Ejemplo n.º 1
0
DUK_LOCAL duk_ret_t duk__math_minmax(duk_context *ctx, duk_double_t initial, duk__two_arg_func min_max) {
	duk_idx_t n = duk_get_top(ctx);
	duk_idx_t i;
	duk_double_t res = initial;
	duk_double_t t;

	/*
	 *  Note: fmax() does not match the E5 semantics.  E5 requires
	 *  that if -any- input to Math.max() is a NaN, the result is a
	 *  NaN.  fmax() will return a NaN only if -both- inputs are NaN.
	 *  Same applies to fmin().
	 *
	 *  Note: every input value must be coerced with ToNumber(), even
	 *  if we know the result will be a NaN anyway: ToNumber() may have
	 *  side effects for which even order of evaluation matters.
	 */

	for (i = 0; i < n; i++) {
		t = duk_to_number(ctx, i);
		if (DUK_FPCLASSIFY(t) == DUK_FP_NAN || DUK_FPCLASSIFY(res) == DUK_FP_NAN) {
			/* Note: not normalized, but duk_push_number() will normalize */
			res = (duk_double_t) DUK_DOUBLE_NAN;
		} else {
			res = (duk_double_t) min_max(res, (double) t);
		}
	}

	duk_push_number(ctx, res);
	return 1;
}
Ejemplo n.º 2
0
duk_int32_t duk_js_toint32(duk_hthread *thr, duk_tval *tv) {
	duk_double_t d = duk_js_tonumber(thr, tv);  /* invalidates tv */
	d = duk__toint32_touint32_helper(d, 1);
	DUK_ASSERT(DUK_FPCLASSIFY(d) == DUK_FP_ZERO || DUK_FPCLASSIFY(d) == DUK_FP_NORMAL);
	DUK_ASSERT(d >= -2147483648.0 && d <= 2147483647.0);  /* [-0x80000000,0x7fffffff] */
	DUK_ASSERT(d == ((duk_double_t) ((duk_int32_t) d)));  /* whole, won't clip */
	return (duk_int32_t) d;
}
Ejemplo n.º 3
0
duk_uint32_t duk_js_touint32(duk_hthread *thr, duk_tval *tv) {
	duk_double_t d = duk_js_tonumber(thr, tv);  /* invalidates tv */
	d = duk__toint32_touint32_helper(d, 0);
	DUK_ASSERT(DUK_FPCLASSIFY(d) == DUK_FP_ZERO || DUK_FPCLASSIFY(d) == DUK_FP_NORMAL);
	DUK_ASSERT(d >= 0.0 && d <= 4294967295.0);  /* [0x00000000, 0xffffffff] */
	DUK_ASSERT(d == ((duk_double_t) ((duk_uint32_t) d)));  /* whole, won't clip */
	return (duk_uint32_t) d;

}
Ejemplo n.º 4
0
duk_ret_t duk_bi_number_prototype_to_fixed(duk_context *ctx) {
	duk_small_int_t frac_digits;
	duk_double_t d;
	duk_small_int_t c;
	duk_small_uint_t n2s_flags;

	frac_digits = (duk_small_int_t) duk_to_int_check_range(ctx, 0, 0, 20);
	d = duk__push_this_number_plain(ctx);

	c = (duk_small_int_t) DUK_FPCLASSIFY(d);
	if (c == DUK_FP_NAN || c == DUK_FP_INFINITE) {
		goto use_to_string;
	}

	if (d >= 1.0e21 || d <= -1.0e21) {
		goto use_to_string;
	}

	n2s_flags = DUK_N2S_FLAG_FIXED_FORMAT |
	            DUK_N2S_FLAG_FRACTION_DIGITS;

	duk_numconv_stringify(ctx,
	                      10 /*radix*/,
	                      frac_digits /*digits*/,
	                      n2s_flags /*flags*/);
	return 1;

 use_to_string:
	DUK_ASSERT_TOP(ctx, 2);
	duk_to_string(ctx, -1);
	return 1;
}
Ejemplo n.º 5
0
duk_ret_t duk_bi_number_prototype_to_exponential(duk_context *ctx) {
	duk_bool_t frac_undefined;
	duk_small_int_t frac_digits;
	duk_double_t d;
	duk_small_int_t c;
	duk_small_uint_t n2s_flags;

	d = duk__push_this_number_plain(ctx);

	frac_undefined = duk_is_undefined(ctx, 0);
	duk_to_int(ctx, 0);  /* for side effects */

	c = (duk_small_int_t) DUK_FPCLASSIFY(d);
	if (c == DUK_FP_NAN || c == DUK_FP_INFINITE) {
		goto use_to_string;
	}

	frac_digits = (duk_small_int_t) duk_to_int_check_range(ctx, 0, 0, 20);

	n2s_flags = DUK_N2S_FLAG_FORCE_EXP |
	           (frac_undefined ? 0 : DUK_N2S_FLAG_FIXED_FORMAT);

	duk_numconv_stringify(ctx,
	                      10 /*radix*/,
	                      frac_digits + 1 /*leading digit + fractions*/,
	                      n2s_flags /*flags*/);
	return 1;

 use_to_string:
	DUK_ASSERT_TOP(ctx, 2);
	duk_to_string(ctx, -1);
	return 1;
}
Ejemplo n.º 6
0
DUK_INTERNAL duk_int32_t duk_js_toint32(duk_hthread *thr, duk_tval *tv) {
	duk_double_t d;

#if defined(DUK_USE_FASTINT)
	if (DUK_TVAL_IS_FASTINT(tv)) {
		return DUK_TVAL_GET_FASTINT_I32(tv);
	}
#endif

	d = duk_js_tonumber(thr, tv);  /* invalidates tv */
	d = duk__toint32_touint32_helper(d, 1);
	DUK_ASSERT(DUK_FPCLASSIFY(d) == DUK_FP_ZERO || DUK_FPCLASSIFY(d) == DUK_FP_NORMAL);
	DUK_ASSERT(d >= -2147483648.0 && d <= 2147483647.0);  /* [-0x80000000,0x7fffffff] */
	DUK_ASSERT(d == ((duk_double_t) ((duk_int32_t) d)));  /* whole, won't clip */
	return (duk_int32_t) d;
}
Ejemplo n.º 7
0
int duk_repl_isfinite(double x) {
	int c = DUK_FPCLASSIFY(x);
	if (c == DUK_FP_NAN || c == DUK_FP_INFINITE) {
		return 0;
	} else {
		return 1;
	}
}
Ejemplo n.º 8
0
DUK_INTERNAL duk_bool_t duk_js_toboolean(duk_tval *tv) {
	switch (DUK_TVAL_GET_TAG(tv)) {
	case DUK_TAG_UNDEFINED:
	case DUK_TAG_NULL:
		return 0;
	case DUK_TAG_BOOLEAN:
		return DUK_TVAL_GET_BOOLEAN(tv);
	case DUK_TAG_STRING: {
		duk_hstring *h = DUK_TVAL_GET_STRING(tv);
		DUK_ASSERT(h != NULL);
		return (DUK_HSTRING_GET_BYTELEN(h) > 0 ? 1 : 0);
	}
	case DUK_TAG_OBJECT: {
		return 1;
	}
	case DUK_TAG_BUFFER: {
		/* mimic semantics for strings */
		duk_hbuffer *h = DUK_TVAL_GET_BUFFER(tv);
		DUK_ASSERT(h != NULL);
		return (DUK_HBUFFER_GET_SIZE(h) > 0 ? 1 : 0);
	}
	case DUK_TAG_POINTER: {
		void *p = DUK_TVAL_GET_POINTER(tv);
		return (p != NULL ? 1 : 0);
	}
	case DUK_TAG_LIGHTFUNC: {
		return 1;
	}
#if defined(DUK_USE_FASTINT)
	case DUK_TAG_FASTINT:
		if (DUK_TVAL_GET_FASTINT(tv) != 0) {
			return 1;
		} else {
			return 0;
		}
#endif
	default: {
		/* number */
		duk_double_t d;
		int c;
		DUK_ASSERT(!DUK_TVAL_IS_UNUSED(tv));
		DUK_ASSERT(DUK_TVAL_IS_DOUBLE(tv));
		d = DUK_TVAL_GET_DOUBLE(tv);
		c = DUK_FPCLASSIFY((double) d);
		if (c == DUK_FP_ZERO || c == DUK_FP_NAN) {
			return 0;
		} else {
			return 1;
		}
	}
	}
	DUK_UNREACHABLE();
}
Ejemplo n.º 9
0
duk_ret_t duk_bi_number_prototype_to_precision(duk_context *ctx) {
	/* The specification has quite awkward order of coercion and
	 * checks for toPrecision().  The operations below are a bit
	 * reordered, within constraints of observable side effects.
	 */

	duk_double_t d;
	duk_small_int_t prec;
	duk_small_int_t c;
	duk_small_uint_t n2s_flags;

	DUK_ASSERT_TOP(ctx, 1);

	d = duk__push_this_number_plain(ctx);
	if (duk_is_undefined(ctx, 0)) {
		goto use_to_string;
	}
	DUK_ASSERT_TOP(ctx, 2);

	duk_to_int(ctx, 0);  /* for side effects */

	c = (duk_small_int_t) DUK_FPCLASSIFY(d);
	if (c == DUK_FP_NAN || c == DUK_FP_INFINITE) {
		goto use_to_string;
	}

	prec = (duk_small_int_t) duk_to_int_check_range(ctx, 0, 1, 21);

	n2s_flags = DUK_N2S_FLAG_FIXED_FORMAT |
	            DUK_N2S_FLAG_NO_ZERO_PAD;

	duk_numconv_stringify(ctx,
	                      10 /*radix*/,
	                      prec /*digits*/,
	                      n2s_flags /*flags*/);
	return 1;

 use_to_string:
	/* Used when precision is undefined; also used for NaN (-> "NaN"),
	 * and +/- infinity (-> "Infinity", "-Infinity").
	 */

	DUK_ASSERT_TOP(ctx, 2);
	duk_to_string(ctx, -1);
	return 1;
}
Ejemplo n.º 10
0
/* exposed, used by e.g. duk_bi_date.c */
DUK_INTERNAL duk_double_t duk_js_tointeger_number(duk_double_t x) {
	duk_small_int_t c = (duk_small_int_t) DUK_FPCLASSIFY(x);

	if (c == DUK_FP_NAN) {
		return 0.0;
	} else if (c == DUK_FP_ZERO || c == DUK_FP_INFINITE) {
		/* XXX: FP_ZERO check can be removed, the else clause handles it
		 * correctly (preserving sign).
		 */
		return x;
	} else {
		duk_small_int_t s = (duk_small_int_t) DUK_SIGNBIT(x);
		x = DUK_FLOOR(DUK_FABS(x));  /* truncate towards zero */
		if (s) {
			x = -x;
		}
		return x;
	}
}
Ejemplo n.º 11
0
DUK_LOCAL double duk__round_fixed(double x) {
	/* Numbers half-way between integers must be rounded towards +Infinity,
	 * e.g. -3.5 must be rounded to -3 (not -4).  When rounded to zero, zero
	 * sign must be set appropriately.  E5.1 Section 15.8.2.15.
	 *
	 * Note that ANSI C round() is "round to nearest integer, away from zero",
	 * which is incorrect for negative values.  Here we make do with floor().
	 */

	duk_small_int_t c = (duk_small_int_t) DUK_FPCLASSIFY(x);
	if (c == DUK_FP_NAN || c == DUK_FP_INFINITE || c == DUK_FP_ZERO) {
		return x;
	}

	/*
	 *  x is finite and non-zero
	 *
	 *  -1.6 -> floor(-1.1) -> -2
	 *  -1.5 -> floor(-1.0) -> -1  (towards +Inf)
	 *  -1.4 -> floor(-0.9) -> -1
	 *  -0.5 -> -0.0               (special case)
	 *  -0.1 -> -0.0               (special case)
	 *  +0.1 -> +0.0               (special case)
	 *  +0.5 -> floor(+1.0) -> 1   (towards +Inf)
	 *  +1.4 -> floor(+1.9) -> 1
	 *  +1.5 -> floor(+2.0) -> 2   (towards +Inf)
	 *  +1.6 -> floor(+2.1) -> 2
	 */

	if (x >= -0.5 && x < 0.5) {
		/* +0.5 is handled by floor, this is on purpose */
		if (x < 0.0) {
			return -0.0;
		} else {
			return +0.0;
		}
	}

	return DUK_FLOOR(x + 0.5);
}
Ejemplo n.º 12
0
duk_bool_t duk_js_toboolean(duk_tval *tv) {
	switch (DUK_TVAL_GET_TAG(tv)) {
	case DUK_TAG_UNDEFINED:
	case DUK_TAG_NULL:
		return 0;
	case DUK_TAG_BOOLEAN:
		return DUK_TVAL_GET_BOOLEAN(tv);
	case DUK_TAG_STRING: {
		duk_hstring *h = DUK_TVAL_GET_STRING(tv);
		DUK_ASSERT(h != NULL);
		return (h->blen > 0 ? 1 : 0);
	}
	case DUK_TAG_OBJECT: {
		return 1;
	}
	case DUK_TAG_BUFFER: {
		/* mimic semantics for strings */
		duk_hbuffer *h = DUK_TVAL_GET_BUFFER(tv);
		DUK_ASSERT(h != NULL);
		return (DUK_HBUFFER_GET_SIZE(h) > 0 ? 1 : 0);
	}
	case DUK_TAG_POINTER: {
		void *p = DUK_TVAL_GET_POINTER(tv);
		return (p != NULL ? 1 : 0);
	}
	default: {
		/* number */
		int c;
		DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
		c = DUK_FPCLASSIFY(DUK_TVAL_GET_NUMBER(tv));
		if (c == DUK_FP_ZERO || c == DUK_FP_NAN) {
			return 0;
		} else {
			return 1;
		}
	}
	}
	DUK_UNREACHABLE();
}
Ejemplo n.º 13
0
static double pow_fixed(double x, double y) {
	/* The ANSI C pow() semantics differ from Ecmascript.
	 *
	 * E.g. when x==1 and y is +/- infinite, the Ecmascript required
	 * result is NaN, while at least Linux pow() returns 1.
	 */

	int cy;

	cy = DUK_FPCLASSIFY(y);

	if (cy == DUK_FP_NAN) {
		goto ret_nan;
	}
	if (fabs(x) == 1.0 && cy == DUK_FP_INFINITE) {
		goto ret_nan;
	}

	return pow(x, y);

 ret_nan:
	return DUK_DOUBLE_NAN;
}
Ejemplo n.º 14
0
DUK_LOCAL double duk__cbrt(double x) {
	/* cbrt() is C99.  To avoid hassling embedders with the need to provide a
	 * cube root function, we can get by with pow().  The result is not
	 * identical, but that's OK: ES2015 says it's implementation-dependent.
	 */

#if defined(DUK_CBRT)
	/* cbrt() matches ES2015 requirements. */
	return DUK_CBRT(x);
#else
	duk_small_int_t c = (duk_small_int_t) DUK_FPCLASSIFY(x);

	/* pow() does not, however. */
	if (c == DUK_FP_NAN || c == DUK_FP_INFINITE || c == DUK_FP_ZERO) {
		return x;
	}
	if (DUK_SIGNBIT(x)) {
		return -DUK_POW(-x, 1.0 / 3.0);
	} else {
		return DUK_POW(x, 1.0 / 3.0);
	}
#endif
}
Ejemplo n.º 15
0
/* combined algorithm matching E5 Sections 9.5 and 9.6 */
DUK_LOCAL duk_double_t duk__toint32_touint32_helper(duk_double_t x, duk_bool_t is_toint32) {
	duk_small_int_t c = (duk_small_int_t) DUK_FPCLASSIFY(x);
	duk_small_int_t s;

	if (c == DUK_FP_NAN || c == DUK_FP_ZERO || c == DUK_FP_INFINITE) {
		return 0.0;
	}


	/* x = sign(x) * floor(abs(x)), i.e. truncate towards zero, keep sign */
	s = (duk_small_int_t) DUK_SIGNBIT(x);
	x = DUK_FLOOR(DUK_FABS(x));
	if (s) {
		x = -x;
	}

	/* NOTE: fmod(x) result sign is same as sign of x, which
	 * differs from what Javascript wants (see Section 9.6).
	 */

	x = DUK_FMOD(x, DUK_DOUBLE_2TO32);    /* -> x in ]-2**32, 2**32[ */

	if (x < 0.0) {
		x += DUK_DOUBLE_2TO32;
	}
	/* -> x in [0, 2**32[ */

	if (is_toint32) {
		if (x >= DUK_DOUBLE_2TO31) {
			/* x in [2**31, 2**32[ */

			x -= DUK_DOUBLE_2TO32;  /* -> x in [-2**31,2**31[ */
		}
	}

	return x;
}
Ejemplo n.º 16
0
DUK_LOCAL duk_bool_t duk__js_equals_number(duk_double_t x, duk_double_t y) {
#if defined(DUK_USE_PARANOID_MATH)
	/* Straightforward algorithm, makes fewer compiler assumptions. */
	duk_small_int_t cx = (duk_small_int_t) DUK_FPCLASSIFY(x);
	duk_small_int_t cy = (duk_small_int_t) DUK_FPCLASSIFY(y);
	if (cx == DUK_FP_NAN || cy == DUK_FP_NAN) {
		return 0;
	}
	if (cx == DUK_FP_ZERO && cy == DUK_FP_ZERO) {
		return 1;
	}
	if (x == y) {
		return 1;
	}
	return 0;
#else  /* DUK_USE_PARANOID_MATH */
	/* Better equivalent algorithm.  If the compiler is compliant, C and
	 * Ecmascript semantics are identical for this particular comparison.
	 * In particular, NaNs must never compare equal and zeroes must compare
	 * equal regardless of sign.  Could also use a macro, but this inlines
	 * already nicely (no difference on gcc, for instance).
	 */
	if (x == y) {
		/* IEEE requires that NaNs compare false */
		DUK_ASSERT(DUK_FPCLASSIFY(x) != DUK_FP_NAN);
		DUK_ASSERT(DUK_FPCLASSIFY(y) != DUK_FP_NAN);
		return 1;
	} else {
		/* IEEE requires that zeros compare the same regardless
		 * of their signed, so if both x and y are zeroes, they
		 * are caught above.
		 */
		DUK_ASSERT(!(DUK_FPCLASSIFY(x) == DUK_FP_ZERO && DUK_FPCLASSIFY(y) == DUK_FP_ZERO));
		return 0;
	}
#endif  /* DUK_USE_PARANOID_MATH */
}
Ejemplo n.º 17
0
DUK_LOCAL duk_bool_t duk__js_samevalue_number(duk_double_t x, duk_double_t y) {
#if defined(DUK_USE_PARANOID_MATH)
	duk_small_int_t cx = (duk_small_int_t) DUK_FPCLASSIFY(x);
	duk_small_int_t cy = (duk_small_int_t) DUK_FPCLASSIFY(y);

	if (cx == DUK_FP_NAN && cy == DUK_FP_NAN) {
		/* SameValue(NaN, NaN) = true, regardless of NaN sign or extra bits */
		return 1;
	}
	if (cx == DUK_FP_ZERO && cy == DUK_FP_ZERO) {
		/* Note: cannot assume that a non-zero return value of signbit() would
		 * always be the same -- hence cannot (portably) use something like:
		 *
		 *     signbit(x) == signbit(y)
		 */
		duk_small_int_t sx = (DUK_SIGNBIT(x) ? 1 : 0);
		duk_small_int_t sy = (DUK_SIGNBIT(y) ? 1 : 0);
		return (sx == sy);
	}

	/* normal comparison; known:
	 *   - both x and y are not NaNs (but one of them can be)
	 *   - both x and y are not zero (but one of them can be)
	 *   - x and y may be denormal or infinite
	 */

	return (x == y);
#else  /* DUK_USE_PARANOID_MATH */
	duk_small_int_t cx = (duk_small_int_t) DUK_FPCLASSIFY(x);
	duk_small_int_t cy = (duk_small_int_t) DUK_FPCLASSIFY(y);

	if (x == y) {
		/* IEEE requires that NaNs compare false */
		DUK_ASSERT(DUK_FPCLASSIFY(x) != DUK_FP_NAN);
		DUK_ASSERT(DUK_FPCLASSIFY(y) != DUK_FP_NAN);

		/* Using classification has smaller footprint than direct comparison. */
		if (DUK_UNLIKELY(cx == DUK_FP_ZERO && cy == DUK_FP_ZERO)) {
			/* Note: cannot assume that a non-zero return value of signbit() would
			 * always be the same -- hence cannot (portably) use something like:
			 *
			 *     signbit(x) == signbit(y)
			 */
			duk_small_int_t sx = (DUK_SIGNBIT(x) ? 1 : 0);
			duk_small_int_t sy = (DUK_SIGNBIT(y) ? 1 : 0);
			return (sx == sy);
		}
		return 1;
	} else {
		/* IEEE requires that zeros compare the same regardless
		 * of their signed, so if both x and y are zeroes, they
		 * are caught above.
		 */
		DUK_ASSERT(!(DUK_FPCLASSIFY(x) == DUK_FP_ZERO && DUK_FPCLASSIFY(y) == DUK_FP_ZERO));

		/* Difference to non-strict/strict comparison is that NaNs compare
		 * equal and signed zero signs matter.
		 */
		if (DUK_UNLIKELY(cx == DUK_FP_NAN && cy == DUK_FP_NAN)) {
			/* SameValue(NaN, NaN) = true, regardless of NaN sign or extra bits */
			return 1;
		}
		return 0;
	}
#endif  /* DUK_USE_PARANOID_MATH */
}
Ejemplo n.º 18
0
DUK_INTERNAL duk_ret_t duk_bi_math_object_hypot(duk_context *ctx) {
	/*
	 *  E6 Section 20.2.2.18: Math.hypot
	 *
	 *  - If no arguments are passed, the result is +0.
	 *  - If any argument is +inf, the result is +inf.
	 *  - If any argument is -inf, the result is +inf.
	 *  - If no argument is +inf or -inf, and any argument is NaN, the result is
	 *    NaN.
	 *  - If all arguments are either +0 or -0, the result is +0.
	 */

	duk_idx_t nargs;
	duk_idx_t i;
	duk_bool_t found_nan;
	duk_double_t max;
	duk_double_t sum, summand;
	duk_double_t comp, prelim;
	duk_double_t t;

	nargs = duk_get_top(ctx);

	/* Find the highest value.  Also ToNumber() coerces. */
	max = 0.0;
	found_nan = 0;
	for (i = 0; i < nargs; i++) {
		t = DUK_FABS(duk_to_number(ctx, i));
		if (DUK_FPCLASSIFY(t) == DUK_FP_NAN) {
			found_nan = 1;
		} else {
			max = duk_double_fmax(max, t);
		}
	}

	/* Early return cases. */
	if (max == DUK_DOUBLE_INFINITY) {
		duk_push_number(ctx, DUK_DOUBLE_INFINITY);
		return 1;
	} else if (found_nan) {
		duk_push_number(ctx, DUK_DOUBLE_NAN);
		return 1;
	} else if (max == 0.0) {
		duk_push_number(ctx, 0.0);
		/* Otherwise we'd divide by zero. */
		return 1;
	}

	/* Use Kahan summation and normalize to the highest value to minimize
	 * floating point rounding error and avoid overflow.
	 *
	 * https://en.wikipedia.org/wiki/Kahan_summation_algorithm
	 */
	sum = 0.0;
	comp = 0.0;
	for (i = 0; i < nargs; i++) {
		t = DUK_FABS(duk_get_number(ctx, i)) / max;
		summand = (t * t) - comp;
		prelim = sum + summand;
		comp = (prelim - sum) - summand;
		sum = prelim;
	}

	duk_push_number(ctx, (duk_double_t) DUK_SQRT(sum) * max);
	return 1;
}
Ejemplo n.º 19
0
duk_bool_t duk_js_compare_helper(duk_hthread *thr, duk_tval *tv_x, duk_tval *tv_y, duk_small_int_t flags) {
	duk_context *ctx = (duk_context *) thr;
	duk_double_t d1, d2;
	duk_small_int_t c1, c2;
	duk_small_int_t s1, s2;
	duk_small_int_t rc;
	duk_bool_t retval;

	duk_push_tval(ctx, tv_x);
	duk_push_tval(ctx, tv_y);

	if (flags & DUK_COMPARE_FLAG_EVAL_LEFT_FIRST) {
		duk_to_primitive(ctx, -2, DUK_HINT_NUMBER);
		duk_to_primitive(ctx, -1, DUK_HINT_NUMBER);
	} else {
		duk_to_primitive(ctx, -1, DUK_HINT_NUMBER);
		duk_to_primitive(ctx, -2, DUK_HINT_NUMBER);
	}

	/* Note: reuse variables */
	tv_x = duk_get_tval(ctx, -2);
	tv_y = duk_get_tval(ctx, -1);

	if (DUK_TVAL_IS_STRING(tv_x) && DUK_TVAL_IS_STRING(tv_y)) {
		duk_hstring *h1 = DUK_TVAL_GET_STRING(tv_x);
		duk_hstring *h2 = DUK_TVAL_GET_STRING(tv_y);
		DUK_ASSERT(h1 != NULL);
		DUK_ASSERT(h2 != NULL);

		rc = duk_js_string_compare(h1, h2);
		if (rc < 0) {
			goto lt_true;
		} else {
			goto lt_false;
		}
	} else {
		/* Ordering should not matter (E5 Section 11.8.5, step 3.a) but
		 * preserve it just in case.
		 */

		if (flags & DUK_COMPARE_FLAG_EVAL_LEFT_FIRST) {
			d1 = duk_to_number(ctx, -2);
			d2 = duk_to_number(ctx, -1);
		} else {
			d2 = duk_to_number(ctx, -1);
			d1 = duk_to_number(ctx, -2);
		}

		c1 = (duk_small_int_t) DUK_FPCLASSIFY(d1);
		s1 = (duk_small_int_t) DUK_SIGNBIT(d1);
		c2 = (duk_small_int_t) DUK_FPCLASSIFY(d2);
		s2 = (duk_small_int_t) DUK_SIGNBIT(d2);

		if (c1 == DUK_FP_NAN || c2 == DUK_FP_NAN) {
			goto lt_undefined;
		}

		if (c1 == DUK_FP_ZERO && c2 == DUK_FP_ZERO) {
			/* For all combinations: +0 < +0, +0 < -0, -0 < +0, -0 < -0,
			 * steps e, f, and g.
			 */
			goto lt_false;
		}

		if (d1 == d2) {
			goto lt_false;
		}

		if (c1 == DUK_FP_INFINITE && s1 == 0) {
			/* x == +Infinity */
			goto lt_false;
		}

		if (c2 == DUK_FP_INFINITE && s2 == 0) {
			/* y == +Infinity */
			goto lt_true;
		}

		if (c2 == DUK_FP_INFINITE && s2 != 0) {
			/* y == -Infinity */
			goto lt_false;
		}

		if (c1 == DUK_FP_INFINITE && s1 != 0) {
			/* x == -Infinity */
			goto lt_true;
		}

		if (d1 < d2) {
			goto lt_true;
		}

		goto lt_false;
	}

 lt_undefined:
	/* Note: undefined from Section 11.8.5 always results in false
	 * return (see e.g. Section 11.8.3) - hence special treatment here.
	 */
	retval = 0;
	goto cleanup;

 lt_true:
	if (flags & DUK_COMPARE_FLAG_NEGATE) {
		retval = 0;
		goto cleanup;
	} else {
		retval = 1;
		goto cleanup;
	}
	/* never here */

 lt_false:
	if (flags & DUK_COMPARE_FLAG_NEGATE) {
		retval = 1;
		goto cleanup;
	} else {
		retval = 0;
		goto cleanup;
	}
	/* never here */

 cleanup:
	duk_pop_2(ctx);
	return retval;
}
Ejemplo n.º 20
0
static double duk__pow_fixed(double x, double y) {
	/* The ANSI C pow() semantics differ from Ecmascript.
	 *
	 * E.g. when x==1 and y is +/- infinite, the Ecmascript required
	 * result is NaN, while at least Linux pow() returns 1.
	 */

	int cx, cy, sx;

	DUK_UNREF(cx);
	DUK_UNREF(sx);
	cy = DUK_FPCLASSIFY(y);

	if (cy == DUK_FP_NAN) {
		goto ret_nan;
	}
	if (DUK_FABS(x) == 1.0 && cy == DUK_FP_INFINITE) {
		goto ret_nan;
	}
#if defined(DUK_USE_POW_NETBSD_WORKAROUND)
	/* See test-bug-netbsd-math-pow.js: NetBSD 6.0 on x86 (at least) does not
	 * correctly handle some cases where x=+/-0.  Specific fixes to these
	 * here.
	 */
	cx = DUK_FPCLASSIFY(x);
	if (cx == DUK_FP_ZERO && y < 0.0) {
		sx = DUK_SIGNBIT(x);
		if (sx == 0) {
			/* Math.pow(+0,y) should be Infinity when y<0.  NetBSD pow()
			 * returns -Infinity instead when y is <0 and finite.  The
			 * if-clause also catches y == -Infinity (which works even
			 * without the fix).
			 */
			return DUK_DOUBLE_INFINITY;
		} else {
			/* Math.pow(-0,y) where y<0 should be:
			 *   - -Infinity if y<0 and an odd integer
			 *   - Infinity otherwise
			 * NetBSD pow() returns -Infinity for all finite y<0.  The
			 * if-clause also catches y == -Infinity (which works even
			 * without the fix).
			 */

			/* fmod() return value has same sign as input (negative) so
			 * the result here will be in the range ]-2,0], 1 indicates
			 * odd.  If x is -Infinity, NaN is returned and the odd check
			 * always concludes "not odd" which results in desired outcome.
			 */
			double tmp = DUK_FMOD(y, 2);
			if (tmp == -1.0) {
				return -DUK_DOUBLE_INFINITY;
			} else {
				/* Not odd, or y == -Infinity */
				return DUK_DOUBLE_INFINITY;
			}
		}
	}
#endif
	return DUK_POW(x, y);

 ret_nan:
	return DUK_DOUBLE_NAN;
}
Ejemplo n.º 21
0
DUK_INTERNAL duk_bool_t duk_js_compare_helper(duk_hthread *thr, duk_tval *tv_x, duk_tval *tv_y, duk_small_int_t flags) {
	duk_context *ctx = (duk_context *) thr;
	duk_double_t d1, d2;
	duk_small_int_t c1, c2;
	duk_small_int_t s1, s2;
	duk_small_int_t rc;
	duk_bool_t retval;

	/* Fast path for fastints */
#if defined(DUK_USE_FASTINT)
	if (DUK_TVAL_IS_FASTINT(tv_x) && DUK_TVAL_IS_FASTINT(tv_y)) {
		duk_int64_t v1 = DUK_TVAL_GET_FASTINT(tv_x);
		duk_int64_t v2 = DUK_TVAL_GET_FASTINT(tv_y);
		if (v1 < v2) {
			/* 'lt is true' */
			retval = 1;
		} else {
			retval = 0;
		}
		if (flags & DUK_COMPARE_FLAG_NEGATE) {
			retval ^= 1;
		}
		return retval;
	}
#endif  /* DUK_USE_FASTINT */

	/* Fast path for numbers (one of which may be a fastint) */
#if 1  /* XXX: make fast paths optional for size minimization? */
	if (DUK_TVAL_IS_NUMBER(tv_x) && DUK_TVAL_IS_NUMBER(tv_y)) {
		d1 = DUK_TVAL_GET_NUMBER(tv_x);
		d2 = DUK_TVAL_GET_NUMBER(tv_y);
		c1 = DUK_FPCLASSIFY(d1);
		c2 = DUK_FPCLASSIFY(d2);

		if (c1 == DUK_FP_NORMAL && c2 == DUK_FP_NORMAL) {
			/* XXX: this is a very narrow check, and doesn't cover
			 * zeroes, subnormals, infinities, which compare normally.
			 */

			if (d1 < d2) {
				/* 'lt is true' */
				retval = 1;
			} else {
				retval = 0;
			}
			if (flags & DUK_COMPARE_FLAG_NEGATE) {
				retval ^= 1;
			}
			return retval;
		}
	}
#endif

	/* Slow path */

	duk_push_tval(ctx, tv_x);
	duk_push_tval(ctx, tv_y);

	if (flags & DUK_COMPARE_FLAG_EVAL_LEFT_FIRST) {
		duk_to_primitive(ctx, -2, DUK_HINT_NUMBER);
		duk_to_primitive(ctx, -1, DUK_HINT_NUMBER);
	} else {
		duk_to_primitive(ctx, -1, DUK_HINT_NUMBER);
		duk_to_primitive(ctx, -2, DUK_HINT_NUMBER);
	}

	/* Note: reuse variables */
	tv_x = duk_get_tval(ctx, -2);
	tv_y = duk_get_tval(ctx, -1);

	if (DUK_TVAL_IS_STRING(tv_x) && DUK_TVAL_IS_STRING(tv_y)) {
		duk_hstring *h1 = DUK_TVAL_GET_STRING(tv_x);
		duk_hstring *h2 = DUK_TVAL_GET_STRING(tv_y);
		DUK_ASSERT(h1 != NULL);
		DUK_ASSERT(h2 != NULL);

		rc = duk_js_string_compare(h1, h2);
		if (rc < 0) {
			goto lt_true;
		} else {
			goto lt_false;
		}
	} else {
		/* Ordering should not matter (E5 Section 11.8.5, step 3.a) but
		 * preserve it just in case.
		 */

		if (flags & DUK_COMPARE_FLAG_EVAL_LEFT_FIRST) {
			d1 = duk_to_number(ctx, -2);
			d2 = duk_to_number(ctx, -1);
		} else {
			d2 = duk_to_number(ctx, -1);
			d1 = duk_to_number(ctx, -2);
		}

		c1 = (duk_small_int_t) DUK_FPCLASSIFY(d1);
		s1 = (duk_small_int_t) DUK_SIGNBIT(d1);
		c2 = (duk_small_int_t) DUK_FPCLASSIFY(d2);
		s2 = (duk_small_int_t) DUK_SIGNBIT(d2);

		if (c1 == DUK_FP_NAN || c2 == DUK_FP_NAN) {
			goto lt_undefined;
		}

		if (c1 == DUK_FP_ZERO && c2 == DUK_FP_ZERO) {
			/* For all combinations: +0 < +0, +0 < -0, -0 < +0, -0 < -0,
			 * steps e, f, and g.
			 */
			goto lt_false;
		}

		if (d1 == d2) {
			goto lt_false;
		}

		if (c1 == DUK_FP_INFINITE && s1 == 0) {
			/* x == +Infinity */
			goto lt_false;
		}

		if (c2 == DUK_FP_INFINITE && s2 == 0) {
			/* y == +Infinity */
			goto lt_true;
		}

		if (c2 == DUK_FP_INFINITE && s2 != 0) {
			/* y == -Infinity */
			goto lt_false;
		}

		if (c1 == DUK_FP_INFINITE && s1 != 0) {
			/* x == -Infinity */
			goto lt_true;
		}

		if (d1 < d2) {
			goto lt_true;
		}

		goto lt_false;
	}

 lt_undefined:
	/* Note: undefined from Section 11.8.5 always results in false
	 * return (see e.g. Section 11.8.3) - hence special treatment here.
	 */
	retval = 0;
	goto cleanup;

 lt_true:
	if (flags & DUK_COMPARE_FLAG_NEGATE) {
		retval = 0;
		goto cleanup;
	} else {
		retval = 1;
		goto cleanup;
	}
	/* never here */

 lt_false:
	if (flags & DUK_COMPARE_FLAG_NEGATE) {
		retval = 1;
		goto cleanup;
	} else {
		retval = 0;
		goto cleanup;
	}
	/* never here */

 cleanup:
	duk_pop_2(ctx);
	return retval;
}
Ejemplo n.º 22
0
int duk_repl_isinf(double x) {
	int c = DUK_FPCLASSIFY(x);
	return (c == DUK_FP_INFINITE);
}
Ejemplo n.º 23
0
int duk_repl_isnan(double x) {
	int c = DUK_FPCLASSIFY(x);
	return (c == DUK_FP_NAN);
}