierr); for (i=0;i<n;i++) { #if defined(PETSC_USE_COMPLEX) re = PetscRealPart(wr[i]); im = PetscImaginaryPart(wr[i]); #else re = wr[i]; im = wi[i]; #endif if (PetscAbs(im)<1e-10) { ierr = PetscViewerASCIIPrintf(viewer," %.5f\n",(double)re);CHKERRQ(ierr); } else { ierr = PetscViewerASCIIPrintf(viewer," %.5f%+.5fi\n",(double)re,(double)im);CHKERRQ(ierr); } } ierr = PetscFree2(wr,wi);CHKERRQ(ierr); ierr = DSDestroy(&ds);CHKERRQ(ierr); ierr = SlepcFinalize(); return 0; }
int main(int argc,char **argv) { PetscErrorCode ierr; DS ds; FN f1,f2,f3,funs[3]; PetscScalar *Id,*A,*B,*wr,*wi,coeffs[2]; PetscReal tau=0.001,h,a=20,xi,re,im; PetscInt i,n=10,ld,nev; PetscViewer viewer; PetscBool verbose; SlepcInitialize(&argc,&argv,(char*)0,help); ierr = PetscOptionsGetInt(NULL,"-n",&n,NULL);CHKERRQ(ierr); ierr = PetscOptionsGetReal(NULL,"-tau",&tau,NULL);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"Solve a Dense System of type NEP - dimension %D, tau=%g.\n",n,(double)tau);CHKERRQ(ierr); ierr = PetscOptionsHasName(NULL,"-verbose",&verbose);CHKERRQ(ierr); /* Create DS object */ ierr = DSCreate(PETSC_COMM_WORLD,&ds);CHKERRQ(ierr); ierr = DSSetType(ds,DSNEP);CHKERRQ(ierr); ierr = DSSetFromOptions(ds);CHKERRQ(ierr); /* Set functions (prior to DSAllocate) */ ierr = FNCreate(PETSC_COMM_WORLD,&f1);CHKERRQ(ierr); ierr = FNSetType(f1,FNRATIONAL);CHKERRQ(ierr); coeffs[0] = -1.0; coeffs[1] = 0.0; ierr = FNSetParameters(f1,2,coeffs,0,NULL);CHKERRQ(ierr); ierr = FNCreate(PETSC_COMM_WORLD,&f2);CHKERRQ(ierr); ierr = FNSetType(f2,FNRATIONAL);CHKERRQ(ierr); coeffs[0] = 1.0; ierr = FNSetParameters(f2,1,coeffs,0,NULL);CHKERRQ(ierr); ierr = FNCreate(PETSC_COMM_WORLD,&f3);CHKERRQ(ierr); ierr = FNSetType(f3,FNEXP);CHKERRQ(ierr); coeffs[0] = -tau; ierr = FNSetParameters(f3,1,coeffs,0,NULL);CHKERRQ(ierr); funs[0] = f1; funs[1] = f2; funs[2] = f3; ierr = DSSetFN(ds,3,funs);CHKERRQ(ierr); /* Set dimensions */ ld = n+2; /* test leading dimension larger than n */ ierr = DSAllocate(ds,ld);CHKERRQ(ierr); ierr = DSSetDimensions(ds,n,0,0,0);CHKERRQ(ierr); /* Set up viewer */ ierr = PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&viewer);CHKERRQ(ierr); ierr = PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_INFO_DETAIL);CHKERRQ(ierr); ierr = DSView(ds,viewer);CHKERRQ(ierr); ierr = PetscViewerPopFormat(viewer);CHKERRQ(ierr); if (verbose) { ierr = PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_MATLAB);CHKERRQ(ierr); } /* Fill matrices */ ierr = DSGetArray(ds,DS_MAT_E0,&Id);CHKERRQ(ierr); for (i=0;i<n;i++) Id[i+i*ld]=1.0; ierr = DSRestoreArray(ds,DS_MAT_E0,&Id);CHKERRQ(ierr); h = PETSC_PI/(PetscReal)(n+1); ierr = DSGetArray(ds,DS_MAT_E1,&A);CHKERRQ(ierr); for (i=0;i<n;i++) A[i+i*ld]=-2.0/(h*h)+a; for (i=1;i<n;i++) { A[i+(i-1)*ld]=1.0/(h*h); A[(i-1)+i*ld]=1.0/(h*h); } ierr = DSRestoreArray(ds,DS_MAT_E1,&A);CHKERRQ(ierr); ierr = DSGetArray(ds,DS_MAT_E2,&B);CHKERRQ(ierr); for (i=0;i<n;i++) { xi = (i+1)*h; B[i+i*ld] = -4.1+xi*(1.0-PetscExpReal(xi-PETSC_PI)); } ierr = DSRestoreArray(ds,DS_MAT_E2,&B);CHKERRQ(ierr); if (verbose) { ierr = PetscPrintf(PETSC_COMM_WORLD,"Initial - - - - - - - - -\n");CHKERRQ(ierr); ierr = DSView(ds,viewer);CHKERRQ(ierr); } /* Solve */ ierr = PetscMalloc2(n,&wr,n,&wi);CHKERRQ(ierr); ierr = DSSolve(ds,wr,wi);CHKERRQ(ierr); if (verbose) { ierr = PetscPrintf(PETSC_COMM_WORLD,"After solve - - - - - - - - -\n");CHKERRQ(ierr); ierr = DSView(ds,viewer);CHKERRQ(ierr); } /* Print first eigenvalue */ ierr = PetscPrintf(PETSC_COMM_WORLD,"Computed eigenvalue =\n",n);CHKERRQ(ierr); nev = 1; for (i=0;i<nev;i++) { #if defined(PETSC_USE_COMPLEX) re = PetscRealPart(wr[i]); im = PetscImaginaryPart(wr[i]); #else re = wr[i]; im = wi[i]; #endif if (PetscAbs(im)<1e-10) { ierr = PetscViewerASCIIPrintf(viewer," %.5f\n",(double)re);CHKERRQ(ierr); } else { ierr = PetscViewerASCIIPrintf(viewer," %.5f%+.5fi\n",(double)re,(double)im);CHKERRQ(ierr); } } ierr = PetscFree2(wr,wi);CHKERRQ(ierr); ierr = FNDestroy(&f1);CHKERRQ(ierr); ierr = FNDestroy(&f2);CHKERRQ(ierr); ierr = FNDestroy(&f3);CHKERRQ(ierr); ierr = DSDestroy(&ds);CHKERRQ(ierr); ierr = SlepcFinalize(); return 0; }
void plotter_done(void) { PLOTTER pl; MFILE *f; char *fname; static struct dstring *xplot_cmd_buff=NULL; if(plotter_ix>0) { if(xplot_all_files) { xplot_cmd_buff=DSNew(); DSAppendString(xplot_cmd_buff,"xplot"); DSAppendString(xplot_cmd_buff," "); if(xplot_args!=NULL) { DSAppendString(xplot_cmd_buff,xplot_args); DSAppendString(xplot_cmd_buff," "); } } } for (pl = 0; pl <= plotter_ix; ++pl) { struct plotter_info *ppi = &pplotters[pl]; if ((f = ppi->fplot) == NULL) continue; /* Write the plotter header if not already written */ if(!ppi->header_done) WritePlotHeader(pl); if (!ignore_non_comp || ((ppi->p2plast != NULL) && (ConnComplete(ppi->p2plast->ptp)))) { Mfprintf(f,"go\n"); Mfclose(f); } else { fname = ppi->p2plast->tsg_plotfile; if (debug) fprintf(stderr,"Removing incomplete plot file '%s'\n", fname); Mfclose(f); if (unlink(fname) != 0) perror(fname); } if(xplot_all_files){ if(output_file_dir!=NULL) { DSAppendString(xplot_cmd_buff,output_file_dir); DSAppendString(xplot_cmd_buff,"/"); } DSAppendString(xplot_cmd_buff,ppi->filename); DSAppendString(xplot_cmd_buff," "); } } if(plotter_ix>0) { if(xplot_all_files) { fprintf(stdout,"%s\n",DSVal(xplot_cmd_buff)); system(DSVal(xplot_cmd_buff)); DSDestroy(&xplot_cmd_buff); } } }
int main(int argc,char **argv) { PetscErrorCode ierr; DS ds; SlepcSC sc; PetscReal *T,*s,re,im; PetscScalar *eigr,*eigi; PetscInt i,n=10,l=2,k=5,ld; PetscViewer viewer; PetscBool verbose; SlepcInitialize(&argc,&argv,(char*)0,help); ierr = PetscOptionsGetInt(NULL,"-n",&n,NULL);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"Solve a Dense System of type GHIEP with compact storage - dimension %D.\n",n);CHKERRQ(ierr); ierr = PetscOptionsGetInt(NULL,"-l",&l,NULL);CHKERRQ(ierr); ierr = PetscOptionsGetInt(NULL,"-k",&k,NULL);CHKERRQ(ierr); if (l>n || k>n || l>k) SETERRQ(PETSC_COMM_WORLD,1,"Wrong value of dimensions"); ierr = PetscOptionsHasName(NULL,"-verbose",&verbose);CHKERRQ(ierr); /* Create DS object */ ierr = DSCreate(PETSC_COMM_WORLD,&ds);CHKERRQ(ierr); ierr = DSSetType(ds,DSGHIEP);CHKERRQ(ierr); ierr = DSSetFromOptions(ds);CHKERRQ(ierr); ld = n+2; /* test leading dimension larger than n */ ierr = DSAllocate(ds,ld);CHKERRQ(ierr); ierr = DSSetDimensions(ds,n,0,l,k);CHKERRQ(ierr); ierr = DSSetCompact(ds,PETSC_TRUE);CHKERRQ(ierr); /* Set up viewer */ ierr = PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&viewer);CHKERRQ(ierr); ierr = PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_INFO_DETAIL);CHKERRQ(ierr); ierr = DSView(ds,viewer);CHKERRQ(ierr); ierr = PetscViewerPopFormat(viewer);CHKERRQ(ierr); if (verbose) { ierr = PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_MATLAB);CHKERRQ(ierr); } /* Fill arrow-tridiagonal matrix */ ierr = DSGetArrayReal(ds,DS_MAT_T,&T);CHKERRQ(ierr); ierr = DSGetArrayReal(ds,DS_MAT_D,&s);CHKERRQ(ierr); for (i=0;i<n;i++) T[i] = (PetscReal)(i+1); for (i=k;i<n-1;i++) T[i+ld] = 1.0; for (i=l;i<k;i++) T[i+2*ld] = 1.0; T[2*ld+l+1] = -7; T[ld+k+1] = -7; /* Signature matrix */ for (i=0;i<n;i++) s[i] = 1.0; s[l+1] = -1.0; s[k+1] = -1.0; ierr = DSRestoreArrayReal(ds,DS_MAT_T,&T);CHKERRQ(ierr); ierr = DSRestoreArrayReal(ds,DS_MAT_D,&s);CHKERRQ(ierr); if (l==0 && k==0) { ierr = DSSetState(ds,DS_STATE_INTERMEDIATE);CHKERRQ(ierr); } else { ierr = DSSetState(ds,DS_STATE_RAW);CHKERRQ(ierr); } if (verbose) { ierr = PetscPrintf(PETSC_COMM_WORLD,"Initial - - - - - - - - -\n");CHKERRQ(ierr); ierr = DSView(ds,viewer);CHKERRQ(ierr); } /* Solve */ ierr = PetscCalloc2(n,&eigr,n,&eigi);CHKERRQ(ierr); ierr = DSGetSlepcSC(ds,&sc);CHKERRQ(ierr); sc->comparison = SlepcCompareLargestMagnitude; sc->comparisonctx = NULL; sc->map = NULL; sc->mapobj = NULL; ierr = DSSolve(ds,eigr,eigi);CHKERRQ(ierr); ierr = DSSort(ds,eigr,eigi,NULL,NULL,NULL);CHKERRQ(ierr); if (verbose) { ierr = PetscPrintf(PETSC_COMM_WORLD,"After solve - - - - - - - - -\n");CHKERRQ(ierr); ierr = DSView(ds,viewer);CHKERRQ(ierr); } /* Print eigenvalues */ ierr = PetscPrintf(PETSC_COMM_WORLD,"Computed eigenvalues =\n",n);CHKERRQ(ierr); for (i=0;i<n;i++) { #if defined(PETSC_USE_COMPLEX) re = PetscRealPart(eigr[i]); im = PetscImaginaryPart(eigr[i]); #else re = eigr[i]; im = eigi[i]; #endif if (PetscAbs(im)<1e-10) { ierr = PetscViewerASCIIPrintf(viewer," %.5f\n",(double)re);CHKERRQ(ierr); } else { ierr = PetscViewerASCIIPrintf(viewer," %.5f%+.5fi\n",(double)re,(double)im);CHKERRQ(ierr); } } ierr = PetscFree2(eigr,eigi);CHKERRQ(ierr); ierr = DSDestroy(&ds);CHKERRQ(ierr); ierr = SlepcFinalize(); return 0; }
int main(int argc,char **argv) { PetscErrorCode ierr; DS ds; SlepcSC sc; PetscScalar *A,*eig; PetscInt i,j,n,ld,bs,maxbw=3,nblks=8; PetscViewer viewer; PetscBool verbose; SlepcInitialize(&argc,&argv,(char*)0,help); ierr = PetscOptionsGetInt(NULL,"-maxbw",&maxbw,NULL);CHKERRQ(ierr); ierr = PetscOptionsGetInt(NULL,"-nblks",&nblks,NULL);CHKERRQ(ierr); n = maxbw*nblks; bs = maxbw; ierr = PetscPrintf(PETSC_COMM_WORLD,"Solve a block HEP Dense System - dimension %D (bandwidth=%D, blocks=%D).\n",n,maxbw,nblks);CHKERRQ(ierr); ierr = PetscOptionsHasName(NULL,"-verbose",&verbose);CHKERRQ(ierr); /* Create DS object */ ierr = DSCreate(PETSC_COMM_WORLD,&ds);CHKERRQ(ierr); ierr = DSSetType(ds,DSHEP);CHKERRQ(ierr); ierr = DSSetMethod(ds,3);CHKERRQ(ierr); /* Select block divide-and-conquer */ ierr = DSSetBlockSize(ds,bs);CHKERRQ(ierr); ierr = DSSetFromOptions(ds);CHKERRQ(ierr); ld = n; ierr = DSAllocate(ds,ld);CHKERRQ(ierr); ierr = DSSetDimensions(ds,n,0,0,0);CHKERRQ(ierr); /* Set up viewer */ ierr = PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&viewer);CHKERRQ(ierr); ierr = PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_INFO_DETAIL);CHKERRQ(ierr); ierr = DSView(ds,viewer);CHKERRQ(ierr); ierr = PetscViewerPopFormat(viewer);CHKERRQ(ierr); if (verbose) { ierr = PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_MATLAB);CHKERRQ(ierr); } /* Fill with a symmetric band Toeplitz matrix */ ierr = DSGetArray(ds,DS_MAT_A,&A);CHKERRQ(ierr); for (i=0;i<n;i++) A[i+i*ld]=2.0; for (j=1;j<=bs;j++) { for (i=0;i<n-j;i++) { A[i+(i+j)*ld]=1.0; A[(i+j)+i*ld]=1.0; } } ierr = DSRestoreArray(ds,DS_MAT_A,&A);CHKERRQ(ierr); ierr = DSSetState(ds,DS_STATE_RAW);CHKERRQ(ierr); if (verbose) { ierr = PetscPrintf(PETSC_COMM_WORLD,"Initial - - - - - - - - -\n");CHKERRQ(ierr); ierr = DSView(ds,viewer);CHKERRQ(ierr); } /* Solve */ ierr = PetscMalloc1(n,&eig);CHKERRQ(ierr); ierr = DSGetSlepcSC(ds,&sc);CHKERRQ(ierr); sc->comparison = SlepcCompareSmallestReal; sc->comparisonctx = NULL; sc->map = NULL; sc->mapobj = NULL; ierr = DSSolve(ds,eig,NULL);CHKERRQ(ierr); ierr = DSSort(ds,eig,NULL,NULL,NULL,NULL);CHKERRQ(ierr); if (verbose) { ierr = PetscPrintf(PETSC_COMM_WORLD,"After solve - - - - - - - - -\n");CHKERRQ(ierr); ierr = DSView(ds,viewer);CHKERRQ(ierr); } /* Print eigenvalues */ ierr = PetscPrintf(PETSC_COMM_WORLD,"Computed eigenvalues =\n",n);CHKERRQ(ierr); for (i=0;i<n;i++) { ierr = PetscViewerASCIIPrintf(viewer," %.5f\n",(double)PetscRealPart(eig[i]));CHKERRQ(ierr); } ierr = PetscFree(eig);CHKERRQ(ierr); ierr = DSDestroy(&ds);CHKERRQ(ierr); ierr = SlepcFinalize(); return 0; }