extern "C" IppStatus create_rsa_pub_key(int n_byte_size, int e_byte_size, const Ipp32u *n, const Ipp32u *e, IppsRSAPublicKeyState **new_pub_key) { IppsRSAPublicKeyState *p_pub_key = NULL; IppsBigNumState *p_n = NULL, *p_e = NULL; int rsa_size = 0; if(n_byte_size <= 0 || e_byte_size <= 0 || n == NULL || e == NULL || new_pub_key == NULL) { return ippStsBadArgErr; } IppStatus error_code = ippStsNoErr; do{ error_code = newBN(n, n_byte_size, &p_n); ERROR_BREAK(error_code); error_code = newBN(e, e_byte_size, &p_e); ERROR_BREAK(error_code); error_code = ippsRSA_GetSizePublicKey(n_byte_size * 8, e_byte_size * 8, &rsa_size); ERROR_BREAK(error_code); p_pub_key = (IppsRSAPublicKeyState *)malloc(rsa_size); NULL_BREAK(p_pub_key); error_code = ippsRSA_InitPublicKey(n_byte_size * 8, e_byte_size * 8, p_pub_key, rsa_size); ERROR_BREAK(error_code); error_code = ippsRSA_SetPublicKey(p_n, p_e, p_pub_key); ERROR_BREAK(error_code); }while(0); secure_free_BN(p_n, n_byte_size); secure_free_BN(p_e, e_byte_size); if(error_code != ippStsNoErr || p_pub_key == NULL) { if(error_code == ippStsNoErr ) error_code = ippStsMemAllocErr; secure_free_rsa_pub_key(n_byte_size, e_byte_size, p_pub_key); return error_code; } *new_pub_key = p_pub_key; return error_code; }
/* the caller is supposed to fill the quote field in emp_msg3 before calling * this function.*/ extern "C" sgx_status_t sgx_ra_get_msg3_trusted( sgx_ra_context_t context, uint32_t quote_size, sgx_report_t* qe_report, sgx_ra_msg3_t *emp_msg3, //(mac||g_a||ps_sec_prop||quote) uint32_t msg3_size) { if(vector_size(&g_ra_db) <= context ||!quote_size || !qe_report || !emp_msg3) return SGX_ERROR_INVALID_PARAMETER; ra_db_item_t* item = NULL; if(0 != vector_get(&g_ra_db, context, reinterpret_cast<void**>(&item)) || item == NULL ) return SGX_ERROR_INVALID_PARAMETER; //check integer overflow of msg3_size and quote_size if (UINTPTR_MAX - reinterpret_cast<uintptr_t>(emp_msg3) < msg3_size || UINT32_MAX - quote_size < sizeof(sgx_ra_msg3_t) || sizeof(sgx_ra_msg3_t) + quote_size != msg3_size) return SGX_ERROR_INVALID_PARAMETER; if (!sgx_is_outside_enclave(emp_msg3, msg3_size)) return SGX_ERROR_INVALID_PARAMETER; // // fence after boundary check // this also stops speculation in case of // branch associated // with sizeof(sgx_ra_msg3_t) + quote_size != msg3_size // mispredicting // sgx_lfence(); sgx_status_t se_ret = SGX_ERROR_UNEXPECTED; //verify qe report se_ret = sgx_verify_report(qe_report); if(se_ret != SGX_SUCCESS) { if (SGX_ERROR_MAC_MISMATCH != se_ret && SGX_ERROR_OUT_OF_MEMORY != se_ret) se_ret = SGX_ERROR_UNEXPECTED; return se_ret; } sgx_spin_lock(&item->item_lock); //sgx_ra_proc_msg2_trusted must have been called if (item->state != ra_proc_msg2ed) { sgx_spin_unlock(&item->item_lock); return SGX_ERROR_INVALID_STATE; } //verify qe_report attributes and mr_enclave same as quoting enclave if( memcmp( &qe_report->body.attributes, &item->qe_target.attributes, sizeof(sgx_attributes_t)) || memcmp( &qe_report->body.mr_enclave, &item->qe_target.mr_enclave, sizeof(sgx_measurement_t)) ) { sgx_spin_unlock(&item->item_lock); return SGX_ERROR_INVALID_PARAMETER; } sgx_ra_msg3_t msg3_except_quote_in; sgx_cmac_128bit_key_t smk_key; memcpy(&msg3_except_quote_in.g_a, &item->g_a, sizeof(msg3_except_quote_in.g_a)); memcpy(&msg3_except_quote_in.ps_sec_prop, &item->ps_sec_prop, sizeof(msg3_except_quote_in.ps_sec_prop)); memcpy(&smk_key, &item->smk_key, sizeof(smk_key)); sgx_spin_unlock(&item->item_lock); sgx_sha_state_handle_t sha_handle = NULL; sgx_cmac_state_handle_t cmac_handle = NULL; //SHA256(NONCE || emp_quote) sgx_sha256_hash_t hash = {0}; se_ret = sgx_sha256_init(&sha_handle); if (SGX_SUCCESS != se_ret) { if(SGX_ERROR_OUT_OF_MEMORY != se_ret) se_ret = SGX_ERROR_UNEXPECTED; return se_ret; } if (NULL == sha_handle) { return SGX_ERROR_UNEXPECTED; } do { se_ret = sgx_sha256_update((uint8_t *)&item->quote_nonce, sizeof(item->quote_nonce), sha_handle); if (SGX_SUCCESS != se_ret) { if(SGX_ERROR_OUT_OF_MEMORY != se_ret) se_ret = SGX_ERROR_UNEXPECTED; break; } //cmac M := ga || PS_SEC_PROP_DESC(all zero if unused) ||emp_quote sgx_cmac_128bit_tag_t mac; se_ret = sgx_cmac128_init(&smk_key, &cmac_handle); if (SGX_SUCCESS != se_ret) { if(SGX_ERROR_OUT_OF_MEMORY != se_ret) se_ret = SGX_ERROR_UNEXPECTED; break; } if (NULL == cmac_handle) { se_ret = SGX_ERROR_UNEXPECTED; break; } se_ret = sgx_cmac128_update((uint8_t*)&msg3_except_quote_in.g_a, sizeof(msg3_except_quote_in.g_a), cmac_handle); if (SGX_SUCCESS != se_ret) { if(SGX_ERROR_OUT_OF_MEMORY != se_ret) se_ret = SGX_ERROR_UNEXPECTED; break; } se_ret = sgx_cmac128_update((uint8_t*)&msg3_except_quote_in.ps_sec_prop, sizeof(msg3_except_quote_in.ps_sec_prop), cmac_handle); if (SGX_SUCCESS != se_ret) { if(SGX_ERROR_OUT_OF_MEMORY != se_ret) se_ret = SGX_ERROR_UNEXPECTED; break; } // sha256 and cmac quote uint8_t quote_piece[32]; const uint8_t* emp_quote_piecemeal = emp_msg3->quote; uint32_t quote_piece_size = static_cast<uint32_t>(sizeof(quote_piece)); while (emp_quote_piecemeal < emp_msg3->quote + quote_size) { //calculate size of one piece, the size of them are sizeof(quote_piece) except for the last one. if (static_cast<uint32_t>(emp_msg3->quote + quote_size - emp_quote_piecemeal) < quote_piece_size) quote_piece_size = static_cast<uint32_t>(emp_msg3->quote - emp_quote_piecemeal) + quote_size ; memcpy(quote_piece, emp_quote_piecemeal, quote_piece_size); se_ret = sgx_sha256_update(quote_piece, quote_piece_size, sha_handle); if (SGX_SUCCESS != se_ret) { if(SGX_ERROR_OUT_OF_MEMORY != se_ret) se_ret = SGX_ERROR_UNEXPECTED; break; } se_ret = sgx_cmac128_update(quote_piece, quote_piece_size, cmac_handle); if (SGX_SUCCESS != se_ret) { if(SGX_ERROR_OUT_OF_MEMORY != se_ret) se_ret = SGX_ERROR_UNEXPECTED; break; } emp_quote_piecemeal += sizeof(quote_piece); } ERROR_BREAK(se_ret); //get sha256 hash value se_ret = sgx_sha256_get_hash(sha_handle, &hash); if (SGX_SUCCESS != se_ret) { if(SGX_ERROR_OUT_OF_MEMORY != se_ret) se_ret = SGX_ERROR_UNEXPECTED; break; } //get cmac value se_ret = sgx_cmac128_final(cmac_handle, &mac); if (SGX_SUCCESS != se_ret) { if(SGX_ERROR_OUT_OF_MEMORY != se_ret) se_ret = SGX_ERROR_UNEXPECTED; break; } //verify qe_report->body.report_data == SHA256(NONCE || emp_quote) if(0 != memcmp(&qe_report->body.report_data, &hash, sizeof(hash))) { se_ret = SGX_ERROR_MAC_MISMATCH; break; } memcpy(&msg3_except_quote_in.mac, mac, sizeof(mac)); memcpy(emp_msg3, &msg3_except_quote_in, offsetof(sgx_ra_msg3_t, quote)); se_ret = SGX_SUCCESS; }while(0); memset_s(&smk_key, sizeof(smk_key), 0, sizeof(smk_key)); (void)sgx_sha256_close(sha_handle); if(cmac_handle != NULL) sgx_cmac128_close(cmac_handle); return se_ret; }
/* Computes DH shared key based on private B key (local) and remote public Ga Key * Parameters: * Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h * Inputs: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system * sgx_ec256_private_t *p_private_b - Pointer to the local private key - LITTLE ENDIAN * sgx_ec256_public_t *p_public_ga - Pointer to the remote public key - LITTLE ENDIAN * Output: sgx_ec256_dh_shared_t *p_shared_key - Pointer to the shared DH key - LITTLE ENDIAN x-coordinate of (privKeyB - pubKeyA) */ sgx_status_t sgx_ecc256_compute_shared_dhkey(sgx_ec256_private_t *p_private_b, sgx_ec256_public_t *p_public_ga, sgx_ec256_dh_shared_t *p_shared_key, sgx_ecc_state_handle_t ecc_handle) { if ((ecc_handle == NULL) || (p_private_b == NULL) || (p_public_ga == NULL) || (p_shared_key == NULL)) { return SGX_ERROR_INVALID_PARAMETER; } IppsBigNumState* BN_dh_privB = NULL; IppsBigNumState* BN_dh_share = NULL; IppsBigNumState* pubA_gx = NULL; IppsBigNumState* pubA_gy = NULL; IppsECCPPointState* point_pubA = NULL; IppStatus ipp_ret = ippStsNoErr; int ecPointSize = 0; IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle; IppECResult ipp_result = ippECValid; do { ipp_ret = sgx_ipp_newBN((Ipp32u*)p_private_b->r, sizeof(sgx_ec256_private_t), &BN_dh_privB); ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN((uint32_t*)p_public_ga->gx, sizeof(p_public_ga->gx), &pubA_gx); ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN((uint32_t*)p_public_ga->gy, sizeof(p_public_ga->gy), &pubA_gy); ERROR_BREAK(ipp_ret); ipp_ret = ippsECCPPointGetSize(256, &ecPointSize); ERROR_BREAK(ipp_ret); point_pubA = (IppsECCPPointState*)(malloc(ecPointSize)); if (!point_pubA) { ipp_ret = ippStsNoMemErr; break; } ipp_ret = ippsECCPPointInit(256, point_pubA); ERROR_BREAK(ipp_ret); ipp_ret = ippsECCPSetPoint(pubA_gx, pubA_gy, point_pubA, p_ecc_state); ERROR_BREAK(ipp_ret); // Check to see if the point is a valid point on the Elliptic curve and is not infinity ipp_ret = ippsECCPCheckPoint(point_pubA, &ipp_result, p_ecc_state); if (ipp_result != ippECValid) { break; } ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN(NULL, sizeof(sgx_ec256_dh_shared_t), &BN_dh_share); ERROR_BREAK(ipp_ret); /* This API generates shareA = x-coordinate of (privKeyB*pubKeyA) */ ipp_ret = ippsECCPSharedSecretDH(BN_dh_privB, point_pubA, BN_dh_share, p_ecc_state); ERROR_BREAK(ipp_ret); IppsBigNumSGN sgn = IppsBigNumPOS; int length = 0; Ipp32u * pdata = NULL; ipp_ret = ippsRef_BN(&sgn, &length, &pdata, BN_dh_share); ERROR_BREAK(ipp_ret); memset(p_shared_key->s, 0, sizeof(p_shared_key->s)); ipp_ret = check_copy_size(sizeof(p_shared_key->s), ROUND_TO(length, 8) / 8); ERROR_BREAK(ipp_ret); memcpy(p_shared_key->s, pdata, ROUND_TO(length, 8) / 8); } while (0); // Clear temp buffer before free. if (point_pubA) memset_s(point_pubA, ecPointSize, 0, ecPointSize); SAFE_FREE(point_pubA); sgx_ipp_secure_free_BN(pubA_gx, sizeof(p_public_ga->gx)); sgx_ipp_secure_free_BN(pubA_gy, sizeof(p_public_ga->gy)); sgx_ipp_secure_free_BN(BN_dh_privB, sizeof(sgx_ec256_private_t)); sgx_ipp_secure_free_BN(BN_dh_share, sizeof(sgx_ec256_dh_shared_t)); if (ipp_result != ippECValid) { return SGX_ERROR_INVALID_PARAMETER; } switch (ipp_ret) { case ippStsNoErr: return SGX_SUCCESS; case ippStsNoMemErr: case ippStsMemAllocErr: return SGX_ERROR_OUT_OF_MEMORY; case ippStsNullPtrErr: case ippStsLengthErr: case ippStsOutOfRangeErr: case ippStsSizeErr: case ippStsBadArgErr: return SGX_ERROR_INVALID_PARAMETER; default: return SGX_ERROR_UNEXPECTED; } }
/* Checks whether the input point is a valid point on the given elliptic curve * Parameters: * Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h * Inputs: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system * sgx_ec256_public_t *p_point - Pointer to perform validity check on - LITTLE ENDIAN * Output: int *p_valid - Return 0 if the point is an invalid point on ECC curve */ sgx_status_t sgx_ecc256_check_point(const sgx_ec256_public_t *p_point, const sgx_ecc_state_handle_t ecc_handle, int *p_valid) { if ((ecc_handle == NULL) || (p_point == NULL) || (p_valid == NULL)) { return SGX_ERROR_INVALID_PARAMETER; } IppsECCPPointState* point2check = NULL; IppStatus ipp_ret = ippStsNoErr; IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle; IppECResult ipp_result = ippECValid; int ecPointSize = 0; IppsBigNumState* BN_gx = NULL; IppsBigNumState* BN_gy = NULL; // Intialize return to false *p_valid = 0; do { ipp_ret = ippsECCPPointGetSize(256, &ecPointSize); ERROR_BREAK(ipp_ret); point2check = (IppsECCPPointState*)malloc(ecPointSize); if (!point2check) { ipp_ret = ippStsNoMemErr; break; } ipp_ret = ippsECCPPointInit(256, point2check); ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN((const Ipp32u *)p_point->gx, sizeof(p_point->gx), &BN_gx); ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN((const Ipp32u *)p_point->gy, sizeof(p_point->gy), &BN_gy); ERROR_BREAK(ipp_ret); ipp_ret = ippsECCPSetPoint(BN_gx, BN_gy, point2check, p_ecc_state); ERROR_BREAK(ipp_ret); // Check to see if the point is a valid point on the Elliptic curve and is not infinity ipp_ret = ippsECCPCheckPoint(point2check, &ipp_result, p_ecc_state); ERROR_BREAK(ipp_ret); if (ipp_result == ippECValid) { *p_valid = 1; } } while (0); // Clear temp buffer before free. if (point2check) memset_s(point2check, ecPointSize, 0, ecPointSize); SAFE_FREE(point2check); sgx_ipp_secure_free_BN(BN_gx, sizeof(p_point->gx)); sgx_ipp_secure_free_BN(BN_gy, sizeof(p_point->gy)); switch (ipp_ret) { case ippStsNoErr: return SGX_SUCCESS; case ippStsNoMemErr: case ippStsMemAllocErr: return SGX_ERROR_OUT_OF_MEMORY; case ippStsNullPtrErr: case ippStsLengthErr: case ippStsOutOfRangeErr: case ippStsSizeErr: case ippStsBadArgErr: return SGX_ERROR_INVALID_PARAMETER; default: return SGX_ERROR_UNEXPECTED; } }
/* Populates private/public key pair - caller code allocates memory * Parameters: * Return: sgx_status_t - SGX_SUCCESS or failure as defined sgx_error.h * Inputs: sgx_ecc_state_handle_t ecc_handle - Handle to ECC crypto system * Outputs: sgx_ec256_private_t *p_private - Pointer to the private key * sgx_ec256_public_t *p_public - Pointer to the public key */ sgx_status_t sgx_ecc256_create_key_pair(sgx_ec256_private_t *p_private, sgx_ec256_public_t *p_public, sgx_ecc_state_handle_t ecc_handle) { if ((ecc_handle == NULL) || (p_private == NULL) || (p_public == NULL)) { return SGX_ERROR_INVALID_PARAMETER; } IppsBigNumState* dh_priv_BN = NULL; IppsECCPPointState* point_pub = NULL; IppsBigNumState* pub_gx = NULL; IppsBigNumState* pub_gy = NULL; IppStatus ipp_ret = ippStsNoErr; int ecPointSize = 0; IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle; do { //init eccp point ipp_ret = ippsECCPPointGetSize(256, &ecPointSize); ERROR_BREAK(ipp_ret); point_pub = (IppsECCPPointState*)(malloc(ecPointSize)); if (!point_pub) { ipp_ret = ippStsNoMemErr; break; } ipp_ret = ippsECCPPointInit(256, point_pub); ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN(NULL, SGX_ECP256_KEY_SIZE, &dh_priv_BN); ERROR_BREAK(ipp_ret); // Use the true random number (DRNG) // Notice that IPP ensures the private key generated is non-zero ipp_ret = ippsECCPGenKeyPair(dh_priv_BN, point_pub, p_ecc_state, (IppBitSupplier)sgx_ipp_DRNGen, NULL); ERROR_BREAK(ipp_ret); //convert point_result to oct string ipp_ret = sgx_ipp_newBN(NULL, SGX_ECP256_KEY_SIZE, &pub_gx); ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN(NULL, SGX_ECP256_KEY_SIZE, &pub_gy); ERROR_BREAK(ipp_ret); ipp_ret = ippsECCPGetPoint(pub_gx, pub_gy, point_pub, p_ecc_state); ERROR_BREAK(ipp_ret); IppsBigNumSGN sgn = IppsBigNumPOS; Ipp32u *pdata = NULL; // ippsRef_BN is in bits not bytes (versus old ippsGet_BN) int length = 0; ipp_ret = ippsRef_BN(&sgn, &length, &pdata, pub_gx); ERROR_BREAK(ipp_ret); memset(p_public->gx, 0, sizeof(p_public->gx)); ipp_ret = check_copy_size(sizeof(p_public->gx), ROUND_TO(length, 8) / 8); ERROR_BREAK(ipp_ret); memcpy(p_public->gx, pdata, ROUND_TO(length, 8) / 8); ipp_ret = ippsRef_BN(&sgn, &length, &pdata, pub_gy); ERROR_BREAK(ipp_ret); memset(p_public->gy, 0, sizeof(p_public->gy)); ipp_ret = check_copy_size(sizeof(p_public->gy), ROUND_TO(length, 8) / 8); ERROR_BREAK(ipp_ret); memcpy(p_public->gy, pdata, ROUND_TO(length, 8) / 8); ipp_ret = ippsRef_BN(&sgn, &length, &pdata, dh_priv_BN); ERROR_BREAK(ipp_ret); memset(p_private->r, 0, sizeof(p_private->r)); ipp_ret = check_copy_size(sizeof(p_private->r), ROUND_TO(length, 8) / 8); ERROR_BREAK(ipp_ret); memcpy(p_private->r, pdata, ROUND_TO(length, 8) / 8); } while (0); //Clear temp buffer before free. if (point_pub) memset_s(point_pub, ecPointSize, 0, ecPointSize); SAFE_FREE(point_pub); sgx_ipp_secure_free_BN(pub_gx, SGX_ECP256_KEY_SIZE); sgx_ipp_secure_free_BN(pub_gy, SGX_ECP256_KEY_SIZE); sgx_ipp_secure_free_BN(dh_priv_BN, SGX_ECP256_KEY_SIZE); switch (ipp_ret) { case ippStsNoErr: return SGX_SUCCESS; case ippStsNoMemErr: case ippStsMemAllocErr: return SGX_ERROR_OUT_OF_MEMORY; case ippStsNullPtrErr: case ippStsLengthErr: case ippStsOutOfRangeErr: case ippStsSizeErr: case ippStsBadArgErr: return SGX_ERROR_INVALID_PARAMETER; default: return SGX_ERROR_UNEXPECTED; } }
/* Computes signature for data based on private key * Parameters: * Return: sample_status_t - SAMPLE_SUCCESS, SAMPLE_SUCCESS on success, error code otherwise. * Inputs: sample_ecc_state_handle_t ecc_handle - Handle to ECC crypto system * sample_ec256_private_t *p_private - Pointer to the private key - LITTLE ENDIAN * sample_uint8_t *p_data - Pointer to the data to be signed * uint32_t data_size - Size of the data to be signed * Output: sample_ec256_signature_t *p_signature - Pointer to the signature - LITTLE ENDIAN */ sample_status_t sample_ecdsa_sign(const uint8_t *p_data, uint32_t data_size, sample_ec256_private_t *p_private, sample_ec256_signature_t *p_signature, sample_ecc_state_handle_t ecc_handle) { if ((ecc_handle == NULL) || (p_private == NULL) || (p_signature == NULL) || (p_data == NULL) || (data_size < 1)) { return SAMPLE_ERROR_INVALID_PARAMETER; } IppStatus ipp_ret = ippStsNoErr; IppsECCPState* p_ecc_state = (IppsECCPState*)ecc_handle; IppsBigNumState* p_ecp_order = NULL; IppsBigNumState* p_hash_bn = NULL; IppsBigNumState* p_msg_bn = NULL; IppsBigNumState* p_eph_priv_bn = NULL; IppsECCPPointState* p_eph_pub = NULL; IppsBigNumState* p_reg_priv_bn = NULL; IppsBigNumState* p_signx_bn = NULL; IppsBigNumState* p_signy_bn = NULL; Ipp32u *p_sigx = NULL; Ipp32u *p_sigy = NULL; int ecp_size = 0; const int order_size = sizeof(sample_nistp256_r); uint32_t hash[8] = {0}; do { ipp_ret = sgx_ipp_newBN(sample_nistp256_r, order_size, &p_ecp_order); ERROR_BREAK(ipp_ret); // Prepare the message used to sign. ipp_ret = ippsHashMessage(p_data, data_size, (Ipp8u*)hash, IPP_ALG_HASH_SHA256); ERROR_BREAK(ipp_ret); /* Byte swap in creation of Big Number from SHA256 hash output */ ipp_ret = sgx_ipp_newBN(NULL, sizeof(hash), &p_hash_bn); ERROR_BREAK(ipp_ret); ipp_ret = ippsSetOctString_BN((Ipp8u*)hash, sizeof(hash), p_hash_bn); ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN(NULL, order_size, &p_msg_bn); ERROR_BREAK(ipp_ret); ipp_ret = ippsMod_BN(p_hash_bn, p_ecp_order, p_msg_bn); ERROR_BREAK(ipp_ret); // Get ephemeral key pair. ipp_ret = sgx_ipp_newBN(NULL, order_size, &p_eph_priv_bn); ERROR_BREAK(ipp_ret); //init eccp point ipp_ret = ippsECCPPointGetSize(256, &ecp_size); ERROR_BREAK(ipp_ret); p_eph_pub = (IppsECCPPointState*)(malloc(ecp_size)); if(!p_eph_pub) { ipp_ret = ippStsNoMemErr; break; } ipp_ret = ippsECCPPointInit(256, p_eph_pub); ERROR_BREAK(ipp_ret); // generate ephemeral key pair for signing operation ipp_ret = ippsECCPGenKeyPair(p_eph_priv_bn, p_eph_pub, p_ecc_state, (IppBitSupplier)sample_ipp_DRNGen, NULL); ERROR_BREAK(ipp_ret); ipp_ret = ippsECCPSetKeyPair(p_eph_priv_bn, p_eph_pub, ippFalse, p_ecc_state); ERROR_BREAK(ipp_ret); // Set the regular private key. ipp_ret = sgx_ipp_newBN((uint32_t *)p_private->r, sizeof(p_private->r), &p_reg_priv_bn); ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN(NULL, order_size, &p_signx_bn); ERROR_BREAK(ipp_ret); ipp_ret = sgx_ipp_newBN(NULL, order_size, &p_signy_bn); ERROR_BREAK(ipp_ret); // Sign the message. ipp_ret = ippsECCPSignDSA(p_msg_bn, p_reg_priv_bn, p_signx_bn, p_signy_bn, p_ecc_state); ERROR_BREAK(ipp_ret); IppsBigNumSGN sign; int length; ipp_ret = ippsRef_BN(&sign, &length,(Ipp32u**) &p_sigx, p_signx_bn); ERROR_BREAK(ipp_ret); memset(p_signature->x, 0, sizeof(p_signature->x)); ipp_ret = check_copy_size(sizeof(p_signature->x), ROUND_TO(length, 8)/8); ERROR_BREAK(ipp_ret); memcpy(p_signature->x, p_sigx, ROUND_TO(length, 8)/8); memset_s(p_sigx, sizeof(p_signature->x), 0, ROUND_TO(length, 8)/8); ipp_ret = ippsRef_BN(&sign, &length,(Ipp32u**) &p_sigy, p_signy_bn); ERROR_BREAK(ipp_ret); memset(p_signature->y, 0, sizeof(p_signature->y)); ipp_ret = check_copy_size(sizeof(p_signature->y), ROUND_TO(length, 8)/8); ERROR_BREAK(ipp_ret); memcpy(p_signature->y, p_sigy, ROUND_TO(length, 8)/8); memset_s(p_sigy, sizeof(p_signature->y), 0, ROUND_TO(length, 8)/8); }while(0); // Clear buffer before free. if(p_eph_pub) memset_s(p_eph_pub, ecp_size, 0, ecp_size); SAFE_FREE(p_eph_pub); sample_ipp_secure_free_BN(p_ecp_order, order_size); sample_ipp_secure_free_BN(p_hash_bn, sizeof(hash)); sample_ipp_secure_free_BN(p_msg_bn, order_size); sample_ipp_secure_free_BN(p_eph_priv_bn, order_size); sample_ipp_secure_free_BN(p_reg_priv_bn, sizeof(p_private->r)); sample_ipp_secure_free_BN(p_signx_bn, order_size); sample_ipp_secure_free_BN(p_signy_bn, order_size); switch (ipp_ret) { case ippStsNoErr: return SAMPLE_SUCCESS; case ippStsNoMemErr: case ippStsMemAllocErr: return SAMPLE_ERROR_OUT_OF_MEMORY; case ippStsNullPtrErr: case ippStsLengthErr: case ippStsOutOfRangeErr: case ippStsSizeErr: case ippStsBadArgErr: return SAMPLE_ERROR_INVALID_PARAMETER; default: return SAMPLE_ERROR_UNEXPECTED; } }