Ejemplo n.º 1
0
/*
   ------------------------------------------------------
   transform an ETree object by 
   (1) merging small fronts into larger fronts
       using the ETree_mergeFrontsOne() method
   (2) merging small fronts into larger fronts
       using the ETree_mergeFrontsAll() method
   (3) split a large front into a chain of smaller fronts
       using the ETree_splitFronts() method

   created  -- 96jun27, cca
   ------------------------------------------------------
*/
ETree *
ETree_transform2 (
   ETree   *etree,
   int     vwghts[],
   int     maxzeros,
   int     maxfrontsize,
   int     seed
) {
ETree   *etree2 ;
int     nfront, nvtx ;
IV      *nzerosIV ;
/*
   ---------------
   check the input
   ---------------
*/
if ( etree == NULL
   || (nfront = etree->nfront) <= 0
   || (nvtx = etree->nvtx) <= 0
   || maxfrontsize <= 0 ) {
   fprintf(stderr, "\n fatal error in ETree_transform2(%p,%p,%d,%d,%d)"
           "\n bad input\n", etree, vwghts, maxzeros, maxfrontsize, 
           seed) ;
   spoolesFatal();
}
nzerosIV = IV_new();
IV_init(nzerosIV, nfront, NULL) ;
IV_fill(nzerosIV, 0) ;
/*
   --------------------------
   first, merge only children
   --------------------------
*/
etree2 = ETree_mergeFrontsOne(etree, maxzeros, nzerosIV) ;
ETree_free(etree) ;
etree = etree2 ;
/*
   --------------------------
   second, merge all children
   --------------------------
*/
etree2 = ETree_mergeFrontsAll(etree, maxzeros, nzerosIV) ;
ETree_free(etree) ;
etree = etree2 ;
/*
   -----------------------------------
   fourth, split large interior fronts
   -----------------------------------
*/
etree2 = ETree_splitFronts(etree, vwghts, maxfrontsize, seed) ;
ETree_free(etree) ;
etree = etree2 ;
/*
   ------------------------
   free the working storage
   ------------------------
*/
IV_free(nzerosIV) ;

return(etree) ; }
Ejemplo n.º 2
0
SpoolesSolver :: ~SpoolesSolver()
{
    if ( msgFileCloseFlag ) {
        fclose(msgFile);
    }

    if ( frontmtx ) {
        FrontMtx_free(frontmtx);
    }

    if ( newToOldIV ) {
        IV_free(newToOldIV);
    }

    if ( oldToNewIV ) {
        IV_free(oldToNewIV);
    }

    if ( frontETree ) {
        ETree_free(frontETree);
    }

    if ( symbfacIVL ) {
        IVL_free(symbfacIVL);
    }

    if ( mtxmanager ) {
        SubMtxManager_free(mtxmanager);
    }

    if ( graph ) {
        Graph_free(graph);
    }
}
Ejemplo n.º 3
0
PetscErrorCode MatDestroy_MPISBAIJSpooles(Mat A)
{
  Mat_Spooles   *lu = (Mat_Spooles*)A->spptr; 
  PetscErrorCode ierr;
  
  PetscFunctionBegin;
  if (lu->CleanUpSpooles) {
    FrontMtx_free(lu->frontmtx);        
    IV_free(lu->newToOldIV);            
    IV_free(lu->oldToNewIV); 
    IV_free(lu->vtxmapIV);
    InpMtx_free(lu->mtxA);             
    ETree_free(lu->frontETree);          
    IVL_free(lu->symbfacIVL);         
    SubMtxManager_free(lu->mtxmanager);    
    DenseMtx_free(lu->mtxX);
    DenseMtx_free(lu->mtxY);
    ierr = MPI_Comm_free(&(lu->comm_spooles));CHKERRQ(ierr);
    if ( lu->scat ){
      ierr = VecDestroy(lu->vec_spooles);CHKERRQ(ierr); 
      ierr = ISDestroy(lu->iden);CHKERRQ(ierr); 
      ierr = ISDestroy(lu->is_petsc);CHKERRQ(ierr);
      ierr = VecScatterDestroy(lu->scat);CHKERRQ(ierr);
    }
  }
  ierr = MatDestroy_MPISBAIJ(A);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Ejemplo n.º 4
0
/*
   -----------------------
   clear the data fields

   return value ---
      1 -- normal return
     -1 -- bridge is NULL

   created -- 98sep18, cca
   -----------------------
*/
int
Bridge_clearData ( 
   Bridge   *bridge
) {
if ( bridge == NULL ) {
   fprintf(stderr, "\n fatal error in Bridge_clearData(%p)"
           "\n bad input\n", bridge) ;
   return(-1) ;
}
if ( bridge->frontmtx != NULL ) {
   FrontMtx_free(bridge->frontmtx) ;
}
if ( bridge->frontETree != NULL ) {
   ETree_free(bridge->frontETree) ;
}
if ( bridge->symbfacIVL != NULL ) {
   IVL_free(bridge->symbfacIVL) ;
}
if ( bridge->mtxmanager != NULL ) {
   SubMtxManager_free(bridge->mtxmanager) ;
}
if ( bridge->oldToNewIV != NULL ) {
   IV_free(bridge->oldToNewIV) ;
}
if ( bridge->newToOldIV != NULL ) {
   IV_free(bridge->newToOldIV) ;
}
Bridge_setDefaultFields(bridge) ;

return(1) ; }
Ejemplo n.º 5
0
void spooles_cleanup(void *ptr)
{
    struct factorinfo *pfi_ = ptr;
  	FrontMtx_free(pfi_->frontmtx);
	IV_free(pfi_->newToOldIV);
	IV_free(pfi_->oldToNewIV);
	SubMtxManager_free(pfi_->mtxmanager);
	if (pfi_->solvemap)
		SolveMap_free(pfi_->solvemap);
	ETree_free(pfi_->frontETree);
	fclose(msgFile);
    free(ptr);
}
Ejemplo n.º 6
0
PetscErrorCode MatDestroy_SeqAIJSpooles(Mat A)
{
  Mat_Spooles    *lu = (Mat_Spooles*)A->spptr;
  PetscErrorCode ierr;

  PetscFunctionBegin;
  if (lu && lu->CleanUpSpooles) {
    FrontMtx_free(lu->frontmtx);
    IV_free(lu->newToOldIV);
    IV_free(lu->oldToNewIV);
    InpMtx_free(lu->mtxA);
    ETree_free(lu->frontETree);
    IVL_free(lu->symbfacIVL);
    SubMtxManager_free(lu->mtxmanager);
    Graph_free(lu->graph);
  }
  ierr = PetscFree(A->spptr);CHKERRQ(ierr);
  ierr = MatDestroy_SeqAIJ(A);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Ejemplo n.º 7
0
/*
   ------------------------------------------------------------------
   purpose -- return an ETree object for a nested dissection ordering

   graph -- graph to order
   maxdomainsize -- used to control the incomplete nested dissection 
     process. any subgraph whose weight is less than maxdomainsize 
     is not split further.
   seed    -- random number seed
   msglvl  -- message level, 0 --> no output, 1 --> timings
   msgFile -- message file

   created -- 97nov06, cca
   ------------------------------------------------------------------
*/
ETree *
orderViaND (
   Graph   *graph,
   int     maxdomainsize,
   int     seed,
   int     msglvl,
   FILE    *msgFile
) {
double   t1, t2 ;
DSTree   *dstree ;
ETree    *etree ;
int      nvtx, Nvtx ;
IV       *eqmapIV, *stagesIV ;
/*
   ---------------
   check the input
   ---------------
*/
if ( graph == NULL || maxdomainsize <= 0 
   || (msglvl > 0 && msgFile == NULL) ) {
   fprintf(stderr, "\n fatal error in orderViaND(%p,%d,%d,%d,%p)"
           "\n bad input\n", 
           graph, maxdomainsize, seed, msglvl, msgFile) ;
   exit(-1) ;
}
/*
   ------------------------------
   compress the graph if worth it
   ------------------------------
*/
nvtx = graph->nvtx ;
MARKTIME(t1) ;
eqmapIV = Graph_equivMap(graph) ;
MARKTIME(t2) ;
if ( msglvl > 0 ) {
   fprintf(msgFile, "\n CPU %8.3f : get equivalence map", t2 - t1) ;
   fflush(msgFile) ;
}
Nvtx = 1 + IV_max(eqmapIV) ;
if ( Nvtx <= COMPRESS_FRACTION * nvtx ) {
   MARKTIME(t1) ;
   graph = Graph_compress2(graph, eqmapIV, 1) ;
   MARKTIME(t2) ;
   if ( msglvl > 0 ) {
      fprintf(msgFile, "\n CPU %8.3f : compress graph", t2 - t1) ;
      fflush(msgFile) ;
   }
} else {
   IV_free(eqmapIV) ;
   eqmapIV = NULL ;
}
MARKTIME(t1) ;
IVL_sortUp(graph->adjIVL) ;
MARKTIME(t2) ;
if ( msglvl > 0 ) {
   fprintf(msgFile, "\n CPU %8.3f : sort adjacency", t2 - t1) ;
   fflush(msgFile) ;
}
/*
   -----------------------------
   get the domain separator tree
   -----------------------------
*/
{
GPart       *gpart ;
DDsepInfo   *info ;

info = DDsepInfo_new() ;
info->seed = seed ;
info->maxcompweight = maxdomainsize ; 
info->alpha         = 0.1 ; 
gpart = GPart_new() ;
GPart_init(gpart, graph) ;
GPart_setMessageInfo(gpart, msglvl, msgFile) ;
dstree = GPart_RBviaDDsep(gpart, info) ;
DSTree_renumberViaPostOT(dstree) ;
if ( msglvl > 0 ) {
   DDsepInfo_writeCpuTimes(info, msgFile) ;
}
DDsepInfo_free(info) ;
GPart_free(gpart) ;
}
/*
   ---------------------
   get the stages vector
   ---------------------
*/
stagesIV = DSTree_NDstages(dstree) ;
DSTree_free(dstree) ;
/*
   ---------------------------------------------
   order the vertices and extract the front tree
   ---------------------------------------------
*/
{
MSMDinfo   *info ;
MSMD       *msmd ;

info = MSMDinfo_new() ;
info->seed         = seed    ;
info->compressFlag = 2       ;
info->msglvl       = msglvl  ;
info->msgFile      = msgFile ;
msmd = MSMD_new() ;
MSMD_order(msmd, graph, IV_entries(stagesIV), info) ;
etree = MSMD_frontETree(msmd) ;
if ( msglvl > 0 ) {
   MSMDinfo_print(info, msgFile) ;
}
MSMDinfo_free(info) ;
MSMD_free(msmd) ;
IV_free(stagesIV) ;
}
/*
   -------------------------------------------------
   expand the front tree if the graph was compressed
   -------------------------------------------------
*/
if ( eqmapIV != NULL ) {
   ETree *etree2 = ETree_expand(etree, eqmapIV) ;
   ETree_free(etree) ;
   etree = etree2 ;
   Graph_free(graph) ;
   IV_free(eqmapIV) ;
} else {
   MARKTIME(t1) ;
   IVL_sortUp(graph->adjIVL) ;
   MARKTIME(t2) ;
   if ( msglvl > 0 ) {
      fprintf(msgFile, "\n CPU %8.3f : sort adjacency", t2 - t1) ;
      fflush(msgFile) ;
   }
}
return(etree) ; }
Ejemplo n.º 8
0
NM_Status
SpoolesSolver :: solve(SparseMtrx *A, FloatArray *b, FloatArray *x)
{
    int errorValue, mtxType, symmetryflag;
    int seed = 30145, pivotingflag = 0;
    int *oldToNew, *newToOld;
    double droptol = 0.0, tau = 1.e300;
    double cpus [ 10 ];
    int stats [ 20 ];

    ChvManager *chvmanager;
    Chv *rootchv;
    InpMtx *mtxA;
    DenseMtx *mtxY, *mtxX;

    // first check whether Lhs is defined
    if ( !A ) {
        _error("solveYourselfAt: unknown Lhs");
    }

    // and whether Rhs
    if ( !b ) {
        _error("solveYourselfAt: unknown Rhs");
    }

    // and whether previous Solution exist
    if ( !x ) {
        _error("solveYourselfAt: unknown solution array");
    }

    if ( x->giveSize() != b->giveSize() ) {
        _error("solveYourselfAt: size mismatch");
    }

    Timer timer;
    timer.startTimer();

    if ( A->giveType() != SMT_SpoolesMtrx ) {
        _error("solveYourselfAt: SpoolesSparseMtrx Expected");
    }

    mtxA = ( ( SpoolesSparseMtrx * ) A )->giveInpMtrx();
    mtxType = ( ( SpoolesSparseMtrx * ) A )->giveValueType();
    symmetryflag = ( ( SpoolesSparseMtrx * ) A )->giveSymmetryFlag();

    int i;
    int neqns = A->giveNumberOfRows();
    int nrhs = 1;
    /* convert right-hand side to DenseMtx */
    mtxY = DenseMtx_new();
    DenseMtx_init(mtxY, mtxType, 0, 0, neqns, nrhs, 1, neqns);
    DenseMtx_zero(mtxY);
    for ( i = 0; i < neqns; i++ ) {
        DenseMtx_setRealEntry( mtxY, i, 0, b->at(i + 1) );
    }

    if ( ( Lhs != A ) || ( this->lhsVersion != A->giveVersion() ) ) {
        //
        // lhs has been changed -> new factorization
        //

        Lhs = A;
        this->lhsVersion = A->giveVersion();

        if ( frontmtx ) {
            FrontMtx_free(frontmtx);
        }

        if ( newToOldIV ) {
            IV_free(newToOldIV);
        }

        if ( oldToNewIV ) {
            IV_free(oldToNewIV);
        }

        if ( frontETree ) {
            ETree_free(frontETree);
        }

        if ( symbfacIVL ) {
            IVL_free(symbfacIVL);
        }

        if ( mtxmanager ) {
            SubMtxManager_free(mtxmanager);
        }

        if ( graph ) {
            Graph_free(graph);
        }

        /*
         * -------------------------------------------------
         * STEP 3 : find a low-fill ordering
         * (1) create the Graph object
         * (2) order the graph using multiple minimum degree
         * -------------------------------------------------
         */
        int nedges;
        graph = Graph_new();
        adjIVL = InpMtx_fullAdjacency(mtxA);
        nedges = IVL_tsize(adjIVL);
        Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL,
                    NULL, NULL);
        if ( msglvl > 2 ) {
            fprintf(msgFile, "\n\n graph of the input matrix");
            Graph_writeForHumanEye(graph, msgFile);
            fflush(msgFile);
        }

        frontETree = orderViaMMD(graph, seed, msglvl, msgFile);
        if ( msglvl > 0 ) {
            fprintf(msgFile, "\n\n front tree from ordering");
            ETree_writeForHumanEye(frontETree, msgFile);
            fflush(msgFile);
        }

        /*
         * ----------------------------------------------------
         * STEP 4: get the permutation, permute the front tree,
         * permute the matrix and right hand side, and
         * get the symbolic factorization
         * ----------------------------------------------------
         */
        oldToNewIV = ETree_oldToNewVtxPerm(frontETree);
        oldToNew   = IV_entries(oldToNewIV);
        newToOldIV = ETree_newToOldVtxPerm(frontETree);
        newToOld   = IV_entries(newToOldIV);
        ETree_permuteVertices(frontETree, oldToNewIV);
        InpMtx_permute(mtxA, oldToNew, oldToNew);
        if (  symmetryflag == SPOOLES_SYMMETRIC ||
              symmetryflag == SPOOLES_HERMITIAN ) {
            InpMtx_mapToUpperTriangle(mtxA);
        }

        InpMtx_changeCoordType(mtxA, INPMTX_BY_CHEVRONS);
        InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS);
        symbfacIVL = SymbFac_initFromInpMtx(frontETree, mtxA);
        if ( msglvl > 2 ) {
            fprintf(msgFile, "\n\n old-to-new permutation vector");
            IV_writeForHumanEye(oldToNewIV, msgFile);
            fprintf(msgFile, "\n\n new-to-old permutation vector");
            IV_writeForHumanEye(newToOldIV, msgFile);
            fprintf(msgFile, "\n\n front tree after permutation");
            ETree_writeForHumanEye(frontETree, msgFile);
            fprintf(msgFile, "\n\n input matrix after permutation");
            InpMtx_writeForHumanEye(mtxA, msgFile);
            fprintf(msgFile, "\n\n symbolic factorization");
            IVL_writeForHumanEye(symbfacIVL, msgFile);
            fflush(msgFile);
        }

        Tree_writeToFile(frontETree->tree, (char*)"haggar.treef");
        /*--------------------------------------------------------------------*/
        /*
         * ------------------------------------------
         * STEP 5: initialize the front matrix object
         * ------------------------------------------
         */
        frontmtx   = FrontMtx_new();
        mtxmanager = SubMtxManager_new();
        SubMtxManager_init(mtxmanager, NO_LOCK, 0);
        FrontMtx_init(frontmtx, frontETree, symbfacIVL, mtxType, symmetryflag,
                      FRONTMTX_DENSE_FRONTS, pivotingflag, NO_LOCK, 0, NULL,
                      mtxmanager, msglvl, msgFile);
        /*--------------------------------------------------------------------*/
        /*
         * -----------------------------------------
         * STEP 6: compute the numeric factorization
         * -----------------------------------------
         */
        chvmanager = ChvManager_new();
        ChvManager_init(chvmanager, NO_LOCK, 1);
        DVfill(10, cpus, 0.0);
        IVfill(20, stats, 0);
        rootchv = FrontMtx_factorInpMtx(frontmtx, mtxA, tau, droptol,
                                        chvmanager, & errorValue, cpus, stats, msglvl, msgFile);
        ChvManager_free(chvmanager);
        if ( msglvl > 0 ) {
            fprintf(msgFile, "\n\n factor matrix");
            FrontMtx_writeForHumanEye(frontmtx, msgFile);
            fflush(msgFile);
        }

        if ( rootchv != NULL ) {
            fprintf(msgFile, "\n\n matrix found to be singular\n");
            exit(-1);
        }

        if ( errorValue >= 0 ) {
            fprintf(msgFile, "\n\n error encountered at front %d", errorValue);
            exit(-1);
        }

        /*--------------------------------------------------------------------*/
        /*
         * --------------------------------------
         * STEP 7: post-process the factorization
         * --------------------------------------
         */
        FrontMtx_postProcess(frontmtx, msglvl, msgFile);
        if ( msglvl > 2 ) {
            fprintf(msgFile, "\n\n factor matrix after post-processing");
            FrontMtx_writeForHumanEye(frontmtx, msgFile);
            fflush(msgFile);
        }

        /*--------------------------------------------------------------------*/
    }

    /*
     * ----------------------------------------------------
     * STEP 4: permute the right hand side
     * ----------------------------------------------------
     */
    DenseMtx_permuteRows(mtxY, oldToNewIV);
    if ( msglvl > 2 ) {
        fprintf(msgFile, "\n\n right hand side matrix after permutation");
        DenseMtx_writeForHumanEye(mtxY, msgFile);
    }

    /*
     * -------------------------------
     * STEP 8: solve the linear system
     * -------------------------------
     */
    mtxX = DenseMtx_new();
    DenseMtx_init(mtxX, mtxType, 0, 0, neqns, nrhs, 1, neqns);
    DenseMtx_zero(mtxX);
    FrontMtx_solve(frontmtx, mtxX, mtxY, mtxmanager,
                   cpus, msglvl, msgFile);
    if ( msglvl > 2 ) {
        fprintf(msgFile, "\n\n solution matrix in new ordering");
        DenseMtx_writeForHumanEye(mtxX, msgFile);
        fflush(msgFile);
    }

    /*--------------------------------------------------------------------*/
    /*
     * -------------------------------------------------------
     * STEP 9: permute the solution into the original ordering
     * -------------------------------------------------------
     */
    DenseMtx_permuteRows(mtxX, newToOldIV);
    if ( msglvl > 0 ) {
        fprintf(msgFile, "\n\n solution matrix in original ordering");
        DenseMtx_writeForHumanEye(mtxX, msgFile);
        fflush(msgFile);
    }

    // DenseMtx_writeForMatlab(mtxX, "x", msgFile) ;
    /*--------------------------------------------------------------------*/
    /* fetch data to oofem vectors */
    double *xptr = x->givePointer();
    for ( i = 0; i < neqns; i++ ) {
        DenseMtx_realEntry(mtxX, i, 0, xptr + i);
        // printf ("x(%d) = %e\n", i+1, *(xptr+i));
    }

    // DenseMtx_copyRowIntoVector(mtxX, 0, x->givePointer());

    timer.stopTimer();
    OOFEM_LOG_DEBUG( "SpoolesSolver info: user time consumed by solution: %.2fs\n", timer.getUtime() );

    /*
     * -----------
     * free memory
     * -----------
     */
    DenseMtx_free(mtxX);
    DenseMtx_free(mtxY);
    /*--------------------------------------------------------------------*/
    return ( 1 );
}
Ejemplo n.º 9
0
/*
   -------------------------------------------------------------------
   purpose --

   given an InpMtx object that contains the structure of A, initialize
     the bridge data structure for the serial factor's and solve's.

   note: all parameters are pointers to be compatible with
         fortran's call by reference.

   return value --
      1 -- normal return
     -1 -- bridge is NULL
     -2 -- mtxA is NULL

   created -- 98sep17, cca
   -------------------------------------------------------------------
*/
int
BridgeMT_setup (
    BridgeMT   *bridge,
    InpMtx     *mtxA
) {
    double   t0, t1, t2 ;
    ETree    *frontETree ;
    FILE     *msgFile ;
    Graph    *graph ;
    int      compressed, msglvl, nedges, neqns, Neqns ;
    IV       *eqmapIV ;
    IVL      *adjIVL, *symbfacIVL ;

    MARKTIME(t0) ;
    /*
       --------------------
       check the input data
       --------------------
    */
    if ( bridge == NULL ) {
        fprintf(stderr, "\n fatal error in BridgeMT_setup()"
                "\n data is NULL\n") ;
        return(-1) ;
    }
    if ( mtxA == NULL ) {
        fprintf(stderr, "\n fatal error in BridgeMT_setup()"
                "\n A is NULL\n") ;
        return(-2) ;
    }
    msglvl  = bridge->msglvl  ;
    msgFile = bridge->msgFile ;
    neqns   = bridge->neqns   ;
    if ( ! (INPMTX_IS_BY_ROWS(mtxA) || INPMTX_IS_BY_COLUMNS(mtxA)) ) {
        /*
           ------------------------------
           change coordinate type to rows
           ------------------------------
        */
        InpMtx_changeCoordType(mtxA, INPMTX_BY_ROWS) ;
    }
    if ( ! INPMTX_IS_BY_VECTORS(mtxA) ) {
        /*
           ------------------------------
           change storage mode to vectors
           ------------------------------
        */
        InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
    }
    /*
       ---------------------------
       create a Graph object for A
       ---------------------------
    */
    MARKTIME(t1) ;
    graph  = Graph_new() ;
    adjIVL = InpMtx_fullAdjacency(mtxA);
    nedges = bridge->nedges = IVL_tsize(adjIVL),
    Graph_init2(graph, 0, neqns, 0, nedges,
                neqns, nedges, adjIVL, NULL, NULL) ;
    MARKTIME(t2) ;
    bridge->cpus[0] += t2 - t1 ;
    if ( msglvl > 1 ) {
        fprintf(msgFile, "\n CPU %8.3f : time to create Graph", t2 - t1) ;
        fflush(msgFile) ;
    }
    if ( msglvl > 3 ) {
        fprintf(msgFile, "\n\n graph of the input matrix") ;
        Graph_writeForHumanEye(graph, msgFile) ;
        fflush(msgFile) ;
    }
    /*
       ------------------
       compress the graph
       ------------------
    */
    MARKTIME(t1) ;
    eqmapIV = Graph_equivMap(graph) ;
    Neqns = bridge->Neqns = 1 + IV_max(eqmapIV) ;
    if ( msglvl > 2 ) {
        fprintf(msgFile, "\n\n graph's equivalence map") ;
        IV_writeForHumanEye(eqmapIV, msgFile) ;
        fflush(msgFile) ;
    }
    if ( Neqns < bridge->compressCutoff * neqns ) {
        Graph   *cgraph ;
        /*
           ------------------
           compress the graph
           ------------------
        */
        cgraph = Graph_compress2(graph, eqmapIV, 1) ;
        Graph_free(graph) ;
        graph = cgraph ;
        compressed = 1 ;
        bridge->Nedges = graph->nedges ;
    } else {
        compressed = 0 ;
    }
    MARKTIME(t2) ;
    bridge->cpus[1] += t2 - t1 ;
    if ( msglvl > 1 ) {
        fprintf(msgFile, "\n CPU %8.3f : time to create compressed graph",
                t2 - t1) ;
        fflush(msgFile) ;
    }
    if ( msglvl > 3 ) {
        fprintf(msgFile, "\n\n graph to order") ;
        Graph_writeForHumanEye(graph, msgFile) ;
        fflush(msgFile) ;
    }
    /*
       ---------------
       order the graph
       ---------------
    */
    MARKTIME(t1) ;
    if ( bridge->maxdomainsize <= 0 ) {
        bridge->maxdomainsize = neqns/32 ;
    }
    if ( bridge->maxdomainsize <= 0 ) {
        bridge->maxdomainsize = 1 ;
    }
    if ( bridge->maxnzeros < 0 ) {
        bridge->maxnzeros = 0.01*neqns ;
    }
    if ( bridge->maxsize < 0 ) {
        bridge->maxsize = neqns ;
    }
    frontETree = orderViaBestOfNDandMS(graph, bridge->maxdomainsize,
                                       bridge->maxnzeros, bridge->maxsize,
                                       bridge->seed, msglvl, msgFile) ;
    MARKTIME(t2) ;
    bridge->cpus[2] += t2 - t1 ;
    if ( msglvl > 1 ) {
        fprintf(msgFile, "\n CPU %8.3f : time to order graph", t2 - t1) ;
        fflush(msgFile) ;
    }
    if ( msglvl > 3 ) {
        fprintf(msgFile, "\n\n front tree from ordering") ;
        ETree_writeForHumanEye(frontETree, msgFile) ;
        fflush(msgFile) ;
    }
    MARKTIME(t1) ;
    if ( compressed == 1 ) {
        ETree   *etree ;
        IVL     *tempIVL ;
        /*
           ----------------------------------------------------------
           compute the symbolic factorization of the compressed graph
           ----------------------------------------------------------
        */
        tempIVL = SymbFac_initFromGraph(frontETree, graph) ;
        /*
           -------------------------------------------------------
           expand the symbolic factorization to the original graph
           -------------------------------------------------------
        */
        symbfacIVL = IVL_expand(tempIVL, eqmapIV) ;
        IVL_free(tempIVL) ;
        /*
           ---------------------
           expand the front tree
           ---------------------
        */
        etree = ETree_expand(frontETree, eqmapIV) ;
        ETree_free(frontETree) ;
        frontETree = etree ;
    } else {
        /*
           --------------------------------------------------------
           compute the symbolic factorization of the original graph
           --------------------------------------------------------
        */
        symbfacIVL = SymbFac_initFromGraph(frontETree, graph) ;
    }
    MARKTIME(t2) ;
    bridge->frontETree = frontETree ;
    bridge->symbfacIVL = symbfacIVL ;
    /*
       ----------------------------------------------
       get the old-to-new and new-to-old permutations
       ----------------------------------------------
    */
    bridge->oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
    bridge->newToOldIV = ETree_newToOldVtxPerm(frontETree) ;
    if ( msglvl > 2 ) {
        fprintf(msgFile, "\n\n old-to-new permutation") ;
        IV_writeForHumanEye(bridge->oldToNewIV, msgFile) ;
        fprintf(msgFile, "\n\n new-to-old permutation") ;
        IV_writeForHumanEye(bridge->newToOldIV, msgFile) ;
        fflush(msgFile) ;
    }
    /*
       ------------------------------------------------------
       overwrite the symbolic factorization with the permuted
       indices and sort the lists into ascending order
       ------------------------------------------------------
    */
    IVL_overwrite(symbfacIVL, bridge->oldToNewIV) ;
    IVL_sortUp(symbfacIVL) ;
    if ( msglvl > 2 ) {
        fprintf(msgFile, "\n\n symbolic factorization") ;
        IVL_writeForHumanEye(symbfacIVL, msgFile) ;
        fflush(msgFile) ;
    }
    /*
       --------------------------------------
       permute the vertices in the front tree
       --------------------------------------
    */
    ETree_permuteVertices(frontETree, bridge->oldToNewIV) ;
    if ( msglvl > 2 ) {
        fprintf(msgFile, "\n\n permuted front etree") ;
        ETree_writeForHumanEye(frontETree, msgFile) ;
        fflush(msgFile) ;
    }
    MARKTIME(t2) ;
    bridge->cpus[3] += t2 - t1 ;
    if ( msglvl > 1 ) {
        fprintf(msgFile, "\n CPU %8.3f : time for symbolic factorization",
                t2 - t1) ;
        fflush(msgFile) ;
    }
    /*
       ------------------------
       free the working storage
       ------------------------
    */
    Graph_free(graph) ;
    IV_free(eqmapIV) ;

    MARKTIME(t2) ;
    bridge->cpus[4] += t2 - t0 ;

    return(1) ;
}
Ejemplo n.º 10
0
/*
   ---------------------------------------------
   purpose -- to broadcast a front tree object 
              from one process to all the others

   created -- 98may21, cca
   ---------------------------------------------
*/
ETree *
ETree_MPI_Bcast (
   ETree      *etree,
   int        root,
   int        msglvl,
   FILE       *msgFile,
   MPI_Comm   comm
) {
int   myid, nvtx, nfront, nint ;
int   *buffer ;
/*
   -------------
   find identity
   -------------
*/
MPI_Comm_rank(comm, &myid) ;
if ( myid == root ) {
/*
   --------------------------------------------
   this process owns the front tree, allocate a
   continuous buffer and load the data into it.
   --------------------------------------------
*/
   nfront = ETree_nfront(etree) ;
   nvtx   = ETree_nvtx(etree) ;
   nint   = 3 + 5*nfront + nvtx ;
   buffer = IVinit(nint, -1) ;
   buffer[0] = nfront ;
   buffer[1] = nvtx  ;
   buffer[2] = ETree_root(etree) ;
   IVcopy(nfront, buffer + 3,            ETree_par(etree)) ;
   IVcopy(nfront, buffer + 3 +   nfront, ETree_fch(etree)) ;
   IVcopy(nfront, buffer + 3 + 2*nfront, ETree_sib(etree)) ;
   IVcopy(nfront, buffer + 3 + 3*nfront, ETree_nodwghts(etree)) ;
   IVcopy(nfront, buffer + 3 + 4*nfront, ETree_bndwghts(etree)) ;
   IVcopy(nvtx,   buffer + 3 + 5*nfront, ETree_vtxToFront(etree)) ;
/*
   ------------------------------------
   send the size of the buffer and then 
   the buffer to the other processors
   ------------------------------------
*/
   MPI_Bcast(&nint,     1, MPI_INT, root, comm) ;
   MPI_Bcast(buffer, nint, MPI_INT, root, comm) ;
} else {
/*
   --------------------------------------------
   this process will receive the front tree.
   clear its data, receive the number of int's,
   then receive the buffer
   --------------------------------------------
*/
   if ( etree != NULL ) {
      ETree_free(etree) ;
   }
   MPI_Bcast(&nint, 1, MPI_INT, root, comm) ;
   buffer = IVinit(nint, -1) ;
   MPI_Bcast(buffer, nint, MPI_INT, root, comm) ;
/*
   ----------------------------------------
   create an ETree object and fill its data
   ----------------------------------------
*/
   etree  = ETree_new() ;
   nfront = buffer[0] ;
   nvtx   = buffer[1] ;
   ETree_init1(etree, nfront, nvtx) ;
   etree->tree->n    = nfront ;
   etree->tree->root = buffer[2] ;
   IVcopy(nfront, ETree_par(etree),        buffer + 3) ;
   IVcopy(nfront, ETree_fch(etree),        buffer + 3 +   nfront) ;
   IVcopy(nfront, ETree_sib(etree),        buffer + 3 + 2*nfront) ;
   IVcopy(nfront, ETree_nodwghts(etree),   buffer + 3 + 3*nfront) ;
   IVcopy(nfront, ETree_bndwghts(etree),   buffer + 3 + 4*nfront) ;
   IVcopy(nvtx,   ETree_vtxToFront(etree), buffer + 3 + 5*nfront) ;
}
/*
   ---------------
   free the buffer
   ---------------
*/
IVfree(buffer) ;

return(etree) ; }
Ejemplo n.º 11
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   -------------------------------------------------------
   read in an ETree object and an equivalence map,
   expand the ETree object and optionally write to a file.

   created -- 98sep05, cca
   -------------------------------------------------------
*/
{
char     *inEqmapFileName, *inETreeFileName, *outETreeFileName ;
double   t1, t2 ;
ETree    *etree, *etree2 ;
FILE     *msgFile ;
int      msglvl, rc ;
IV       *eqmapIV ;

if ( argc != 6 ) {
   fprintf(stdout, 
   "\n\n usage : %s msglvl msgFile inETreeFile inEqmapFile outETreeFile"
   "\n    msglvl       -- message level"
   "\n    msgFile      -- message file"
   "\n    inETreeFile  -- input file, must be *.etreef or *.etreeb"
   "\n    inEqmapFile  -- input file, must be *.ivf or *.ivb"
   "\n    outETreeFile -- output file, must be *.etreef or *.etreeb"
   "\n", argv[0]) ;
   return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n fatal error in %s"
           "\n unable to open file %s\n",
           argv[0], argv[2]) ;
   return(-1) ;
}
inETreeFileName  = argv[3] ;
inEqmapFileName  = argv[4] ;
outETreeFileName = argv[5] ;
fprintf(msgFile, 
        "\n %s "
        "\n msglvl       -- %d" 
        "\n msgFile      -- %s" 
        "\n inETreeFile  -- %s" 
        "\n inEqmapFile  -- %s" 
        "\n outETreeFile -- %s" 
        "\n",
        argv[0], msglvl, argv[2], 
        inETreeFileName, inEqmapFileName, outETreeFileName) ;
fflush(msgFile) ;
/*
   ------------------------
   read in the ETree object
   ------------------------
*/
if ( strcmp(inETreeFileName, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   exit(0) ;
}
etree = ETree_new() ;
MARKTIME(t1) ;
rc = ETree_readFromFile(etree, inETreeFileName) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %9.5f : read in etree from file %s",
        t2 - t1, inETreeFileName) ;
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from ETree_readFromFile(%p,%s)",
           rc, etree, inETreeFileName) ;
   exit(-1) ;
}
fprintf(msgFile, "\n\n after reading ETree object from file %s",
        inETreeFileName) ;
if ( msglvl > 2 ) {
   ETree_writeForHumanEye(etree, msgFile) ;
} else {
   ETree_writeStats(etree, msgFile) ;
}
fflush(msgFile) ;
/*
   -------------------------------------
   read in the equivalence map IV object
   -------------------------------------
*/
if ( strcmp(inEqmapFileName, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   exit(0) ;
}
eqmapIV = IV_new() ;
MARKTIME(t1) ;
rc = IV_readFromFile(eqmapIV, inEqmapFileName) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %9.5f : read in eqmapIV from file %s",
        t2 - t1, inEqmapFileName) ;
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from IV_readFromFile(%p,%s)",
           rc, eqmapIV, inEqmapFileName) ;
   exit(-1) ;
}
fprintf(msgFile, "\n\n after reading IV object from file %s",
        inEqmapFileName) ;
if ( msglvl > 2 ) {
   IV_writeForHumanEye(eqmapIV, msgFile) ;
} else {
   IV_writeStats(eqmapIV, msgFile) ;
}
fflush(msgFile) ;
/*
   -----------------------
   expand the ETree object
   -----------------------
*/
etree2 = ETree_expand(etree, eqmapIV) ;
fprintf(msgFile, "\n\n after expanding the ETree object") ;
if ( msglvl > 2 ) {
   ETree_writeForHumanEye(etree2, msgFile) ;
} else {
   ETree_writeStats(etree2, msgFile) ;
}
fflush(msgFile) ;
/*
   --------------------------
   write out the ETree object
   --------------------------
*/
if ( strcmp(outETreeFileName, "none") != 0 ) {
   MARKTIME(t1) ;
   rc = ETree_writeToFile(etree2, outETreeFileName) ;
   MARKTIME(t2) ;
   fprintf(msgFile, "\n CPU %9.5f : write etree to file %s",
           t2 - t1, outETreeFileName) ;
}
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from ETree_writeToFile(%p,%s)",
           rc, etree2, outETreeFileName) ;
}
/*
   ---------------------
   free the ETree object
   ---------------------
*/
ETree_free(etree) ;
IV_free(eqmapIV) ;
ETree_free(etree2) ;

fprintf(msgFile, "\n") ;
fclose(msgFile) ;

return(1) ; }
Ejemplo n.º 12
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   -----------------------------------------------------
   test the factor method for a grid matrix
   (0) read in matrix from source file 
   (1) conver data matrix to InpMtx object if necessary
   (2) create Graph and ETree object if necessary
   (3) read in/create an ETree object
   (4) create a solution matrix object
   (5) multiply the solution with the matrix
       to get a right hand side matrix object
   (6) factor the matrix 
   (7) solve the system

   created   -- 98dec30, jwu
   -----------------------------------------------------
*/
{
char            etreeFileName[80], mtxFileName[80], *cpt, rhsFileName[80],
                srcFileName[80], ctemp[81], msgFileName[80], slnFileName[80] ;
Chv             *chv, *rootchv ;
ChvManager      *chvmanager ;
DenseMtx        *mtxB, *mtxQ, *mtxX, *mtxZ ;
double          one[2] = { 1.0, 0.0 } ;
FrontMtx        *frontmtx ;
InpMtx          *mtxA ;
SubMtxManager   *mtxmanager ;
double          cputotal, droptol, conv_tol, factorops ;
double          cpus[9] ;
Drand           drand ;
double          nops, tau, t1, t2   ;
ETree           *frontETree   ;
Graph           *graph ;
FILE            *msgFile, *inFile ;
int             error, loc, msglvl, neqns, nzf, iformat, 
                pivotingflag, rc, seed, sparsityflag, symmetryflag, 
                method[METHODS], type, nrhs, etreeflag ;
int             stats[6] ;
int             nnzA, Ik, itermax, zversion, iterout ;
IV              *newToOldIV, *oldToNewIV ;
IVL             *symbfacIVL ;
int             i, j, k, m, n, imethod, maxdomainsize, maxzeros, maxsize;
int             nouter,ninner ;

if ( argc != 2 ) {
   fprintf(stdout, 
"\n\n usage : %s inFile"
"\n    inFile       -- input filename"
"\n", argv[0]) ;
   return(-1) ;
}

/* read input file */
inFile = fopen(argv[1], "r");
if (inFile == (FILE *)NULL) {
  fprintf(stderr, "\n fatal error in %s: unable to open file %s\n",
           argv[0], argv[1]) ;
  return(-1) ;
}

for (i=0; i<METHODS; i++) method[i]=-1; 
imethod=0;
k=0;
while (1) {
  fgets(ctemp, 80, inFile);
  if (ctemp[0] != '*') {
    /*printf("l=%2d:%s\n", strlen(ctemp),ctemp);*/
    if (strlen(ctemp)==80) {
      fprintf(stderr, "\n fatal error in %s: input line contains more than "
	      "80 characters.\n",argv[0]);
      exit(-1);
    }
    if (k==0) {
      sscanf(ctemp, "%d",  &iformat);
      if (iformat < 0 || iformat > 2) {
	fprintf(stderr, "\n fatal error in %s: "
		"invalid source matrix format\n",argv[0]) ;
	return(-1) ;
      }
    }
    else if (k==1)
      sscanf(ctemp, "%s", srcFileName);
    else if (k==2)
      sscanf(ctemp, "%s", mtxFileName);
    else if (k==3) {
      sscanf(ctemp, "%d",  &etreeflag);
      if (etreeflag < 0 || etreeflag > 4) {
	fprintf(stderr, "\n fatal error in %s: "
                        "invalid etree file status\n",argv[0]) ;
	return(-1) ;
      }
    }
    else if (k==4)
      sscanf(ctemp, "%s", etreeFileName);
    else if (k==5)
      sscanf(ctemp, "%s", rhsFileName);
    else if (k==6)
      sscanf(ctemp, "%s", slnFileName);
    else if (k==7){
      sscanf(ctemp, "%s", msgFileName);
      if ( strcmp(msgFileName, "stdout") == 0 ) {
	msgFile = stdout ;
      }
      else if ( (msgFile = fopen(msgFileName, "a")) == NULL ) {
	fprintf(stderr, "\n fatal error in %s"
		"\n unable to open file %s\n", argv[0], ctemp) ;
	return(-1) ;
      }
    }
    else if (k==8)
      sscanf(ctemp, "%d %d %d %d %d %d", 
	     &msglvl, &seed, &nrhs, &Ik, &itermax, &iterout);
    else if (k==9)
      sscanf(ctemp, "%d %d %d", &symmetryflag, &sparsityflag, &pivotingflag);
    else if (k==10)
      sscanf(ctemp, "%lf %lf %lf", &tau, &droptol, &conv_tol);
    else if (k==11) {
      /*
      for (j=0; j<strlen(ctemp); j++) {
	printf("j=%2d:%s",j,ctemp+j);
	if (ctemp[j] == ' ' && ctemp[j+1] != ' ') {
	  sscanf(ctemp+j, "%d", method+imethod);
          printf("method[%d]=%d\n",imethod,method[imethod]);
	  if (method[imethod] < 0) break;
	  imethod++;
	}
      }
      */
      imethod = sscanf(ctemp,"%d %d %d %d %d %d %d %d %d %d",
		       method, method+1, method+2, method+3, method+4,
		       method+5, method+6, method+7, method+8, method+9);
      /*printf("imethod=%d\n",imethod);*/
      for (j=0; j<imethod; j++) {
	/*printf("method[%d]=%d\n",j,method[j]);*/
	if (method[j]<0) {
	  imethod=j;
          break;
	}
      }
      if (imethod == 0) {
	fprintf(msgFile,"No method assigned in input file\n");
	return(-1);
      }
    }
    k++;
  }
  if (k==12) break;
}

fclose(inFile);

/* reset nrhs to 1 */
if (nrhs > 1) {
  fprintf(msgFile,"*** Multiple right-hand-side vectors is not allowed yet.\n");
  fprintf(msgFile,"*** nrhs is reset to 1.\n");
  nrhs =1;
}

fprintf(msgFile, 
        "\n %s "
        "\n srcFileName   -- %s"
        "\n mtxFileName   -- %s"
        "\n etreeFileName -- %s"
        "\n rhsFileName   -- %s"
        "\n msglvl        -- %d" 
        "\n seed          -- %d" 
        "\n symmetryflag  -- %d" 
        "\n sparsityflag  -- %d" 
        "\n pivotingflag  -- %d" 
        "\n tau           -- %e" 
        "\n droptol       -- %e" 
        "\n conv_tol      -- %e"
        "\n method        -- ",
        argv[0], srcFileName, mtxFileName, etreeFileName, rhsFileName,
	msglvl, seed, symmetryflag, sparsityflag, pivotingflag, 
        tau, droptol, conv_tol) ;
 
for (k=0; k<imethod; k++) 
  fprintf(msgFile, "%d ", method[k]);
fprintf(msgFile, "\n ", method[k]);

fflush(msgFile) ;

/*
   --------------------------------------
   initialize the random number generator
   --------------------------------------
*/
Drand_setDefaultFields(&drand) ;
Drand_init(&drand) ;
Drand_setSeed(&drand, seed) ;
/*Drand_setUniform(&drand, 0.0, 1.0) ;*/
Drand_setNormal(&drand, 0.0, 1.0) ;
/*
   ----------------------------------------------
   read in or convert source to the InpMtx object
   ----------------------------------------------
*/
rc = 1;

if ( strcmp(srcFileName, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   exit(-1) ;
}
mtxA = InpMtx_new() ;

MARKTIME(t1) ;
if (iformat == 0)  { /* InpMtx source format */
  rc = InpMtx_readFromFile(mtxA, srcFileName) ;
  strcpy(mtxFileName, srcFileName);
  if ( rc != 1 ) 
    fprintf(msgFile, "\n return value %d from InpMtx_readFromFile(%p,%s)",
	    rc, mtxA, srcFileName) ;
}
else if (iformat == 1) {  /* HBF source format */
  rc = InpMtx_readFromHBfile(mtxA, srcFileName) ;
  if ( rc != 1 ) 
    fprintf(msgFile, "\n return value %d from InpMtx_readFromHBfile(%p,%s)",
	    rc, mtxA, srcFileName) ;
}
else { /* AIJ2 source format */
  rc = InpMtx_readFromAIJ2file(mtxA, srcFileName) ;
  if ( rc != 1 ) 
    fprintf(msgFile, "\n return value %d from InpMtx_readFromAIJ2file(%p,%s)",
	    rc, mtxA, srcFileName) ;
}
MARKTIME(t2) ;
if (iformat>0 && strcmp(mtxFileName, "none") != 0 ) {
  rc = InpMtx_writeToFile(mtxA, mtxFileName) ;
  if ( rc != 1 )
    fprintf(msgFile, "\n return value %d from InpMtx_writeToFile(%p,%s)",
	    rc, mtxA, mtxFileName) ;
}

fprintf(msgFile, "\n CPU %8.3f : read in (+ convert to) mtxA from file %s",
	t2 - t1, mtxFileName) ;
if (rc != 1) {
  goto end_read;
}
type = mtxA->inputMode ;
neqns = 1 + IVmax(mtxA->nent, InpMtx_ivec1(mtxA), &loc) ;
if ( INPMTX_IS_BY_ROWS(mtxA) ) {
  fprintf(msgFile, "\n matrix coordinate type is rows") ;
} else if ( INPMTX_IS_BY_COLUMNS(mtxA) ) {
  fprintf(msgFile, "\n matrix coordinate type is columns") ;
} else if ( INPMTX_IS_BY_CHEVRONS(mtxA) ) {
  fprintf(msgFile, "\n matrix coordinate type is chevrons") ;
} else {
  fprintf(msgFile, "\n\n, error, bad coordinate type") ;
  rc=-1;
  goto end_read;
}
if ( INPMTX_IS_RAW_DATA(mtxA) ) {
  fprintf(msgFile, "\n matrix storage mode is raw data\n") ;
} else if ( INPMTX_IS_SORTED(mtxA) ) {
  fprintf(msgFile, "\n matrix storage mode is sorted\n") ;
} else if ( INPMTX_IS_BY_VECTORS(mtxA) ) {
  fprintf(msgFile, "\n matrix storage mode is by vectors\n") ;
} else {
  fprintf(msgFile, "\n\n, error, bad storage mode") ;
  rc=-1;
  goto end_read;
}

if ( msglvl > 1 ) {
  fprintf(msgFile, "\n\n after reading InpMtx object from file %s",
	  mtxFileName) ;
  if ( msglvl == 2 ) {
    InpMtx_writeStats(mtxA, msgFile) ;
  } else {
    InpMtx_writeForHumanEye(mtxA, msgFile) ;
  }
  fflush(msgFile) ;
}
/*
  Get the nonzeros in matrix A and print it
  */
nnzA  = InpMtx_nent( mtxA );
fprintf(msgFile, "\n\n Input matrix size  %d NNZ  %d",
	neqns, nnzA) ;

/*
   --------------------------------------------------------
   generate the linear system
   1. generate solution matrix and fill with random numbers
   2. generate rhs matrix and fill with zeros
   3. compute matrix-matrix multiply
   --------------------------------------------------------
*/
MARKTIME(t1) ;
mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, -1, neqns, nrhs, 1, neqns) ;
mtxB = DenseMtx_new() ; 

if (strcmp(rhsFileName, "none")) {
  rc = DenseMtx_readFromFile(mtxB, rhsFileName) ;
  if ( rc != 1 )
    fprintf(msgFile, "\n return value %d from DenseMtx_readFromFile(%p,%s)",
	    rc, mtxB, rhsFileName) ;
  DenseMtx_zero(mtxX) ;
}
else {
  DenseMtx_init(mtxB, type, 1, -1, neqns, nrhs, 1, neqns) ;
  DenseMtx_fillRandomEntries(mtxX, &drand) ;
  DenseMtx_zero(mtxB) ;
  switch ( symmetryflag ) {
  case SPOOLES_SYMMETRIC : 
    InpMtx_sym_mmm(mtxA, mtxB, one, mtxX) ;
    break ;
  case SPOOLES_HERMITIAN :
    InpMtx_herm_mmm(mtxA, mtxB, one, mtxX) ;
    break ;
  case SPOOLES_NONSYMMETRIC :
    InpMtx_nonsym_mmm(mtxA, mtxB, one, mtxX) ;
    break ;
  default :
    break ;
  }
}
  
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : set up the solution and rhs ",
        t2 - t1) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n original mtxX") ;
   DenseMtx_writeForHumanEye(mtxX, msgFile) ;
   fprintf(msgFile, "\n\n original mtxB") ;
   DenseMtx_writeForHumanEye(mtxB, msgFile) ;
   fflush(msgFile) ;
}
if (rc != 1) {
  InpMtx_free(mtxA);
  DenseMtx_free(mtxX);
  DenseMtx_free(mtxB);
  goto end_init;
}

/*
   ------------------------
   read in/create the ETree object
   ------------------------
*/

MARKTIME(t1) ;
if (etreeflag == 0) { /* read in ETree from file */
  if ( strcmp(etreeFileName, "none") == 0 ) 
    fprintf(msgFile, "\n no file to read from") ;
  frontETree = ETree_new() ;
  rc = ETree_readFromFile(frontETree, etreeFileName) ;
  if (rc!=1) 
    fprintf(msgFile, "\n return value %d from ETree_readFromFile(%p,%s)",
	    rc, frontETree, etreeFileName) ;
}
else {
  graph = Graph_new() ;
  rc = InpMtx_createGraph(mtxA, graph);
  if (rc!=1) {
    fprintf(msgFile, "\n return value %d from InpMtx_createGraph(%p,%p)",
	    rc, mtxA, graph) ;
    Graph_free(graph);
    goto end_tree;
  }
  if (etreeflag == 1) { /* Via BestOfNDandMS */
    maxdomainsize = 500; maxzeros      = 1000; maxsize       = 64    ;
    frontETree = orderViaBestOfNDandMS(graph, maxdomainsize, maxzeros,
				       maxsize, seed, msglvl, msgFile) ;
  }
  else if (etreeflag == 2) { /* Via MMD */
    frontETree = orderViaMMD(graph, seed, msglvl, msgFile) ;        
  }
  else if (etreeflag == 3) { /* Via MS */
    maxdomainsize = 500;
    frontETree = orderViaMS(graph, maxdomainsize, seed, msglvl, msgFile) ;
  }
  else if (etreeflag == 4) { /* Via ND */
    maxdomainsize = 500;
    frontETree = orderViaND(graph, maxdomainsize, seed, msglvl, msgFile) ;
  }
  Graph_free(graph);

  /*    optionally write out the ETree object    */
  if ( strcmp(etreeFileName, "none") != 0 ) {
    fprintf(msgFile, "\n\n writing out ETree to file %s", 
	    etreeFileName) ;
    ETree_writeToFile(frontETree, etreeFileName) ;
  }
}
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : read in/create frontETree from file %s",
	t2 - t1, etreeFileName) ;
if ( rc != 1 ) {
  ETree_free(frontETree);
  goto end_tree;
}

ETree_leftJustify(frontETree) ;
if ( msglvl > 1 ) {
  fprintf(msgFile, "\n\n after reading ETree object from file %s",
	  etreeFileName) ;
  if ( msglvl == 2 ) {
    ETree_writeStats(frontETree, msgFile) ;
  } else {
    ETree_writeForHumanEye(frontETree, msgFile) ;
  }
}
fflush(msgFile) ;
/*
   --------------------------------------------------
   get the permutations, permute the matrix and the 
   front tree, and compute the symbolic factorization
   --------------------------------------------------
*/
MARKTIME(t1) ;
oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
newToOldIV = ETree_newToOldVtxPerm(frontETree) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : get permutations", t2 - t1) ;
MARKTIME(t1) ;
ETree_permuteVertices(frontETree, oldToNewIV) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : permute front tree", t2 - t1) ;
MARKTIME(t1) ;
InpMtx_permute(mtxA, IV_entries(oldToNewIV), IV_entries(oldToNewIV)) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : permute mtxA", t2 - t1) ;
if (  symmetryflag == SPOOLES_SYMMETRIC
   || symmetryflag == SPOOLES_HERMITIAN ) {
   MARKTIME(t1) ;
   InpMtx_mapToUpperTriangle(mtxA) ;
   MARKTIME(t2) ;
   fprintf(msgFile, "\n CPU %8.3f : map to upper triangle", t2 - t1) ;
}
if ( ! INPMTX_IS_BY_CHEVRONS(mtxA) ) {
   MARKTIME(t1) ;
   InpMtx_changeCoordType(mtxA, INPMTX_BY_CHEVRONS) ;
   MARKTIME(t2) ;
   fprintf(msgFile, "\n CPU %8.3f : change coordinate type", t2 - t1) ;
}
if ( INPMTX_IS_RAW_DATA(mtxA) ) {
   MARKTIME(t1) ;
   InpMtx_changeStorageMode(mtxA, INPMTX_SORTED) ;
   MARKTIME(t2) ;
   fprintf(msgFile, "\n CPU %8.3f : sort entries ", t2 - t1) ;
}
if ( INPMTX_IS_SORTED(mtxA) ) {
   MARKTIME(t1) ;
   InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
   MARKTIME(t2) ;
   fprintf(msgFile, "\n CPU %8.3f : convert to vectors ", t2 - t1) ;
}
MARKTIME(t1) ;
symbfacIVL = SymbFac_initFromInpMtx(frontETree, mtxA) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : symbolic factorization", t2 - t1) ;
MARKTIME(t1) ;
DenseMtx_permuteRows(mtxB, oldToNewIV) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : permute rhs", t2 - t1) ;

/*
   ------------------------------
   initialize the FrontMtx object
   ------------------------------
*/
MARKTIME(t1) ;
frontmtx   = FrontMtx_new() ;
mtxmanager = SubMtxManager_new() ;
SubMtxManager_init(mtxmanager, NO_LOCK, 0) ;
FrontMtx_init(frontmtx, frontETree, symbfacIVL,
              type, symmetryflag, sparsityflag, pivotingflag,
              NO_LOCK, 0, NULL, mtxmanager, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n\n CPU %8.3f : initialize the front matrix",
        t2 - t1) ;
if ( msglvl > 1 ) {
   fprintf(msgFile,
           "\n nendD  = %d, nentL = %d, nentU = %d",
           frontmtx->nentD, frontmtx->nentL, frontmtx->nentU) ;
   SubMtxManager_writeForHumanEye(mtxmanager, msgFile) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n front matrix initialized") ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
   fflush(msgFile) ;
}
/*
   -----------------
   factor the matrix
   -----------------
*/
nzf       = ETree_nFactorEntries(frontETree, symmetryflag) ;
factorops = ETree_nFactorOps(frontETree, type, symmetryflag) ;
fprintf(msgFile, 
        "\n %d factor entries, %.0f factor ops, %8.3f ratio",
        nzf, factorops, factorops/nzf) ;
IVzero(6, stats) ;
DVzero(9, cpus) ;
chvmanager = ChvManager_new() ;
ChvManager_init(chvmanager, NO_LOCK, 1) ;
MARKTIME(t1) ;
rootchv = FrontMtx_factorInpMtx(frontmtx, mtxA, tau, droptol, 
                                chvmanager, &error, cpus, 
                                stats, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n\n CPU %8.3f : factor matrix, %8.3f mflops",
        t2 - t1, 1.e-6*factorops/(t2-t1)) ;
if ( rootchv != NULL ) {
   fprintf(msgFile, "\n\n factorization did not complete") ;
   for ( chv = rootchv ; chv != NULL ; chv = chv->next ) {
      fprintf(stdout, "\n chv %d, nD = %d, nL = %d, nU = %d",
              chv->id, chv->nD, chv->nL, chv->nU) ;
   }
}
if ( error >= 0 ) {
   fprintf(msgFile, "\n\n error encountered at front %d\n", error) ;
   rc=error ;
   goto end_front;
}
fprintf(msgFile,
        "\n %8d pivots, %8d pivot tests, %8d delayed rows and columns",
        stats[0], stats[1], stats[2]) ;
if ( frontmtx->rowadjIVL != NULL ) {
   fprintf(msgFile,
           "\n %d entries in rowadjIVL", frontmtx->rowadjIVL->tsize) ;
}
if ( frontmtx->coladjIVL != NULL ) {
   fprintf(msgFile,
           ", %d entries in coladjIVL", frontmtx->coladjIVL->tsize) ;
}
if ( frontmtx->upperblockIVL != NULL ) {
   fprintf(msgFile,
           "\n %d fronts, %d entries in upperblockIVL", 
           frontmtx->nfront, frontmtx->upperblockIVL->tsize) ;
}
if ( frontmtx->lowerblockIVL != NULL ) {
   fprintf(msgFile,
           ", %d entries in lowerblockIVL", 
           frontmtx->lowerblockIVL->tsize) ;
}
fprintf(msgFile,
        "\n %d entries in D, %d entries in L, %d entries in U",
        stats[3], stats[4], stats[5]) ;
fprintf(msgFile, "\n %d locks", frontmtx->nlocks) ;
if (  FRONTMTX_IS_SYMMETRIC(frontmtx)
   || FRONTMTX_IS_HERMITIAN(frontmtx) ) {
   int   nneg, npos, nzero ;

   FrontMtx_inertia(frontmtx, &nneg, &nzero, &npos) ;
   fprintf(msgFile, 
           "\n %d negative, %d zero and %d positive eigenvalues",
           nneg, nzero, npos) ;
   fflush(msgFile) ;
}
cputotal = cpus[8] ;
if ( cputotal > 0.0 ) {
   fprintf(msgFile,
   "\n    initialize fronts       %8.3f %6.2f"
   "\n    load original entries   %8.3f %6.2f"
   "\n    update fronts           %8.3f %6.2f"
   "\n    assemble postponed data %8.3f %6.2f"
   "\n    factor fronts           %8.3f %6.2f"
   "\n    extract postponed data  %8.3f %6.2f"
   "\n    store factor entries    %8.3f %6.2f"
   "\n    miscellaneous           %8.3f %6.2f"
   "\n    total time              %8.3f",
   cpus[0], 100.*cpus[0]/cputotal,
   cpus[1], 100.*cpus[1]/cputotal,
   cpus[2], 100.*cpus[2]/cputotal,
   cpus[3], 100.*cpus[3]/cputotal,
   cpus[4], 100.*cpus[4]/cputotal,
   cpus[5], 100.*cpus[5]/cputotal,
   cpus[6], 100.*cpus[6]/cputotal,
   cpus[7], 100.*cpus[7]/cputotal, cputotal) ;
}
if ( msglvl > 1 ) {
  SubMtxManager_writeForHumanEye(mtxmanager, msgFile) ;
  ChvManager_writeForHumanEye(chvmanager, msgFile) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n front factor matrix") ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
}

/*
   ------------------------------
   post-process the factor matrix
   ------------------------------
*/
MARKTIME(t1) ;
FrontMtx_postProcess(frontmtx, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n\n CPU %8.3f : post-process the matrix", t2 - t1) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n front factor matrix after post-processing") ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
}
fprintf(msgFile, "\n\n after post-processing") ;
if ( msglvl > 1 ) SubMtxManager_writeForHumanEye(frontmtx->manager, msgFile) ;
/*
   ----------------
   solve the system
   ----------------
*/
neqns = mtxB->nrow ;
mtxZ  = DenseMtx_new() ;
DenseMtx_init(mtxZ, type, 0, 0, neqns, nrhs, 1, neqns) ;
zversion=INPMTX_IS_COMPLEX_ENTRIES(mtxA);

for (k=0; k<imethod; k++) {
  DenseMtx_zero(mtxZ) ;
  if ( msglvl > 2 ) {
    fprintf(msgFile, "\n\n rhs") ;
    DenseMtx_writeForHumanEye(mtxB, msgFile) ;
    fflush(stdout) ;
  }
  fprintf(msgFile, "\n\n itemax  %d", itermax) ;
  DVzero(6, cpus) ;
  MARKTIME(t1) ;
  switch ( method[k] ) {
  case BiCGStabR :
    if (zversion)
      rc=zbicgstabr(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB,
		    itermax, conv_tol, msglvl, msgFile);
    else
      rc=bicgstabr(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB,
		   itermax, conv_tol, msglvl, msgFile);

    break;
  case BiCGStabL :
    if (zversion)
    rc=zbicgstabl(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB,
		  itermax, conv_tol, msglvl, msgFile);
    else
      rc=bicgstabl(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB,
		   itermax, conv_tol, msglvl, msgFile);
    break;
  case TFQMRR :
    if (zversion)
      rc=ztfqmrr(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB,
		 itermax, conv_tol, msglvl, msgFile);
    else
      rc=tfqmrr(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB,
		itermax, conv_tol, msglvl, msgFile);
    break;
  case TFQMRL :
    if (zversion)
      rc=ztfqmrl(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB,
		 itermax, conv_tol, msglvl, msgFile);
    else
      rc=tfqmrl(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB,
		itermax, conv_tol, msglvl, msgFile);
    break;
  case PCGR :
    if (zversion)
      rc=zpcgr(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB,
	       itermax, conv_tol, msglvl, msgFile);
    else
      rc=pcgr(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB,
	      itermax, conv_tol, msglvl, msgFile);
    break;
  case PCGL :
    if (zversion)
      rc=zpcgl(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB,
	       itermax, conv_tol, msglvl, msgFile);
    else
      rc=pcgl(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB,
	      itermax, conv_tol, msglvl, msgFile);
    break;
  case MLBiCGStabR :
    mtxQ = DenseMtx_new() ;
    DenseMtx_init(mtxQ, type, 0, -1, neqns, Ik, 1, neqns) ;
    Drand_setUniform(&drand, 0.0, 1.0) ;
    DenseMtx_fillRandomEntries(mtxQ, &drand) ;
    if (zversion)
      rc=zmlbicgstabr(neqns, type, symmetryflag, mtxA, frontmtx, mtxQ, mtxZ, 
		      mtxB, itermax, conv_tol, msglvl, msgFile);
    else
      rc=mlbicgstabr(neqns, type, symmetryflag, mtxA, frontmtx, mtxQ, mtxZ, 
		     mtxB, itermax, conv_tol, msglvl, msgFile);
    DenseMtx_free(mtxQ) ;
    break;
  case MLBiCGStabL :
    mtxQ = DenseMtx_new() ;
    DenseMtx_init(mtxQ, type, 0, -1, neqns, Ik, 1, neqns) ;
    Drand_setUniform(&drand, 0.0, 1.0) ;
    DenseMtx_fillRandomEntries(mtxQ, &drand) ;
    if (zversion)
      rc=zmlbicgstabl(neqns, type, symmetryflag, mtxA, frontmtx, mtxQ, mtxZ, 
		      mtxB, itermax, conv_tol, msglvl, msgFile);
    else
      rc=mlbicgstabl(neqns, type, symmetryflag, mtxA, frontmtx, mtxQ, mtxZ, 
		     mtxB, itermax, conv_tol, msglvl, msgFile);
    DenseMtx_free(mtxQ) ;
    break;
  case BGMRESR:    
    if (zversion)
      fprintf(msgFile, "\n\n *** BGMRESR complex version is not available "
	      "at this moment.   ") ;
    else
      rc=bgmresr(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ,
                 mtxB, iterout, itermax, &nouter, &ninner, conv_tol,
                 msglvl, msgFile);
    break;
  case BGMRESL:    
    if (zversion)
      fprintf(msgFile, "\n\n *** BGMRESR complex version is not available "
	      "at this moment.   ") ;
    else
      rc=bgmresl(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ,
                 mtxB, iterout, itermax, &nouter, &ninner, conv_tol,
                 msglvl, msgFile);
    break;
  default:
    fprintf(msgFile, "\n\n *** Invalid method number   ") ;
  }
  
  MARKTIME(t2) ;
  fprintf(msgFile, "\n\n CPU %8.3f : solve the system", t2 - t1) ;
  if ( msglvl > 2 ) {
    fprintf(msgFile, "\n\n computed solution") ;
    DenseMtx_writeForHumanEye(mtxZ, msgFile) ;
    fflush(stdout) ;
  }
  
/*
  -------------------------------------------------------------
  permute the computed solution back into the original ordering
  -------------------------------------------------------------
*/
  MARKTIME(t1) ;
  DenseMtx_permuteRows(mtxZ, newToOldIV) ;
  MARKTIME(t2) ;
  fprintf(msgFile, "\n CPU %8.3f : permute solution", t2 - t1) ;
  if ( msglvl > 2 ) {
    fprintf(msgFile, "\n\n permuted solution") ;
    DenseMtx_writeForHumanEye(mtxZ, msgFile) ;
    fflush(stdout) ;
  }
/*
  -------------
  save solution
  -------------
*/
  if (  strcmp(slnFileName, "none") != 0 ) {
    DenseMtx_writeToFile(mtxZ, slnFileName) ;
  }
/*
  -----------------
  compute the error
  -----------------
*/
  if (!strcmp(rhsFileName, "none")) {    
    DenseMtx_sub(mtxZ, mtxX) ;
    if (method[k] <8) {
      mtxQ = DenseMtx_new() ;
      DenseMtx_init(mtxQ, type, 0, -1, neqns, 1, 1, neqns) ;
      rc=DenseMtx_initAsSubmatrix (mtxQ, mtxZ, 0, neqns-1, 0, 0);
      fprintf(msgFile, "\n\n maxabs error = %12.4e", DenseMtx_maxabs(mtxQ)) ;
      DenseMtx_free(mtxQ) ;
    }
    else
      fprintf(msgFile, "\n\n maxabs error = %12.4e", DenseMtx_maxabs(mtxZ)) ;

    if ( msglvl > 1 ) {
      fprintf(msgFile, "\n\n error") ;
      DenseMtx_writeForHumanEye(mtxZ, msgFile) ;
      fflush(stdout) ;
    }
    if ( msglvl > 1 ) 
      SubMtxManager_writeForHumanEye(frontmtx->manager, msgFile) ;
  }
  fprintf(msgFile, "\n---------  End of Method %d -------\n",method[k]) ;
      
}
/*
   ------------------------
   free the working storage
   ------------------------
*/
DenseMtx_free(mtxZ) ;

end_front:
ChvManager_free(chvmanager) ;
SubMtxManager_free(mtxmanager) ;
FrontMtx_free(frontmtx) ;
IVL_free(symbfacIVL) ;
IV_free(oldToNewIV) ;
IV_free(newToOldIV) ;

end_tree:
ETree_free(frontETree) ;

end_init:
DenseMtx_free(mtxB) ;
DenseMtx_free(mtxX) ;

end_read:
InpMtx_free(mtxA) ;

fprintf(msgFile, "\n") ;
fclose(msgFile) ;

return(rc) ; }
Ejemplo n.º 13
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] ) {
/*
   --------------------------------------------------
   all-in-one program to solve A X = B
   using a multithreaded factorization and solve
   We use a patch-and-go strategy 
   for the factorization without pivoting
   (1) read in matrix entries and form DInpMtx object
   (2) form Graph object
   (3) order matrix and form front tree
   (4) get the permutation, permute the matrix and 
       front tree and get the symbolic factorization
   (5) compute the numeric factorization
   (6) read in right hand side entries
   (7) compute the solution

   created -- 98jun04, cca
   --------------------------------------------------
*/
/*--------------------------------------------------------------------*/
char            *matrixFileName, *rhsFileName ;
DenseMtx        *mtxB, *mtxX ;
Chv             *rootchv ;
ChvManager      *chvmanager ;
double          fudge, imag, real, tau = 100., toosmall, value ;
double          cpus[10] ;
DV              *cumopsDV ;
ETree           *frontETree ;
FrontMtx        *frontmtx ;
FILE            *inputFile, *msgFile ;
Graph           *graph ;
InpMtx          *mtxA ;
int             error, ient, irow, jcol, jrhs, jrow, lookahead, msglvl, 
                ncol, nedges, nent, neqns, nfront, nrhs, nrow, nthread,
                patchAndGoFlag, seed, 
                storeids, storevalues, symmetryflag, type ;
int             *newToOld, *oldToNew ;
int             stats[20] ;
IV              *newToOldIV, *oldToNewIV, *ownersIV ;
IVL             *adjIVL, *symbfacIVL ;
SolveMap        *solvemap ;
SubMtxManager   *mtxmanager  ;
/*--------------------------------------------------------------------*/
/*
   --------------------
   get input parameters
   --------------------
*/
if ( argc != 14 ) {
   fprintf(stdout, "\n"
      "\n usage: %s msglvl msgFile type symmetryflag patchAndGoFlag"
      "\n        fudge toosmall storeids storevalues"
      "\n        matrixFileName rhsFileName seed"
      "\n    msglvl -- message level"
      "\n    msgFile -- message file"
      "\n    type    -- type of entries"
      "\n      1 (SPOOLES_REAL)    -- real entries"
      "\n      2 (SPOOLES_COMPLEX) -- complex entries"
      "\n    symmetryflag -- type of matrix"
      "\n      0 (SPOOLES_SYMMETRIC)    -- symmetric entries"
      "\n      1 (SPOOLES_HERMITIAN)    -- Hermitian entries"
      "\n      2 (SPOOLES_NONSYMMETRIC) -- nonsymmetric entries"
      "\n    patchAndGoFlag -- flag for the patch-and-go strategy"
      "\n      0 -- none, stop factorization"
      "\n      1 -- optimization strategy"
      "\n      2 -- structural analysis strategy"
      "\n    fudge       -- perturbation parameter"
      "\n    toosmall    -- upper bound on a small pivot"
      "\n    storeids    -- flag to store ids of small pivots"
      "\n    storevalues -- flag to store perturbations"
      "\n    matrixFileName -- matrix file name, format"
      "\n       nrow ncol nent"
      "\n       irow jcol entry"
      "\n        ..."
      "\n        note: indices are zero based"
      "\n    rhsFileName -- right hand side file name, format"
      "\n       nrow nrhs "
      "\n       ..."
      "\n       jrow entry(jrow,0) ... entry(jrow,nrhs-1)"
      "\n       ..."
      "\n    seed    -- random number seed, used for ordering"
      "\n    nthread -- number of threads"
      "\n", argv[0]) ;
   return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n fatal error in %s"
           "\n unable to open file %s\n",
           argv[0], argv[2]) ;
   return(-1) ;
}
type           = atoi(argv[3]) ;
symmetryflag   = atoi(argv[4]) ;
patchAndGoFlag = atoi(argv[5]) ;
fudge          = atof(argv[6]) ;
toosmall       = atof(argv[7]) ;
storeids       = atoi(argv[8]) ;
storevalues    = atoi(argv[9]) ;
matrixFileName = argv[10] ;
rhsFileName    = argv[11] ;
seed           = atoi(argv[12]) ;
nthread        = atoi(argv[13]) ;
/*--------------------------------------------------------------------*/
/*
   --------------------------------------------
   STEP 1: read the entries from the input file 
           and create the InpMtx object
   --------------------------------------------
*/
if ( (inputFile = fopen(matrixFileName, "r")) == NULL ) {
   fprintf(stderr, "\n unable to open file %s", matrixFileName) ;
   spoolesFatal();
}
fscanf(inputFile, "%d %d %d", &nrow, &ncol, &nent) ;
neqns = nrow ;
mtxA = InpMtx_new() ;
InpMtx_init(mtxA, INPMTX_BY_ROWS, type, nent, 0) ;
if ( type == SPOOLES_REAL ) {
   for ( ient = 0 ; ient < nent ; ient++ ) {
      fscanf(inputFile, "%d %d %le", &irow, &jcol, &value) ;
      InpMtx_inputRealEntry(mtxA, irow, jcol, value) ;
   }
} else {
   for ( ient = 0 ; ient < nent ; ient++ ) {
      fscanf(inputFile, "%d %d %le %le", &irow, &jcol, &real, &imag) ;
      InpMtx_inputComplexEntry(mtxA, irow, jcol, real, imag) ;
   }
}
fclose(inputFile) ;
InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n input matrix") ;
   InpMtx_writeForHumanEye(mtxA, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -------------------------------------------------
   STEP 2 : find a low-fill ordering
   (1) create the Graph object
   (2) order the graph using multiple minimum degree
   -------------------------------------------------
*/
graph = Graph_new() ;
adjIVL = InpMtx_fullAdjacency(mtxA) ;
nedges = IVL_tsize(adjIVL) ;
Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL,
            NULL, NULL) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n graph of the input matrix") ;
   Graph_writeForHumanEye(graph, msgFile) ;
   fflush(msgFile) ;
}
frontETree = orderViaMMD(graph, seed, msglvl, msgFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n front tree from ordering") ;
   ETree_writeForHumanEye(frontETree, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -----------------------------------------------------
   STEP 3: get the permutation, permute the matrix and 
           front tree and get the symbolic factorization
   -----------------------------------------------------
*/
oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
oldToNew = IV_entries(oldToNewIV) ;
newToOldIV = ETree_newToOldVtxPerm(frontETree) ;
newToOld   = IV_entries(newToOldIV) ;
ETree_permuteVertices(frontETree, oldToNewIV) ;
InpMtx_permute(mtxA, oldToNew, oldToNew) ;
InpMtx_mapToUpperTriangle(mtxA) ;
InpMtx_changeCoordType(mtxA, INPMTX_BY_CHEVRONS) ;
InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
symbfacIVL = SymbFac_initFromInpMtx(frontETree, mtxA) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n old-to-new permutation vector") ;
   IV_writeForHumanEye(oldToNewIV, msgFile) ;
   fprintf(msgFile, "\n\n new-to-old permutation vector") ;
   IV_writeForHumanEye(newToOldIV, msgFile) ;
   fprintf(msgFile, "\n\n front tree after permutation") ;
   ETree_writeForHumanEye(frontETree, msgFile) ;
   fprintf(msgFile, "\n\n input matrix after permutation") ;
   InpMtx_writeForHumanEye(mtxA, msgFile) ;
   fprintf(msgFile, "\n\n symbolic factorization") ;
   IVL_writeForHumanEye(symbfacIVL, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   ------------------------------------------
   STEP 4: initialize the front matrix object
      and the PatchAndGoInfo object to handle
      small pivots
   ------------------------------------------
*/
frontmtx = FrontMtx_new() ;
mtxmanager = SubMtxManager_new() ;
SubMtxManager_init(mtxmanager, LOCK_IN_PROCESS, 0) ;
FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, symmetryflag, 
            FRONTMTX_DENSE_FRONTS, SPOOLES_NO_PIVOTING, LOCK_IN_PROCESS,
            0, NULL, mtxmanager, msglvl, msgFile) ;
if ( patchAndGoFlag == 1 ) {
   frontmtx->patchinfo = PatchAndGoInfo_new() ;
   PatchAndGoInfo_init(frontmtx->patchinfo, 1, toosmall, fudge,
                       storeids, storevalues) ;
} else if ( patchAndGoFlag == 2 ) {
   frontmtx->patchinfo = PatchAndGoInfo_new() ;
   PatchAndGoInfo_init(frontmtx->patchinfo, 2, toosmall, fudge,
                       storeids, storevalues) ;
}
/*--------------------------------------------------------------------*/
/*
   ------------------------------------------
   STEP 5: setup the domain decomposition map
   ------------------------------------------
*/
if ( nthread > (nfront = FrontMtx_nfront(frontmtx)) ) {
   nthread = nfront ;
}
cumopsDV = DV_new() ;
DV_init(cumopsDV, nthread, NULL) ;
ownersIV = ETree_ddMap(frontETree, type, symmetryflag,
                       cumopsDV, 1./(2.*nthread)) ;
DV_free(cumopsDV) ;
/*--------------------------------------------------------------------*/
/*
   -----------------------------------------------------
   STEP 6: compute the numeric factorization in parallel
   -----------------------------------------------------
*/
chvmanager = ChvManager_new() ;
ChvManager_init(chvmanager, LOCK_IN_PROCESS, 1) ;
DVfill(10, cpus, 0.0) ;
IVfill(20, stats, 0) ;
lookahead = 0 ;
rootchv = FrontMtx_MT_factorInpMtx(frontmtx, mtxA, tau, 0.0, 
                                 chvmanager, ownersIV, lookahead, 
                                 &error, cpus, stats, msglvl, msgFile) ;
if ( patchAndGoFlag == 1 ) {
   if ( frontmtx->patchinfo->fudgeIV != NULL ) {
      fprintf(msgFile, "\n small pivots found at these locations") ;
      IV_writeForHumanEye(frontmtx->patchinfo->fudgeIV, msgFile) ;
   }
   PatchAndGoInfo_free(frontmtx->patchinfo) ;
} else if ( patchAndGoFlag == 2 ) {
   if ( frontmtx->patchinfo->fudgeIV != NULL ) {
      fprintf(msgFile, "\n small pivots found at these locations") ;
      IV_writeForHumanEye(frontmtx->patchinfo->fudgeIV, msgFile) ;
   }
   if ( frontmtx->patchinfo->fudgeDV != NULL ) {
      fprintf(msgFile, "\n perturbations") ;
      DV_writeForHumanEye(frontmtx->patchinfo->fudgeDV, msgFile) ;
   }
   PatchAndGoInfo_free(frontmtx->patchinfo) ;
}
ChvManager_free(chvmanager) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n factor matrix") ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
   fflush(msgFile) ;
}
if ( rootchv != NULL ) {
   fprintf(msgFile, "\n\n matrix found to be singular\n") ;
   spoolesFatal();
}
if ( error >= 0 ) {
   fprintf(msgFile, "\n\n fatal error at front %d\n", error) ;
   spoolesFatal();
}
/*
   --------------------------------------
   STEP 7: post-process the factorization
   --------------------------------------
*/
FrontMtx_postProcess(frontmtx, msglvl, msgFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n factor matrix after post-processing") ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -----------------------------------------
   STEP 8: read the right hand side matrix B
   -----------------------------------------
*/
if ( (inputFile = fopen(rhsFileName, "r")) == NULL ) {
   fprintf(stderr, "\n unable to open file %s", rhsFileName) ;
   spoolesFatal();
}
fscanf(inputFile, "%d %d", &nrow, &nrhs) ;
mtxB = DenseMtx_new() ;
DenseMtx_init(mtxB, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxB) ;
if ( type == SPOOLES_REAL ) {
   for ( irow = 0 ; irow < nrow ; irow++ ) {
      fscanf(inputFile, "%d", &jrow) ;
      for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) {
         fscanf(inputFile, "%le", &value) ;
         DenseMtx_setRealEntry(mtxB, jrow, jrhs, value) ;
      }
   }
} else {
   for ( irow = 0 ; irow < nrow ; irow++ ) {
      fscanf(inputFile, "%d", &jrow) ;
      for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) {
         fscanf(inputFile, "%le %le", &real, &imag) ;
         DenseMtx_setComplexEntry(mtxB, jrow, jrhs, real, imag) ;
      }
   }
}
fclose(inputFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n rhs matrix in original ordering") ;
   DenseMtx_writeForHumanEye(mtxB, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   --------------------------------------------------------------
   STEP 9: permute the right hand side into the original ordering
   --------------------------------------------------------------
*/
DenseMtx_permuteRows(mtxB, oldToNewIV) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n right hand side matrix in new ordering") ;
   DenseMtx_writeForHumanEye(mtxB, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   --------------------------------------------------------
   STEP 10: get the solve map object for the parallel solve
   --------------------------------------------------------
*/
solvemap = SolveMap_new() ;
SolveMap_ddMap(solvemap, type, FrontMtx_upperBlockIVL(frontmtx),
               FrontMtx_lowerBlockIVL(frontmtx), nthread, ownersIV, 
               FrontMtx_frontTree(frontmtx), seed, msglvl, msgFile) ;
/*--------------------------------------------------------------------*/
/*
   --------------------------------------------
   STEP 11: solve the linear system in parallel
   --------------------------------------------
*/
mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxX) ;
FrontMtx_MT_solve(frontmtx, mtxX, mtxB, mtxmanager, solvemap,
                  cpus, msglvl, msgFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n solution matrix in new ordering") ;
   DenseMtx_writeForHumanEye(mtxX, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   --------------------------------------------------------
   STEP 12: permute the solution into the original ordering
   --------------------------------------------------------
*/
DenseMtx_permuteRows(mtxX, newToOldIV) ;
if ( msglvl > 0 ) {
   fprintf(msgFile, "\n\n solution matrix in original ordering") ;
   DenseMtx_writeForHumanEye(mtxX, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -----------
   free memory
   -----------
*/
FrontMtx_free(frontmtx) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxB) ;
IV_free(newToOldIV) ;
IV_free(oldToNewIV) ;
InpMtx_free(mtxA) ;
ETree_free(frontETree) ;
IVL_free(symbfacIVL) ;
SubMtxManager_free(mtxmanager) ;
Graph_free(graph) ;
SolveMap_free(solvemap) ;
IV_free(ownersIV) ;
/*--------------------------------------------------------------------*/
return(1) ; }
Ejemplo n.º 14
0
/*
   --------------------------------------------------------
   purpose -- return an ETree object for 
              a multiple minimum degree ordering

   graph -- graph to order
   seed    -- random number seed
   msglvl  -- message level, 0 --> no output, 1 --> timings
   msgFile -- message file

   created -- 97nov08, cca
   --------------------------------------------------------
*/
ETree *
orderViaMMD (
   Graph   *graph,
   int     seed,
   int     msglvl,
   FILE    *msgFile
) {
double   t1, t2 ;
ETree    *etree ;
int      nvtx, Nvtx ;
IV       *eqmapIV ;
/*
   ---------------
   check the input
   ---------------
*/
if ( graph == NULL || (msglvl > 0 && msgFile == NULL) ) {
   fprintf(stderr, "\n fatal error in orderViaMMD(%p,%d,%d,%p)"
           "\n bad input\n", 
           graph, seed, msglvl, msgFile) ;
   exit(-1) ;
}
/*
   ------------------------------
   compress the graph if worth it
   ------------------------------
*/
nvtx = graph->nvtx ;
MARKTIME(t1) ;
eqmapIV = Graph_equivMap(graph) ;
MARKTIME(t2) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n CPU %8.3f : get equivalence map", t2 - t1) ;
   fflush(msgFile) ;
}
Nvtx = 1 + IV_max(eqmapIV) ;
if ( Nvtx <= COMPRESS_FRACTION * nvtx ) {
   MARKTIME(t1) ;
   graph = Graph_compress2(graph, eqmapIV, 1) ;
   MARKTIME(t2) ;
   if ( msglvl > 1 ) {
      fprintf(msgFile, "\n CPU %8.3f : compress graph", t2 - t1) ;
      fflush(msgFile) ;
   }
} else {
   IV_free(eqmapIV) ;
   eqmapIV = NULL ;
}
MARKTIME(t1) ;
IVL_sortUp(graph->adjIVL) ;
MARKTIME(t2) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n CPU %8.3f : sort adjacency", t2 - t1) ;
   fflush(msgFile) ;
}
/*
   ---------------------------------------------
   order the vertices and extract the front tree
   ---------------------------------------------
*/
{
MSMDinfo   *info ;
MSMD       *msmd ;

info = MSMDinfo_new() ;
info->seed         = seed    ;
info->compressFlag = 2       ;
info->msglvl       = msglvl  ;
info->msgFile      = msgFile ;
msmd = MSMD_new() ;
MSMD_order(msmd, graph, NULL, info) ;
etree = MSMD_frontETree(msmd) ;
if ( msglvl > 1 ) {
   MSMDinfo_print(info, msgFile) ;
}
MSMDinfo_free(info) ;
MSMD_free(msmd) ;
}
/*
   -------------------------------------------------
   expand the front tree if the graph was compressed
   -------------------------------------------------
*/
if ( eqmapIV != NULL ) {
   ETree *etree2 = ETree_expand(etree, eqmapIV) ;
   ETree_free(etree) ;
   etree = etree2 ;
   Graph_free(graph) ;
   IV_free(eqmapIV) ;
} else {
   MARKTIME(t1) ;
   IVL_sortUp(graph->adjIVL) ;
   MARKTIME(t2) ;
   if ( msglvl > 1 ) {
      fprintf(msgFile, "\n CPU %8.3f : sort adjacency", t2 - t1) ;
      fflush(msgFile) ;
   }
}
return(etree) ; }
Ejemplo n.º 15
0
int
main ( int argc, char *argv[] )
/*
   -----------------------------------------------------
   test the factor method for a grid matrix
   (1) construct a linear system for a nested dissection
       ordering on a regular grid
   (2) create a solution matrix object
   (3) multiply the solution with the matrix
       to get a right hand side matrix object
   (4) factor the matrix 
   (5) solve the system

   created -- 98may16, cca
   -----------------------------------------------------
*/
{
Chv             *chv, *rootchv ;
ChvManager      *chvmanager ;
DenseMtx        *mtxB, *mtxX, *mtxZ ;
FrontMtx        *frontmtx ;
InpMtx          *mtxA ;
SubMtxManager   *mtxmanager ;
double          cputotal, droptol, factorops ;
double          cpus[9] ;
Drand           drand ;
double          nops, tau, t1, t2   ;
ETree           *frontETree   ;
FILE            *msgFile ;
int             error, lockflag, maxsize, maxzeros, msglvl, neqns, 
                n1, n2, n3, nrhs, nzf, pivotingflag, 
                seed, sparsityflag, symmetryflag, type ;
int             stats[6] ;
IVL             *symbfacIVL ;

if ( argc != 17 ) {
   fprintf(stdout, 
"\n\n usage : %s msglvl msgFile n1 n2 n3 maxzeros maxsize" 
"\n         seed type symmetryflag sparsityflag "
"\n         pivotingflag tau droptol lockflag nrhs"
"\n    msglvl   -- message level"
"\n    msgFile  -- message file"
"\n    n1       -- number of grid points in the first direction"
"\n    n2       -- number of grid points in the second direction"
"\n    n3       -- number of grid points in the third direction"
"\n    maxzeros -- max number of zeroes in a front"
"\n    maxsize  -- max number of internal nodes in a front"
"\n    seed     -- random number seed"
"\n    type     -- type of entries"
"\n       1 --> real"
"\n       2 --> complex"
"\n    symmetryflag -- symmetry flag"
"\n       0 --> symmetric "
"\n       1 --> hermitian"
"\n       2 --> nonsymmetric"
"\n    sparsityflag -- sparsity flag"
"\n       0 --> store dense fronts"
"\n       1 --> store sparse fronts, use droptol to drop entries"
"\n    pivotingflag -- pivoting flag"
"\n       0 --> do not pivot"
"\n       1 --> enable pivoting"
"\n    tau     -- upper bound on factor entries"
"\n               used only with pivoting"
"\n    droptol -- lower bound on factor entries"
"\n               used only with sparse fronts"
"\n    lockflag -- flag to specify lock status"
"\n       0 --> mutex lock is not allocated or initialized"
"\n       1 --> mutex lock is allocated and it can synchronize"
"\n             only threads in this process."
"\n       2 --> mutex lock is allocated and it can synchronize"
"\n             only threads in this and other processes."
"\n    nrhs     -- # of right hand sides"
"\n", argv[0]) ;
   return(-1) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n fatal error in %s"
           "\n unable to open file %s\n",
           argv[0], argv[2]) ;
   return(-1) ;
}
n1            = atoi(argv[3]) ;
n2            = atoi(argv[4]) ;
n3            = atoi(argv[5]) ;
maxzeros      = atoi(argv[6]) ;
maxsize       = atoi(argv[7]) ;
seed          = atoi(argv[8]) ;
type          = atoi(argv[9]) ;
symmetryflag  = atoi(argv[10]) ;
sparsityflag  = atoi(argv[11]) ;
pivotingflag  = atoi(argv[12]) ;
tau           = atof(argv[13]) ;
droptol       = atof(argv[14]) ;
lockflag      = atoi(argv[15]) ;
nrhs          = atoi(argv[16]) ;
fprintf(msgFile, 
        "\n %s "
        "\n msglvl        -- %d" 
        "\n msgFile       -- %s" 
        "\n n1            -- %d" 
        "\n n2            -- %d" 
        "\n n3            -- %d" 
        "\n maxzeros      -- %d" 
        "\n maxsize       -- %d" 
        "\n seed          -- %d" 
        "\n type          -- %d" 
        "\n symmetryflag  -- %d" 
        "\n sparsityflag  -- %d" 
        "\n pivotingflag  -- %d" 
        "\n tau           -- %e" 
        "\n droptol       -- %e" 
        "\n lockflag      -- %d" 
        "\n nrhs          -- %d" 
        "\n",
        argv[0], msglvl, argv[2], n1, n2, n3, maxzeros, maxsize,
        seed, type, symmetryflag, sparsityflag, pivotingflag, 
        tau, droptol, lockflag, nrhs) ;
fflush(msgFile) ;
neqns = n1 * n2 * n3 ;
/*
   --------------------------------------
   initialize the random number generator
   --------------------------------------
*/
Drand_setDefaultFields(&drand) ;
Drand_init(&drand) ;
Drand_setSeed(&drand, seed) ;
/*
Drand_setUniform(&drand, 0.0, 1.0) ;
*/
Drand_setNormal(&drand, 0.0, 1.0) ;
/*
   --------------------------
   generate the linear system
   --------------------------
*/
mkNDlinsys(n1, n2, n3, maxzeros, maxsize, type, 
           symmetryflag, nrhs, seed, msglvl, msgFile, 
           &frontETree, &symbfacIVL, &mtxA, &mtxX, &mtxB) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n mtxA") ;
   InpMtx_writeForHumanEye(mtxA, msgFile) ;
   fprintf(msgFile, "\n mtxX") ;
   DenseMtx_writeForHumanEye(mtxX, msgFile) ;
   fprintf(msgFile, "\n mtxB") ;
   DenseMtx_writeForHumanEye(mtxB, msgFile) ;
   fflush(msgFile) ;
}
/*
fprintf(msgFile, "\n neqns = %d ;", n1*n2*n3) ;
fprintf(msgFile, "\n nrhs = %d ;", nrhs) ;
fprintf(msgFile, "\n A = zeros(neqns, neqns) ;") ;
fprintf(msgFile, "\n X = zeros(neqns, nrhs) ;") ;
fprintf(msgFile, "\n B = zeros(neqns, nrhs) ;") ;
InpMtx_writeForMatlab(mtxA, "A", msgFile) ;
DenseMtx_writeForMatlab(mtxX, "X", msgFile) ;
DenseMtx_writeForMatlab(mtxB, "B", msgFile) ;
{
int      *ivec1 = InpMtx_ivec1(mtxA) ;
int      *ivec2 = InpMtx_ivec2(mtxA) ;
double   *dvec = InpMtx_dvec(mtxA) ;
int      ichv, ii, col, offset, row, nent = InpMtx_nent(mtxA) ;
fprintf(msgFile, "\n coordType = %d", mtxA->coordType) ;
fprintf(msgFile, "\n start of matrix output file") ;
fprintf(msgFile, "\n %d %d %d", n1*n2*n3, n1*n2*n3, nent) ;
for ( ii = 0 ; ii < nent ; ii++ ) {
   ichv = ivec1[ii] ; 
   if ( (offset = ivec2[ii]) >= 0 ) {
      row = ichv, col = row + offset ;
   } else {
      col = ichv, row = col - offset ;
   }
   fprintf(msgFile, "\n %d %d %24.16e %24.16e",
           row, col, dvec[2*ii], dvec[2*ii+1]) ;
}
}
{
int      ii, jj ;
double   imag, real ;
fprintf(msgFile, "\n start of rhs output file") ;
fprintf(msgFile, "\n %d %d", n1*n2*n3, nrhs) ;
for ( ii = 0 ; ii < n1*n2*n3 ; ii++ ) {
   fprintf(msgFile, "\n %d ", ii) ;
   for ( jj = 0 ; jj < nrhs ; jj++ ) {
      DenseMtx_complexEntry(mtxB, ii, jj, &real, &imag) ;
      fprintf(msgFile, " %24.16e %24.16e", real, imag) ;
   }
}
}
*/
/*
   ------------------------------
   initialize the FrontMtx object
   ------------------------------
*/
MARKTIME(t1) ;
frontmtx   = FrontMtx_new() ;
mtxmanager = SubMtxManager_new() ;
SubMtxManager_init(mtxmanager, lockflag, 0) ;
FrontMtx_init(frontmtx, frontETree, symbfacIVL,
              type, symmetryflag, sparsityflag, pivotingflag,
              lockflag, 0, NULL, mtxmanager, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n\n CPU %8.3f : initialize the front matrix",
        t2 - t1) ;
if ( msglvl > 1 ) {
   fprintf(msgFile,
           "\n nendD  = %d, nentL = %d, nentU = %d",
           frontmtx->nentD, frontmtx->nentL, frontmtx->nentU) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n front matrix initialized") ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
   fflush(msgFile) ;
}
SubMtxManager_writeForHumanEye(mtxmanager, msgFile) ;
/*
   -----------------
   factor the matrix
   -----------------
*/
nzf       = ETree_nFactorEntries(frontETree, symmetryflag) ;
factorops = ETree_nFactorOps(frontETree, type, symmetryflag) ;
fprintf(msgFile, 
        "\n %d factor entries, %.0f factor ops, %8.3f ratio",
        nzf, factorops, factorops/nzf) ;
IVzero(6, stats) ;
DVzero(9, cpus) ;
chvmanager = ChvManager_new() ;
ChvManager_init(chvmanager, lockflag, 1) ;
MARKTIME(t1) ;
rootchv = FrontMtx_factorInpMtx(frontmtx, mtxA, tau, droptol, 
                                chvmanager, &error, cpus, 
                                stats, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n\n CPU %8.3f : factor matrix, %8.3f mflops",
        t2 - t1, 1.e-6*factorops/(t2-t1)) ;
if ( rootchv != NULL ) {
   fprintf(msgFile, "\n\n factorization did not complete") ;
   for ( chv = rootchv ; chv != NULL ; chv = chv->next ) {
      fprintf(stdout, "\n chv %d, nD = %d, nL = %d, nU = %d",
              chv->id, chv->nD, chv->nL, chv->nU) ;
   }
}
if ( error >= 0 ) {
   fprintf(msgFile, "\n\n error encountered at front %d\n", error) ;
   exit(-1) ;
}
fprintf(msgFile,
        "\n %8d pivots, %8d pivot tests, %8d delayed rows and columns",
        stats[0], stats[1], stats[2]) ;
if ( frontmtx->rowadjIVL != NULL ) {
   fprintf(msgFile,
           "\n %d entries in rowadjIVL", frontmtx->rowadjIVL->tsize) ;
}
if ( frontmtx->coladjIVL != NULL ) {
   fprintf(msgFile,
           ", %d entries in coladjIVL", frontmtx->coladjIVL->tsize) ;
}
if ( frontmtx->upperblockIVL != NULL ) {
   fprintf(msgFile,
           "\n %d fronts, %d entries in upperblockIVL", 
           frontmtx->nfront, frontmtx->upperblockIVL->tsize) ;
}
if ( frontmtx->lowerblockIVL != NULL ) {
   fprintf(msgFile,
           ", %d entries in lowerblockIVL", 
           frontmtx->lowerblockIVL->tsize) ;
}
fprintf(msgFile,
        "\n %d entries in D, %d entries in L, %d entries in U",
        stats[3], stats[4], stats[5]) ;
fprintf(msgFile, "\n %d locks", frontmtx->nlocks) ;
cputotal = cpus[8] ;
if ( cputotal > 0.0 ) {
   fprintf(msgFile,
   "\n    initialize fronts       %8.3f %6.2f"
   "\n    load original entries   %8.3f %6.2f"
   "\n    update fronts           %8.3f %6.2f"
   "\n    assemble postponed data %8.3f %6.2f"
   "\n    factor fronts           %8.3f %6.2f"
   "\n    extract postponed data  %8.3f %6.2f"
   "\n    store factor entries    %8.3f %6.2f"
   "\n    miscellaneous           %8.3f %6.2f"
   "\n    total time              %8.3f",
   cpus[0], 100.*cpus[0]/cputotal,
   cpus[1], 100.*cpus[1]/cputotal,
   cpus[2], 100.*cpus[2]/cputotal,
   cpus[3], 100.*cpus[3]/cputotal,
   cpus[4], 100.*cpus[4]/cputotal,
   cpus[5], 100.*cpus[5]/cputotal,
   cpus[6], 100.*cpus[6]/cputotal,
   cpus[7], 100.*cpus[7]/cputotal, cputotal) ;
}
SubMtxManager_writeForHumanEye(mtxmanager, msgFile) ;
ChvManager_writeForHumanEye(chvmanager, msgFile) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n front factor matrix") ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n %% MATLAB file: front factor matrix") ;
   FrontMtx_writeForMatlab(frontmtx, "L", "D", "U", msgFile) ;
}
/*
   ------------------------------
   post-process the factor matrix
   ------------------------------
*/
MARKTIME(t1) ;
FrontMtx_postProcess(frontmtx, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n\n CPU %8.3f : post-process the matrix", t2 - t1) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n front factor matrix after post-processing") ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
}
fprintf(msgFile, "\n\n after post-processing") ;
SubMtxManager_writeForHumanEye(frontmtx->manager, msgFile) ;
/*
  code to test out the IO methods.
  write the matrix to a file, free it,
  then read it back in.
  note: formatted files do not have much accuracy.
*/
/*
FrontMtx_writeToFile(frontmtx, "temp.frontmtxb") ;
FrontMtx_free(frontmtx) ;
frontmtx = FrontMtx_new() ;
FrontMtx_readFromFile(frontmtx, "temp.frontmtxb") ;
frontmtx->manager = mtxmanager ;
FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
*/
/*
   ----------------
   solve the system
   ----------------
*/
neqns = mtxB->nrow ;
nrhs  = mtxB->ncol ;
mtxZ  = DenseMtx_new() ;
DenseMtx_init(mtxZ, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxZ) ;
if ( type == SPOOLES_REAL ) {
   nops = frontmtx->nentD + 2*frontmtx->nentU ;
   if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) {
      nops += 2*frontmtx->nentL ;
   } else {
      nops += 2*frontmtx->nentU ;
   }
} else if ( type == SPOOLES_COMPLEX ) {
   nops = 8*frontmtx->nentD + 8*frontmtx->nentU ;
   if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) {
      nops += 8*frontmtx->nentL ;
   } else {
      nops += 8*frontmtx->nentU ;
   }
}
nops *= nrhs ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n rhs") ;
   DenseMtx_writeForHumanEye(mtxB, msgFile) ;
   fflush(stdout) ;
}
DVzero(6, cpus) ;
MARKTIME(t1) ;
FrontMtx_solve(frontmtx, mtxZ, mtxB, mtxmanager,
               cpus, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n\n CPU %8.3f : solve the system, %.3f mflops",
        t2 - t1, 1.e-6*nops/(t2 - t1)) ;
cputotal = t2 - t1 ;
if ( cputotal > 0.0 ) {
   fprintf(msgFile,
   "\n    set up solves               %8.3f %6.2f"
   "\n    load rhs and store solution %8.3f %6.2f"
   "\n    forward solve               %8.3f %6.2f"
   "\n    diagonal solve              %8.3f %6.2f"
   "\n    backward solve              %8.3f %6.2f"
   "\n    total time                  %8.3f",
   cpus[0], 100.*cpus[0]/cputotal,
   cpus[1], 100.*cpus[1]/cputotal,
   cpus[2], 100.*cpus[2]/cputotal,
   cpus[3], 100.*cpus[3]/cputotal,
   cpus[4], 100.*cpus[4]/cputotal, cputotal) ;
}
/*
fprintf(msgFile, "\n Z = zeros(neqns, nrhs) ;") ;
DenseMtx_writeForMatlab(mtxZ, "Z", msgFile) ;
*/
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n computed solution") ;
   DenseMtx_writeForHumanEye(mtxZ, msgFile) ;
   fflush(stdout) ;
}
DenseMtx_sub(mtxZ, mtxX) ;
fprintf(msgFile, "\n\n maxabs error = %12.4e", DenseMtx_maxabs(mtxZ)) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n error") ;
   DenseMtx_writeForHumanEye(mtxZ, msgFile) ;
   fflush(stdout) ;
}
fprintf(msgFile, "\n\n after solve") ;
SubMtxManager_writeForHumanEye(frontmtx->manager, msgFile) ;
/*
   ------------------------
   free the working storage
   ------------------------
*/
InpMtx_free(mtxA) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxB) ;
DenseMtx_free(mtxZ) ;
FrontMtx_free(frontmtx) ;
ETree_free(frontETree) ;
IVL_free(symbfacIVL) ;
ChvManager_free(chvmanager) ;
SubMtxManager_free(mtxmanager) ;

fprintf(msgFile, "\n") ;
fclose(msgFile) ;

return(1) ; }
Ejemplo n.º 16
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   ---------------------------------------------------
   test the QR factor method for a FrontMtx object
   on an n1 x n2 x n3 grid
   (1) generate an overdetermined system AX = B
   (2) factor the matrix 
   (3) solve the systems

   created  -- 97apr11, dkw
   modified -- 98may28, cca
   ---------------------------------------------------
*/
{
ChvManager      *chvmanager ;
DenseMtx        *mtxB, *mtxX, *mtxZ ;
double          cputotal, factorops ;
double          cpus[9] ;
double          nops, t1, t2 ;
ETree           *frontETree ;
FILE            *msgFile ;
FrontMtx        *frontmtx ;
InpMtx          *mtxA ;
int             msglvl, neqns, nrhs, n1, n2, n3, seed, type ;
IVL             *symbfacIVL ;
SubMtxManager   *mtxmanager ;

if ( argc != 9 ) {
   fprintf(stdout, 
      "\n\n usage : %s msglvl msgFile n1 n2 n3 seed nrhs "
      "\n    msglvl  -- message level"
      "\n    msgFile -- message file"
      "\n    n1      -- # of points in the first direction"
      "\n    n2      -- # of points in the second direction"
      "\n    n3      -- # of points in the third direction"
      "\n    seed    -- random number seed"
      "\n    nrhs    -- # of right hand sides"
      "\n    type    -- type of linear system"
      "\n      1 -- real"
      "\n      2 -- complex"
      "\n", argv[0]) ;
   return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n fatal error in %s"
           "\n unable to open file %s\n",
           argv[0], argv[2]) ;
   return(-1) ;
}
n1   = atoi(argv[3]) ;
n2   = atoi(argv[4]) ;
n3   = atoi(argv[5]) ;
seed = atoi(argv[6]) ;
nrhs = atoi(argv[7]) ;
type = atoi(argv[8]) ;
fprintf(msgFile, 
        "\n %s "
        "\n msglvl  -- %d" 
        "\n msgFile -- %s" 
        "\n n1      -- %d" 
        "\n n2      -- %d" 
        "\n n3      -- %d" 
        "\n seed    -- %d" 
        "\n nrhs    -- %d" 
        "\n type    -- %d" 
        "\n",
        argv[0], msglvl, argv[2], n1, n2, n3, seed, nrhs, type) ;
fflush(msgFile) ;
neqns = n1*n2*n3 ;
if ( type != SPOOLES_REAL && type != SPOOLES_COMPLEX ) {
   fprintf(stderr, "\n fatal error, type must be real or complex") ;
   exit(-1) ;
}
/*
   ------------------------------------------
   generate the A X = B overdetermined system
   ------------------------------------------
*/
mkNDlinsysQR(n1, n2, n3, type, nrhs, seed, msglvl, msgFile, 
             &frontETree, &symbfacIVL, &mtxA, &mtxX, &mtxB) ;
/*
   ------------------------------
   initialize the FrontMtx object
   ------------------------------
*/
MARKTIME(t1) ;
mtxmanager = SubMtxManager_new() ;
SubMtxManager_init(mtxmanager, NO_LOCK, 0) ;
frontmtx = FrontMtx_new() ;
if ( type == SPOOLES_REAL ) {
   FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, 
                 SPOOLES_SYMMETRIC, FRONTMTX_DENSE_FRONTS, 
                 SPOOLES_NO_PIVOTING, NO_LOCK, 
                 0, NULL, mtxmanager, msglvl, msgFile) ;
} else if ( type == SPOOLES_COMPLEX ) {
   FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, 
                 SPOOLES_HERMITIAN, FRONTMTX_DENSE_FRONTS, 
                 SPOOLES_NO_PIVOTING, NO_LOCK, 
                 0, NULL, mtxmanager, msglvl, msgFile) ;
}
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : FrontMtx initialized", t2 - t1) ;
fflush(msgFile) ;
/*
   -----------------
   factor the matrix
   -----------------
*/
DVzero(6, cpus) ;
chvmanager = ChvManager_new() ;
ChvManager_init(chvmanager, NO_LOCK, 0) ;
factorops = 0.0 ;
MARKTIME(t1) ;
FrontMtx_QR_factor(frontmtx, mtxA, chvmanager, 
                   cpus, &factorops, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n after QR_factor() call, facops = %8.2f",factorops) ;
fprintf(msgFile, "\n CPU %8.3f : FrontMtx_QR_factor, %8.3f mflops",
        t2 - t1, 1.e-6*factorops/(t2-t1)) ;
cputotal = t2 - t1 ;
if ( cputotal > 0.0 ) {
   fprintf(msgFile, "\n"
   "\n    setup factorization  %8.3f %6.2f"
   "\n    setup fronts         %8.3f %6.2f"
   "\n    factor fronts        %8.3f %6.2f"
   "\n    store factor         %8.3f %6.2f"
   "\n    store update         %8.3f %6.2f"
   "\n    miscellaneous        %8.3f %6.2f"
   "\n    total time           %8.3f",
   cpus[0], 100.*cpus[0]/cputotal,
   cpus[1], 100.*cpus[1]/cputotal,
   cpus[2], 100.*cpus[2]/cputotal,
   cpus[3], 100.*cpus[3]/cputotal,
   cpus[4], 100.*cpus[4]/cputotal, 
   cpus[5], 100.*cpus[5]/cputotal, cputotal) ;
}
/*
   ------------------------------
   post-process the factor matrix
   ------------------------------
*/
MARKTIME(t1) ;
FrontMtx_postProcess(frontmtx, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : post-process the matrix", t2 - t1)
;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n front factor matrix after post-processing") ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
}
fprintf(msgFile, "\n\n after post-processing") ;
SubMtxManager_writeForHumanEye(frontmtx->manager, msgFile) ;
/*
   ----------------
   solve the system
   ----------------
*/
mtxZ = DenseMtx_new() ;
DenseMtx_init(mtxZ, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxZ) ;
if ( type == SPOOLES_REAL ) {
   nops = frontmtx->nentD + 2*frontmtx->nentU ;
   if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) {
      nops += 2*frontmtx->nentL ;
   } else {
      nops += 2*frontmtx->nentU ;
   }
} else if ( type == SPOOLES_COMPLEX ) {
   nops = 8*frontmtx->nentD + 8*frontmtx->nentU ;
   if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) {
      nops += 8*frontmtx->nentL ;
   } else {
      nops += 8*frontmtx->nentU ;
   }
}
nops *= nrhs ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n rhs") ;
   DenseMtx_writeForHumanEye(mtxB, msgFile) ;
   fflush(stdout) ;
}
DVzero(6, cpus) ;
MARKTIME(t1) ;
FrontMtx_QR_solve(frontmtx, mtxA, mtxZ, mtxB, mtxmanager,
                  cpus, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : solve the system, %.3f mflops",
        t2 - t1, 1.e-6*nops/(t2 - t1)) ;
cputotal = t2 - t1 ;
if ( cputotal > 0.0 ) {
   fprintf(msgFile,
   "\n                                CPU    %%"
   "\n    A^TB matrix-matrix multiply %8.3f %6.2f"
   "\n    set up solves               %8.3f %6.2f"
   "\n    load rhs and store solution %8.3f %6.2f"
   "\n    forward solve               %8.3f %6.2f"
   "\n    diagonal solve              %8.3f %6.2f"
   "\n    backward solve              %8.3f %6.2f"
   "\n    total solve time            %8.3f %6.2f"
   "\n    total QR solve time         %8.3f",
   cpus[6], 100.*cpus[6]/cputotal, 
   cpus[0], 100.*cpus[0]/cputotal,
   cpus[1], 100.*cpus[1]/cputotal,
   cpus[2], 100.*cpus[2]/cputotal,
   cpus[3], 100.*cpus[3]/cputotal,
   cpus[4], 100.*cpus[4]/cputotal, 
   cpus[5], 100.*cpus[5]/cputotal, cputotal) ;
}
if ( msglvl > 3 ) {
   fprintf(msgFile, "\n\n computed solution") ;
   DenseMtx_writeForHumanEye(mtxZ, msgFile) ;
   fflush(stdout) ;
}
/*
   -----------------
   compute the error
   -----------------
*/
DenseMtx_sub(mtxZ, mtxX) ;
fprintf(msgFile, "\n\n maxabs error = %12.4e",
DenseMtx_maxabs(mtxZ)) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n error") ;
   DenseMtx_writeForHumanEye(mtxZ, msgFile) ;
   fflush(stdout) ;
}
fprintf(msgFile, "\n\n after solve") ;
SubMtxManager_writeForHumanEye(frontmtx->manager, msgFile) ;
/*
   ------------------------
   free the working storage
   ------------------------
*/
InpMtx_free(mtxA) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxZ) ;
DenseMtx_free(mtxB) ;
FrontMtx_free(frontmtx) ;
IVL_free(symbfacIVL) ;
ETree_free(frontETree) ;
SubMtxManager_free(mtxmanager) ;
ChvManager_free(chvmanager) ;

fprintf(msgFile, "\n") ;
fclose(msgFile) ;

return(1) ; }
Ejemplo n.º 17
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   ------------------------------------------------------------
   make ETree objects for nested dissection on a regular grid

   1 -- vertex elimination tree
   2 -- fundamental supernode front tree
   3 -- merge only children if possible
   4 -- merge all children if possible
   5 -- split large non-leaf fronts

   created -- 98feb05, cca
   ------------------------------------------------------------
*/
{
char     *outETreeFileName ;
double   ops[6] ;
double   t1, t2 ;
EGraph   *egraph ;
ETree    *etree0, *etree1, *etree2, *etree3, *etree4, *etree5 ;
FILE     *msgFile ;
Graph    *graph ;
int      nfronts[6], nfind[6], nzf[6] ; 
int      maxsize, maxzeros, msglvl, n1, n2, n3, nvtx, rc, v ;
int      *newToOld, *oldToNew ;
IV       *nzerosIV ;

if ( argc != 9 ) {
   fprintf(stdout, 
      "\n\n usage : %s msglvl msgFile n1 n2 n3 maxzeros maxsize outFile"
      "\n    msglvl   -- message level"
      "\n    msgFile  -- message file"
      "\n    n1       -- number of points in the first direction"
      "\n    n2       -- number of points in the second direction"
      "\n    n3       -- number of points in the third direction"
      "\n    maxzeros -- number of points in the third direction"
      "\n    maxsize  -- maximum number of vertices in a front"
      "\n    outFile  -- output file, must be *.etreef or *.etreeb"
      "\n", argv[0]) ;
   return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n fatal error in %s"
           "\n unable to open file %s\n",
           argv[0], argv[2]) ;
   return(-1) ;
}
n1 = atoi(argv[3]) ;
n2 = atoi(argv[4]) ;
n3 = atoi(argv[5]) ;
maxzeros = atoi(argv[6]) ;
maxsize  = atoi(argv[7]) ;
outETreeFileName = argv[8] ;
fprintf(msgFile, 
        "\n %s "
        "\n msglvl   -- %d" 
        "\n msgFile  -- %s" 
        "\n n1       -- %d" 
        "\n n2       -- %d" 
        "\n n3       -- %d" 
        "\n maxzeros -- %d" 
        "\n maxsize  -- %d" 
        "\n outFile  -- %s" 
        "\n",
        argv[0], msglvl, argv[2], n1, n2, n3, 
        maxzeros, maxsize, outETreeFileName) ;
fflush(msgFile) ;
/*
   ----------------------------
   create the grid graph object
   ----------------------------
*/
if ( n1 == 1 ) {
   egraph = EGraph_make9P(n2, n3, 1) ;
} else if ( n2 == 1 ) {
   egraph = EGraph_make9P(n1, n3, 1) ;
} else if ( n3 == 1 ) {
   egraph = EGraph_make9P(n1, n2, 1) ;
} else {
   egraph = EGraph_make27P(n1, n2, n3, 1) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n %d x %d x %d grid EGraph", n1, n2, n3) ;
   EGraph_writeForHumanEye(egraph, msgFile) ;
   fflush(msgFile) ;
}
graph = EGraph_mkAdjGraph(egraph) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n %d x %d x %d grid Graph", n1, n2, n3) ;
   Graph_writeForHumanEye(graph, msgFile) ;
   fflush(msgFile) ;
}
/*
   ----------------------------------
   get the nested dissection ordering
   ----------------------------------
*/
nvtx = n1*n2*n3 ;
newToOld = IVinit(nvtx, -1) ;
oldToNew = IVinit(nvtx, -1) ;
mkNDperm(n1, n2, n3, newToOld, 0, n1-1, 0, n2-1, 0, n3-1) ;
for ( v = 0 ; v < nvtx ; v++ ) {
   oldToNew[newToOld[v]] = v ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n %d x %d x %d nd ordering", n1, n2, n3) ;
   IVfprintf(msgFile, nvtx, oldToNew) ;
   fflush(msgFile) ;
}
/*
   ------------------------------------------
   create the vertex elimination ETree object
   ------------------------------------------
*/
etree0 = ETree_new() ;
ETree_initFromGraphWithPerms(etree0, graph, newToOld, oldToNew) ;
nfronts[0] = ETree_nfront(etree0) ;
nfind[0]   = ETree_nFactorIndices(etree0) ;
nzf[0]     = ETree_nFactorEntries(etree0, SPOOLES_SYMMETRIC) ;
ops[0]     = ETree_nFactorOps(etree0, SPOOLES_REAL, SPOOLES_SYMMETRIC) ;
fprintf(msgFile, 
        "\n vtx tree  : %8d fronts, %8d indices, %8d |L|, %12.0f ops",
        nfronts[0], nfind[0], nzf[0], ops[0]) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n vertex elimination tree") ;
   ETree_writeForHumanEye(etree0, msgFile) ;
   fflush(msgFile) ;
}
/*
   ---------------------------------------------
   create the fundamental supernode ETree object
   ---------------------------------------------
*/
nzerosIV = IV_new() ;
IV_init(nzerosIV, nvtx, NULL) ;
IV_fill(nzerosIV, 0) ;
etree1     = ETree_mergeFrontsOne(etree0, 0, nzerosIV) ;
nfronts[1] = ETree_nfront(etree1) ;
nfind[1]   = ETree_nFactorIndices(etree1) ;
nzf[1]     = ETree_nFactorEntries(etree1, SPOOLES_SYMMETRIC) ;
ops[1]     = ETree_nFactorOps(etree1, SPOOLES_REAL, SPOOLES_SYMMETRIC) ;
fprintf(msgFile, 
        "\n fs tree   : %8d fronts, %8d indices, %8d |L|, %12.0f ops",
        nfronts[1], nfind[1], nzf[1], ops[1]) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n fundamental supernode front tree") ;
   ETree_writeForHumanEye(etree1, msgFile) ;
   fprintf(msgFile, "\n\n nzerosIV") ;
   IV_writeForHumanEye(nzerosIV, msgFile) ;
   fflush(msgFile) ;
}
/*
   ---------------------------
   try to absorb only children
   ---------------------------
*/
etree2 = ETree_mergeFrontsOne(etree1, maxzeros, nzerosIV) ;
nfronts[2] = ETree_nfront(etree2) ;
nfind[2]   = ETree_nFactorIndices(etree2) ;
nzf[2]     = ETree_nFactorEntries(etree2, SPOOLES_SYMMETRIC) ;
ops[2]     = ETree_nFactorOps(etree2, SPOOLES_REAL, SPOOLES_SYMMETRIC) ;
fprintf(msgFile, 
        "\n merge one : %8d fronts, %8d indices, %8d |L|, %12.0f ops",
        nfronts[2], nfind[2], nzf[2], ops[2]) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n front tree after mergeOne") ;
   ETree_writeForHumanEye(etree2, msgFile) ;
   fprintf(msgFile, "\n\n nzerosIV") ;
   IV_writeForHumanEye(nzerosIV, msgFile) ;
   fflush(msgFile) ;
}
/*
   --------------------------
   try to absorb all children
   --------------------------
*/
etree3 = ETree_mergeFrontsAll(etree2, maxzeros, nzerosIV) ;
nfronts[3] = ETree_nfront(etree3) ;
nfind[3]   = ETree_nFactorIndices(etree3) ;
nzf[3]     = ETree_nFactorEntries(etree3, SPOOLES_SYMMETRIC) ;
ops[3]     = ETree_nFactorOps(etree3, SPOOLES_REAL, SPOOLES_SYMMETRIC) ;
fprintf(msgFile, 
        "\n merge all : %8d fronts, %8d indices, %8d |L|, %12.0f ops",
                 nfronts[3], nfind[3], nzf[3], ops[3]) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n front tree after mergeAll") ;
   ETree_writeForHumanEye(etree3, msgFile) ;
   fprintf(msgFile, "\n\n nzerosIV") ;
   IV_writeForHumanEye(nzerosIV, msgFile) ;
   fflush(msgFile) ;
}
/*
   --------------------------------
   try to absorb any other children
   --------------------------------
*/
etree4 = etree3 ;
/*
etree4 = ETree_mergeFrontsAny(etree3, maxzeros, nzerosIV) ;
nfronts[4] = ETree_nfront(etree4) ;
nfind[4]   = ETree_nFactorIndices(etree4) ;
nzf[4]     = ETree_nFactorEntries(etree4, SPOOLES_SYMMETRIC) ;
ops[4]     = ETree_nFactorOps(etree4, SPOOLES_REAL, SPOOLES_SYMMETRIC) ;
fprintf(msgFile, 
        "\n merge any : %8d fronts, %8d indices, %8d |L|, %12.0f ops",
                 nfronts[4], nfind[4], nzf[4], ops[4]) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n front tree after mergeAny") ;
   ETree_writeForHumanEye(etree3, msgFile) ;
   fprintf(msgFile, "\n\n nzerosIV") ;
   IV_writeForHumanEye(nzerosIV, msgFile) ;
   fflush(msgFile) ;
}
*/
/*
   --------------------
   split the front tree
   --------------------
*/
etree5 = ETree_splitFronts(etree4, NULL, maxsize, 0) ;
nfronts[5] = ETree_nfront(etree5) ;
nfind[5]   = ETree_nFactorIndices(etree5) ;
nzf[5]     = ETree_nFactorEntries(etree5, SPOOLES_SYMMETRIC) ;
ops[5]     = ETree_nFactorOps(etree5, SPOOLES_REAL, SPOOLES_SYMMETRIC) ;
fprintf(msgFile, 
        "\n split     : %8d fronts, %8d indices, %8d |L|, %12.0f ops",
        nfronts[5], nfind[5], nzf[5], ops[5]) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n front tree after split") ;
   ETree_writeForHumanEye(etree4, msgFile) ;
   fflush(msgFile) ;
}
fprintf(msgFile, "\n\n complex symmetric ops %.0f",
        ETree_nFactorOps(etree5, SPOOLES_COMPLEX, SPOOLES_SYMMETRIC)) ;
/*
   --------------------------
   write out the ETree object
   --------------------------
*/
if ( strcmp(outETreeFileName, "none") != 0 ) {
   MARKTIME(t1) ;
   rc = ETree_writeToFile(etree5, outETreeFileName) ;
   MARKTIME(t2) ;
   fprintf(msgFile, "\n CPU %9.5f : write etree to file %s",
           t2 - t1, outETreeFileName) ;
   if ( rc != 1 ) {
      fprintf(msgFile, 
              "\n return value %d from ETree_writeToFile(%p,%s)",
              rc, etree5, outETreeFileName) ;
   }
}
/*
   ----------------
   free the objects
   ----------------
*/
ETree_free(etree0) ;
ETree_free(etree1) ;
ETree_free(etree2) ;
ETree_free(etree3) ;
/*
ETree_free(etree4) ;
*/
ETree_free(etree5) ;
EGraph_free(egraph) ;
Graph_free(graph) ;
IVfree(newToOld) ;
IVfree(oldToNew) ;
IV_free(nzerosIV) ;

fprintf(msgFile, "\n") ;
fclose(msgFile) ;

return(1) ; }
Ejemplo n.º 18
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] ) {
/*
   --------------------------------------------------
   QR all-in-one program
   (1) read in matrix entries and form InpMtx object
       of A and A^TA
   (2) form Graph object of A^TA
   (3) order matrix and form front tree
   (4) get the permutation, permute the matrix and 
       front tree and get the symbolic factorization
   (5) compute the numeric factorization
   (6) read in right hand side entries
   (7) compute the solution

   created -- 98jun11, cca
   --------------------------------------------------
*/
/*--------------------------------------------------------------------*/
char            *matrixFileName, *rhsFileName ;
ChvManager      *chvmanager ;
DenseMtx        *mtxB, *mtxX ;
double          facops, imag, real, value ;
double          cpus[10] ;
ETree           *frontETree ;
FILE            *inputFile, *msgFile ;
FrontMtx        *frontmtx ;
Graph           *graph ;
int             ient, irow, jcol, jrhs, jrow, msglvl, neqns,
                nedges, nent, nrhs, nrow, seed, type ;
InpMtx          *mtxA ;
IV              *newToOldIV, *oldToNewIV ;
IVL             *adjIVL, *symbfacIVL ;
SubMtxManager   *mtxmanager ;
/*--------------------------------------------------------------------*/
/*
   --------------------
   get input parameters
   --------------------
*/
if ( argc != 7 ) {
   fprintf(stdout, 
      "\n usage: %s msglvl msgFile type matrixFileName rhsFileName seed"
      "\n    msglvl -- message level"
      "\n    msgFile -- message file"
      "\n    type    -- type of entries"
      "\n      1 (SPOOLES_REAL)    -- real entries"
      "\n      2 (SPOOLES_COMPLEX) -- complex entries"
      "\n    matrixFileName -- matrix file name, format"
      "\n       nrow ncol nent"
      "\n       irow jcol entry"
      "\n        ..."
      "\n        note: indices are zero based"
      "\n    rhsFileName -- right hand side file name, format"
      "\n       nrow "
      "\n       entry[0]"
      "\n       ..."
      "\n       entry[nrow-1]"
      "\n    seed -- random number seed, used for ordering"
      "\n", argv[0]) ;
   return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n fatal error in %s"
           "\n unable to open file %s\n",
           argv[0], argv[2]) ;
   return(-1) ;
}
type           = atoi(argv[3]) ;
matrixFileName = argv[4] ;
rhsFileName    = argv[5] ;
seed           = atoi(argv[6]) ;
/*--------------------------------------------------------------------*/
/*
   --------------------------------------------
   STEP 1: read the entries from the input file 
   and create the InpMtx object of A
   --------------------------------------------
*/
inputFile = fopen(matrixFileName, "r") ;
fscanf(inputFile, "%d %d %d", &nrow, &neqns, &nent) ;
mtxA = InpMtx_new() ;
InpMtx_init(mtxA, INPMTX_BY_ROWS, type, nent, 0) ;
if ( type == SPOOLES_REAL ) {
   for ( ient = 0 ; ient < nent ; ient++ ) {
      fscanf(inputFile, "%d %d %le", &irow, &jcol, &value) ;
      InpMtx_inputRealEntry(mtxA, irow, jcol, value) ;
   }
} else {
   for ( ient = 0 ; ient < nent ; ient++ ) {
      fscanf(inputFile, "%d %d %le %le", &irow, &jcol, &real, &imag) ;
      InpMtx_inputComplexEntry(mtxA, irow, jcol, real, imag) ;
   }
}
fclose(inputFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n input matrix") ;
   InpMtx_writeForHumanEye(mtxA, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   ----------------------------------------
   STEP 2: read the right hand side entries
   ----------------------------------------
*/
inputFile = fopen(rhsFileName, "r") ;
fscanf(inputFile, "%d %d", &nrow, &nrhs) ;
mtxB = DenseMtx_new() ;
DenseMtx_init(mtxB, type, 0, 0, nrow, nrhs, 1, nrow) ;
DenseMtx_zero(mtxB) ;
if ( type == SPOOLES_REAL ) {
   for ( irow = 0 ; irow < nrow ; irow++ ) {
      fscanf(inputFile, "%d", &jrow) ;
      for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) {
         fscanf(inputFile, "%le", &value) ;
         DenseMtx_setRealEntry(mtxB, jrow, jrhs, value) ;
      }
   }
} else {
   for ( irow = 0 ; irow < nrow ; irow++ ) {
      fscanf(inputFile, "%d", &jrow) ;
      for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) {
         fscanf(inputFile, "%le %le", &real, &imag) ;
         DenseMtx_setComplexEntry(mtxB, jrow, jrhs, real, imag) ;
      }
   }
}
fclose(inputFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n rhs matrix in original ordering") ;
   DenseMtx_writeForHumanEye(mtxB, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -------------------------------------------------
   STEP 3 : find a low-fill ordering
   (1) create the Graph object for A^TA or A^HA
   (2) order the graph using multiple minimum degree
   -------------------------------------------------
*/
graph = Graph_new() ;
adjIVL = InpMtx_adjForATA(mtxA) ;
nedges = IVL_tsize(adjIVL) ;
Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL,
            NULL, NULL) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n graph of A^T A") ;
   Graph_writeForHumanEye(graph, msgFile) ;
   fflush(msgFile) ;
}
frontETree = orderViaMMD(graph, seed, msglvl, msgFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n front tree from ordering") ;
   ETree_writeForHumanEye(frontETree, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -----------------------------------------------------
   STEP 4: get the permutation, permute the matrix and 
           front tree and get the symbolic factorization
   -----------------------------------------------------
*/
oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
newToOldIV = ETree_newToOldVtxPerm(frontETree) ;
InpMtx_permute(mtxA, NULL, IV_entries(oldToNewIV)) ;
InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
symbfacIVL = SymbFac_initFromGraph(frontETree, graph) ;
IVL_overwrite(symbfacIVL, oldToNewIV) ;
IVL_sortUp(symbfacIVL) ;
ETree_permuteVertices(frontETree, oldToNewIV) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n old-to-new permutation vector") ;
   IV_writeForHumanEye(oldToNewIV, msgFile) ;
   fprintf(msgFile, "\n\n new-to-old permutation vector") ;
   IV_writeForHumanEye(newToOldIV, msgFile) ;
   fprintf(msgFile, "\n\n front tree after permutation") ;
   ETree_writeForHumanEye(frontETree, msgFile) ;
   fprintf(msgFile, "\n\n input matrix after permutation") ;
   InpMtx_writeForHumanEye(mtxA, msgFile) ;
   fprintf(msgFile, "\n\n symbolic factorization") ;
   IVL_writeForHumanEye(symbfacIVL, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   ------------------------------------------
   STEP 5: initialize the front matrix object
   ------------------------------------------
*/
frontmtx = FrontMtx_new() ;
mtxmanager = SubMtxManager_new() ;
SubMtxManager_init(mtxmanager, NO_LOCK, 0) ;
if ( type == SPOOLES_REAL ) {
   FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, 
                 SPOOLES_SYMMETRIC, FRONTMTX_DENSE_FRONTS, 
                 SPOOLES_NO_PIVOTING, NO_LOCK, 0, NULL,
                 mtxmanager, msglvl, msgFile) ;
} else {
   FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, 
                 SPOOLES_HERMITIAN, FRONTMTX_DENSE_FRONTS, 
                 SPOOLES_NO_PIVOTING, NO_LOCK, 0, NULL,
                 mtxmanager, msglvl, msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -----------------------------------------
   STEP 6: compute the numeric factorization
   -----------------------------------------
*/
chvmanager = ChvManager_new() ;
ChvManager_init(chvmanager, NO_LOCK, 1) ;
DVzero(10, cpus) ;
facops = 0.0 ;
FrontMtx_QR_factor(frontmtx, mtxA, chvmanager, 
                   cpus, &facops, msglvl, msgFile) ;
ChvManager_free(chvmanager) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n factor matrix") ;
   fprintf(msgFile, "\n facops = %9.2f", facops) ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   --------------------------------------
   STEP 7: post-process the factorization
   --------------------------------------
*/
FrontMtx_postProcess(frontmtx, msglvl, msgFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n factor matrix after post-processing") ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -------------------------------
   STEP 8: solve the linear system
   -------------------------------
*/
mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
FrontMtx_QR_solve(frontmtx, mtxA, mtxX, mtxB, mtxmanager,
                  cpus, msglvl, msgFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n solution matrix in new ordering") ;
   DenseMtx_writeForHumanEye(mtxX, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -------------------------------------------------------
   STEP 9: permute the solution into the original ordering
   -------------------------------------------------------
*/
DenseMtx_permuteRows(mtxX, newToOldIV) ;
if ( msglvl > 0 ) {
   fprintf(msgFile, "\n\n solution matrix in original ordering") ;
   DenseMtx_writeForHumanEye(mtxX, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   ------------------------
   free the working storage
   ------------------------
*/
InpMtx_free(mtxA) ;
FrontMtx_free(frontmtx) ;
Graph_free(graph) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxB) ;
ETree_free(frontETree) ;
IV_free(newToOldIV) ;
IV_free(oldToNewIV) ;
IVL_free(symbfacIVL) ;
SubMtxManager_free(mtxmanager) ;
/*--------------------------------------------------------------------*/
return(1) ; }
Ejemplo n.º 19
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   ---------------------------------------------------------------
   read in a ETree object, create an IV object with the same size,
   mark the vertices in the top level separator(s), write the IV
   object to a file

   created -- 96may02, cca
   ---------------------------------------------------------------
*/
{
char     *inETreeFileName, *outIVfileName ;
double   t1, t2 ;
int      msglvl, rc, J, K, ncomp, nfront, nvtx, v ;
int      *bndwghts, *compids, *fch, *map, *nodwghts, 
         *par, *sib, *vtxToFront ;
IV       *compidsIV, *mapIV ;
ETree    *etree ;
FILE     *msgFile ;
Tree     *tree ;

if ( argc != 5 ) {
   fprintf(stdout, 
      "\n\n usage : %s msglvl msgFile inETreeFile outIVfile"
      "\n    msglvl      -- message level"
      "\n    msgFile     -- message file"
      "\n    inETreeFile -- input file, must be *.etreef or *.etreeb"
      "\n    outIVfile   -- output file, must be *.ivf or *.ivb"
      "\n", argv[0]) ;
   return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n fatal error in %s"
           "\n unable to open file %s\n",
           argv[0], argv[2]) ;
   return(-1) ;
}
inETreeFileName = argv[3] ;
outIVfileName   = argv[4] ;
fprintf(msgFile, 
        "\n %s "
        "\n msglvl      -- %d" 
        "\n msgFile     -- %s" 
        "\n inETreeFile -- %s" 
        "\n outIVfile   -- %s" 
        "\n",
        argv[0], msglvl, argv[2], inETreeFileName, outIVfileName) ;
fflush(msgFile) ;
/*
   ------------------------
   read in the ETree object
   ------------------------
*/
if ( strcmp(inETreeFileName, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   exit(0) ;
}
etree = ETree_new() ;
MARKTIME(t1) ;
rc = ETree_readFromFile(etree, inETreeFileName) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %9.5f : read in etree from file %s",
        t2 - t1, inETreeFileName) ;
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from ETree_readFromFile(%p,%s)",
           rc, etree, inETreeFileName) ;
   exit(-1) ;
}
fprintf(msgFile, "\n\n after reading ETree object from file %s",
        inETreeFileName) ;
if ( msglvl > 2 ) {
   ETree_writeForHumanEye(etree, msgFile) ;
} else {
   ETree_writeStats(etree, msgFile) ;
}
fflush(msgFile) ;
nfront     = ETree_nfront(etree) ;
nvtx       = ETree_nvtx(etree) ;
bndwghts   = ETree_bndwghts(etree) ;
vtxToFront = ETree_vtxToFront(etree) ;
nodwghts   = ETree_nodwghts(etree) ;
par        = ETree_par(etree) ;
fch        = ETree_fch(etree) ;
sib        = ETree_sib(etree) ;
tree       = ETree_tree(etree) ;
/*
   -----------------------------------------
   create the map from fronts to components,
   top level separator(s) are component zero
   -----------------------------------------
*/
mapIV = IV_new() ;
IV_init(mapIV, nfront, NULL) ;
map = IV_entries(mapIV) ;
ncomp = 0 ;
for ( J = Tree_preOTfirst(tree) ;
      J != -1 ;
      J = Tree_preOTnext(tree, J) ) { 
   if ( (K = par[J]) == -1 ) {
      map[J] = 0 ;
   } else if ( map[K] != 0 ) {
      map[J] = map[K] ;
   } else if ( J == fch[K] && sib[J] == -1 
            && bndwghts[J] == nodwghts[K] + bndwghts[K] ) {
      map[J] = 0 ;
   } else {
      map[J] = ++ncomp ;
   }
}
fprintf(msgFile, "\n\n mapIV object") ;
if ( msglvl > 2 ) {
   IV_writeForHumanEye(mapIV, msgFile) ;
} else {
   IV_writeStats(mapIV, msgFile) ;
}
/*
   ----------------------------------------
   fill the map from vertices to components
   ----------------------------------------
*/
compidsIV = IV_new() ;
IV_init(compidsIV, nvtx, NULL) ;
compids = IV_entries(compidsIV) ;
for ( v = 0 ; v < nvtx ; v++ ) {
   compids[v] = map[vtxToFront[v]] ;
}
fprintf(msgFile, "\n\n compidsIV object") ;
if ( msglvl > 2 ) {
   IV_writeForHumanEye(compidsIV, msgFile) ;
} else {
   IV_writeStats(compidsIV, msgFile) ;
}
fflush(msgFile) ;
/*
   -----------------------
   write out the IV object
   -----------------------
*/
if ( strcmp(outIVfileName, "none") != 0 ) {
   MARKTIME(t1) ;
   rc = IV_writeToFile(compidsIV, outIVfileName) ;
   MARKTIME(t2) ;
   fprintf(msgFile, "\n CPU %9.5f : write etree to file %s",
           t2 - t1, outIVfileName) ;
}
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from IV_writeToFile(%p,%s)",
           rc, compidsIV, outIVfileName) ;
}
/*
   ----------------
   free the objects
   ----------------
*/
ETree_free(etree) ;
IV_free(mapIV) ;
IV_free(compidsIV) ;

fprintf(msgFile, "\n") ;
fclose(msgFile) ;

return(1) ; }
Ejemplo n.º 20
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   ------------------------------------------------------
   (1) read in an ETree object.
   (2) read in an Graph object.
   (3) find the optimal domain/schur complement partition
       for a semi-implicit factorization
   
   created -- 96oct03, cca
   ------------------------------------------------------
*/
{
char     *inETreeFileName, *inGraphFileName, *outIVfileName ;
double   alpha, nA21, nfent1, nfops1, nL11, nL22, nPhi, nV, t1, t2 ;
Graph    *graph ;
int      ii, inside, J, K, msglvl, nfind1, nfront, nJ, nleaves1, 
         nnode1, nvtx, rc, sizeJ, totalgain, vsize, v, w ;
int      *adjJ, *compids, *nodwghts, *vadj, *vtxToFront, *vwghts ;
IV       *compidsIV ;
IVL      *symbfacIVL ;
ETree    *etree ;
FILE     *msgFile ;
Tree     *tree ;

if ( argc != 7 ) {
   fprintf(stdout, 
"\n\n usage : %s msglvl msgFile inETreeFile inGraphFile alpha"
"\n         outIVfile "
"\n    msglvl       -- message level"
"\n    msgFile      -- message file"
"\n    inETreeFile  -- input file, must be *.etreef or *.etreeb"
"\n    inGraphFile  -- input file, must be *.graphf or *.graphb"
"\n    alpha        -- weight parameter"
"\n       alpha = 0 --> minimize storage"
"\n       alpha = 1 --> minimize solve ops"
"\n    outIVfile    -- output file for oldToNew vector,"
"\n                    must be *.ivf or *.ivb"
"\n", argv[0]) ;
   return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n fatal error in %s"
           "\n unable to open file %s\n",
           argv[0], argv[2]) ;
   return(-1) ;
}
inETreeFileName  = argv[3] ;
inGraphFileName  = argv[4] ;
alpha            = atof(argv[5]) ;
outIVfileName    = argv[6] ;
fprintf(msgFile, 
        "\n %s "
        "\n msglvl        -- %d" 
        "\n msgFile       -- %s" 
        "\n inETreeFile   -- %s" 
        "\n inGraphFile   -- %s" 
        "\n alpha         -- %f" 
        "\n outIVfile     -- %s" 
        "\n",
        argv[0], msglvl, argv[2], 
        inETreeFileName, inGraphFileName, alpha, outIVfileName) ;
fflush(msgFile) ;
/*
   ------------------------
   read in the ETree object
   ------------------------
*/
if ( strcmp(inETreeFileName, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   spoolesFatal();
}
etree = ETree_new() ;
MARKTIME(t1) ;
rc = ETree_readFromFile(etree, inETreeFileName) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %9.5f : read in etree from file %s",
        t2 - t1, inETreeFileName) ;
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from ETree_readFromFile(%p,%s)",
           rc, etree, inETreeFileName) ;
   spoolesFatal();
}
ETree_leftJustify(etree) ;
fprintf(msgFile, "\n\n after reading ETree object from file %s",
        inETreeFileName) ;
if ( msglvl > 2 ) {
   ETree_writeForHumanEye(etree, msgFile) ;
} else {
   ETree_writeStats(etree, msgFile) ;
}
fflush(msgFile) ;
nfront     = ETree_nfront(etree) ;
tree       = ETree_tree(etree) ;
nodwghts   = ETree_nodwghts(etree) ;
vtxToFront = ETree_vtxToFront(etree) ;
/*
   ------------------------
   read in the Graph object
   ------------------------
*/
if ( strcmp(inGraphFileName, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   spoolesFatal();
}
graph = Graph_new() ;
MARKTIME(t1) ;
rc = Graph_readFromFile(graph, inGraphFileName) ;
nvtx = graph->nvtx ;
vwghts = graph->vwghts ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %9.5f : read in graph from file %s",
        t2 - t1, inGraphFileName) ;
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from Graph_readFromFile(%p,%s)",
           rc, graph, inGraphFileName) ;
   spoolesFatal();
}
fprintf(msgFile, "\n\n after reading Graph object from file %s",
        inGraphFileName) ;
if ( msglvl > 2 ) {
   Graph_writeForHumanEye(graph, msgFile) ;
} else {
   Graph_writeStats(graph, msgFile) ;
}
fflush(msgFile) ;
/*
   ----------------------
   compute the statistics
   ----------------------
*/
nnode1 = etree->tree->n ;
nfind1 = ETree_nFactorIndices(etree) ;
nfent1 = ETree_nFactorEntries(etree, SPOOLES_SYMMETRIC) ;
nfops1 = ETree_nFactorOps(etree, SPOOLES_REAL, SPOOLES_SYMMETRIC) ;
nleaves1 = Tree_nleaves(etree->tree) ;
fprintf(stdout, "\n root front %d has %d vertices",
        etree->tree->root,
        etree->nodwghtsIV->vec[etree->tree->root]) ;
/*
   ---------------------------------
   create the symbolic factorization
   ---------------------------------
*/
symbfacIVL = SymbFac_initFromGraph(etree, graph) ;
if ( msglvl > 2 ) {
   IVL_writeForHumanEye(symbfacIVL, msgFile) ;
} else {
   IVL_writeStats(symbfacIVL, msgFile) ;
}
fflush(msgFile) ;
/*
   --------------------------
   find the optimal partition
   --------------------------
*/
compidsIV = ETree_optPart(etree, graph, symbfacIVL, alpha,
                          &totalgain, msglvl, msgFile) ;
if ( msglvl > 2 ) {
   IV_writeForHumanEye(compidsIV, msgFile) ;
} else {
   IV_writeStats(compidsIV, msgFile) ;
}
fflush(msgFile) ;
compids = IV_entries(compidsIV) ;
/*
   ------------------------------------------------------
   compute the number of vertices in the schur complement
   ------------------------------------------------------
*/
for ( J = 0, nPhi = nV = 0. ; J < nfront ; J++ ) {
   if ( compids[J] == 0 ) {
      nPhi += nodwghts[J] ;
   }
   nV += nodwghts[J] ;
}
/*
   --------------------------------------------
   compute the number of entries in L11 and L22
   --------------------------------------------
*/
nL11 = nL22 = 0 ;
for ( J = Tree_postOTfirst(tree) ;
      J != -1 ;
      J = Tree_postOTnext(tree, J) ) {
   nJ = nodwghts[J] ;
   if ( msglvl > 3 ) {
      fprintf(msgFile, "\n\n front %d, nJ = %d", J, nJ) ;
   }
   IVL_listAndSize(symbfacIVL, J, &sizeJ, &adjJ) ;
   for ( ii = 0, inside = 0 ; ii < sizeJ ; ii++ ) {
      w = adjJ[ii] ;
      K = vtxToFront[w] ;
      if ( msglvl > 3 ) {
         fprintf(msgFile, "\n    w = %d, K = %d", w, K) ;
      }
      if ( K > J && compids[K] == compids[J] ) {
         inside += (vwghts == NULL) ? 1 : vwghts[w] ;
         if ( msglvl > 3 ) {
            fprintf(msgFile, ", inside") ;
         }
      }
   }
   if ( compids[J] != 0 ) {
      if ( msglvl > 3 ) {
         fprintf(msgFile, "\n    inside = %d, adding %d to L11",
                 inside, nJ*nJ + 2*nJ*inside) ;
      }
      nL11 += (nJ*(nJ+1))/2 + nJ*inside ;
   } else {
      if ( msglvl > 3 ) {
         fprintf(msgFile, "\n    inside = %d, adding %d to L22",
                 inside, (nJ*(nJ+1))/2 + nJ*inside) ;
      }
      nL22 += (nJ*(nJ+1))/2 + nJ*inside ;
   }
}
if ( msglvl > 0 ) {
   fprintf(msgFile, "\n |L| = %.0f, |L11| = %.0f, |L22| = %.0f",
           nfent1, nL11, nL22) ;
}
/*
   ------------------------------------
   compute the number of entries in A21
   ------------------------------------
*/
nA21 = 0 ;
if ( vwghts != NULL ) {
   for ( v = 0 ; v < nvtx ; v++ ) {
      J = vtxToFront[v] ;
      if ( compids[J] != 0 ) {
         Graph_adjAndSize(graph, v, &vsize, &vadj) ;
         for ( ii = 0 ; ii < vsize ; ii++ ) {
            w = vadj[ii] ;
            K = vtxToFront[w] ;
            if ( compids[K] == 0 ) {
               if ( msglvl > 3 ) {
                  fprintf(msgFile, "\n A21 : v = %d, w = %d", v, w) ;
               }
               nA21 += vwghts[v] * vwghts[w] ;
            }
         }
      }
   }
} else {
   for ( v = 0 ; v < nvtx ; v++ ) {
      J = vtxToFront[v] ;
      if ( compids[J] != 0 ) {
         Graph_adjAndSize(graph, v, &vsize, &vadj) ;
         for ( ii = 0 ; ii < vsize ; ii++ ) {
            w = vadj[ii] ;
            K = vtxToFront[w] ;
            if ( compids[K] == 0 ) {
               if ( msglvl > 3 ) {
                  fprintf(msgFile, "\n A21 : v = %d, w = %d", v, w) ;
               }
               nA21++ ;
            }
         }
      }
   }
}
if ( msglvl > 0 ) {
   fprintf(msgFile,
           "\n |L| = %.0f, |L11| = %.0f, |L22| = %.0f, |A21| = %.0f",
           nfent1, nL11, nL22, nA21) ;
   fprintf(msgFile,
      "\n storage: explicit = %.0f, semi-implicit = %.0f, ratio = %.3f"
      "\n opcount: explicit = %.0f, semi-implicit = %.0f, ratio = %.3f",
      nfent1, nL11 + nA21 + nL22,
      nfent1/(nL11 + nA21 + nL22),
      2*nfent1, 4*nL11 + 2*nA21 + 2*nL22,
      2*nfent1/(4*nL11 + 2*nA21 + 2*nL22)) ;
   fprintf(msgFile, "\n ratios %8.3f %8.3f %8.3f",
           nPhi/nV,
           nfent1/(nL11 + nA21 + nL22),
           2*nfent1/(4*nL11 + 2*nA21 + 2*nL22)) ;
}
/*
   ----------------
   free the objects
   ----------------
*/
ETree_free(etree) ;
Graph_free(graph) ;
IVL_free(symbfacIVL) ;

fprintf(msgFile, "\n") ;
fclose(msgFile) ;

return(1) ; }
Ejemplo n.º 21
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   ----------------------------------------
   get statistics for a semi-implicit solve

   created -- 97dec11, cca
   ----------------------------------------
*/
{
char     *inGraphFileName, *inETreeFileName, *inMapFileName ;
double   nA21, nL, nL11, nL22, nPhi, nV, t1, t2 ;
ETree    *etree ;
int      ii, inside, J, K, msglvl, nfront, nJ, 
         nvtx, rc, sizeJ, v, vsize, w ;
int      *adjJ, *frontmap, *map, *nodwghts, 
         *vadj, *vtxToFront, *vwghts ;
IV       *mapIV ;
IVL      *symbfacIVL ;
Graph    *graph ;
FILE     *msgFile ;
Tree     *tree ;

if ( argc != 6 ) {
   fprintf(stdout, 
     "\n\n usage : %s msglvl msgFile GraphFile ETreeFile mapFile "
     "\n    msglvl    -- message level"
     "\n    msgFile   -- message file"
     "\n    GraphFile -- input graph file, must be *.graphf or *.graphb"
     "\n    ETreeFile -- input ETree file, must be *.etreef or *.etreeb"
     "\n    mapFile   -- input map IV file, must be *.ivf or *.ivb"
     "\n",
argv[0]) ;
   return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n fatal error in %s"
           "\n unable to open file %s\n",
           argv[0], argv[2]) ;
   return(-1) ;
}
inGraphFileName = argv[3] ;
inETreeFileName = argv[4] ;
inMapFileName   = argv[5] ;
fprintf(msgFile, 
        "\n %s "
        "\n msglvl        -- %d" 
        "\n msgFile       -- %s" 
        "\n GraphFile     -- %s" 
        "\n ETreeFile     -- %s" 
        "\n mapFile       -- %s" 
        "\n",
        argv[0], msglvl, argv[2], 
        inGraphFileName, inETreeFileName, inMapFileName) ;
fflush(msgFile) ;
/*
   ------------------------
   read in the Graph object
   ------------------------
*/
graph = Graph_new() ;
if ( strcmp(inGraphFileName, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   exit(0) ;
}
MARKTIME(t1) ;
rc = Graph_readFromFile(graph, inGraphFileName) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %9.5f : read in graph from file %s",
        t2 - t1, inGraphFileName) ;
nvtx   = graph->nvtx ;
vwghts = graph->vwghts ;
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from Graph_readFromFile(%p,%s)",
           rc, graph, inGraphFileName) ;
   exit(-1) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n after reading Graph object from file %s",
           inGraphFileName) ;
   Graph_writeForHumanEye(graph, msgFile) ;
   fflush(msgFile) ;
}
/*
   ------------------------
   read in the ETree object
   ------------------------
*/
etree = ETree_new() ;
if ( strcmp(inETreeFileName, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   exit(0) ;
}
MARKTIME(t1) ;
rc = ETree_readFromFile(etree, inETreeFileName) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %9.5f : read in etree from file %s",
        t2 - t1, inETreeFileName) ;
nfront     = ETree_nfront(etree) ;
tree       = ETree_tree(etree) ;
vtxToFront = ETree_vtxToFront(etree) ;
nodwghts   = ETree_nodwghts(etree) ;
nL         = ETree_nFactorEntries(etree, 2) ;
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from ETree_readFromFile(%p,%s)",
           rc, etree, inETreeFileName) ;
   exit(-1) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n after reading ETree object from file %s",
           inETreeFileName) ;
   ETree_writeForHumanEye(etree, msgFile) ;
   fflush(msgFile) ;
}
/*
   -------------------------
   read in the map IV object
   -------------------------
*/
mapIV = IV_new() ;
if ( strcmp(inMapFileName, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   exit(0) ;
}
MARKTIME(t1) ;
rc = IV_readFromFile(mapIV, inMapFileName) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %9.5f : read in mapIV from file %s",
        t2 - t1, inMapFileName) ;
map = IV_entries(mapIV) ;
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from IV_readFromFile(%p,%s)",
           rc, mapIV, inMapFileName) ;
   exit(-1) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n after reading IV object from file %s",
           inMapFileName) ;
   IV_writeForHumanEye(mapIV, msgFile) ;
   fflush(msgFile) ;
}
nV = nPhi = 0 ;
if ( vwghts == NULL ) {
   for ( v = 0 ; v < nvtx ; v++ ) {
      nV++ ;
      if ( map[v] == 0 ) {
         nPhi++ ;
      }
   }
} else {
   for ( v = 0 ; v < nvtx ; v++ ) {
      nV += vwghts[v] ;
      if ( map[v] == 0 ) {
         nPhi += vwghts[v] ;
      }
   }
}
fprintf(msgFile, "\n nPhi = %.0f, nV = %.0f", nPhi, nV) ;
/*
   -------------------------
   get the frontmap[] vector
   -------------------------
*/
frontmap = IVinit(nfront, -1) ;
for ( v = 0 ; v < nvtx ; v++ ) {
   J = vtxToFront[v] ;
   if ( frontmap[J] == -1 ) {
      frontmap[J] = map[v] ;
   } else if ( frontmap[J] != map[v] ) {
      fprintf(msgFile, "\n\n error, frontmap[%d] = %d, map[%d] = %d",
              J, frontmap[J], v, map[v]) ;
   }
}
/*
   ----------------------------------
   compute the symbolic factorization
   ----------------------------------
*/
symbfacIVL = SymbFac_initFromGraph(etree, graph) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n symbolic factorization") ;
   IVL_writeForHumanEye(symbfacIVL, msgFile) ;
   fflush(msgFile) ;
}
/*
   --------------------------------------------
   compute the number of entries in L11 and L22
   --------------------------------------------
*/
nL11 = nL22 = 0 ;
for ( J = Tree_postOTfirst(tree) ;
      J != -1 ;
      J = Tree_postOTnext(tree, J) ) {
   nJ = nodwghts[J] ;
   if ( msglvl > 3 ) {
      fprintf(msgFile, "\n\n front %d, nJ = %d", J, nJ) ;
   }
   IVL_listAndSize(symbfacIVL, J, &sizeJ, &adjJ) ;
   for ( ii = 0, inside = 0 ; ii < sizeJ ; ii++ ) {
      w = adjJ[ii] ;
      K = vtxToFront[w] ;
      if ( msglvl > 3 ) {
         fprintf(msgFile, "\n    w = %d, K = %d", w, K) ;
      }
      if ( K > J && frontmap[K] == frontmap[J] ) {
         inside += (vwghts == NULL) ? 1 : vwghts[w] ;
         if ( msglvl > 3 ) {
            fprintf(msgFile, ", inside") ;
         }
      }
   }
   if ( frontmap[J] != 0 ) {
      if ( msglvl > 3 ) {
         fprintf(msgFile, "\n    inside = %d, adding %d to L11",
                 inside, nJ*nJ + 2*nJ*inside) ;
      }
      nL11 += nJ*nJ + 2*nJ*inside ;
   } else {
      if ( msglvl > 3 ) {
         fprintf(msgFile, "\n    inside = %d, adding %d to L22",
                 inside, nJ*nJ + 2*nJ*inside) ;
      }
      nL22 += nJ*nJ + 2*nJ*inside ;
   }
}
if ( msglvl > 0 ) {
   fprintf(msgFile, "\n |L| = %.0f, |L11| = %.0f, |L22| = %.0f", 
           nL, nL11, nL22) ;
}
/*
   ------------------------------------
   compute the number of entries in A21
   ------------------------------------
*/
nA21 = 0 ;
if ( vwghts != NULL ) {
   for ( v = 0 ; v < nvtx ; v++ ) {
      if ( map[v] == 0 ) {
         Graph_adjAndSize(graph, v, &vsize, &vadj) ;
         for ( ii = 0 ; ii < vsize ; ii++ ) {
            w = vadj[ii] ;
            if ( map[v] != map[w] ) {
               if ( msglvl > 3 ) {
                  fprintf(msgFile, "\n A21 : v = %d, w = %d", v, w) ;
               }
               nA21 += vwghts[v] * vwghts[w] ;
            }
         }
      }
   }
} else {
   for ( v = 0 ; v < nvtx ; v++ ) {
      if ( map[v] == 0 ) {
         Graph_adjAndSize(graph, v, &vsize, &vadj) ;
         for ( ii = 0 ; ii < vsize ; ii++ ) {
            w = vadj[ii] ;
            if ( map[v] != map[w] ) {
               if ( msglvl > 3 ) {
                  fprintf(msgFile, "\n A21 : v = %d, w = %d", v, w) ;
               }
               nA21++ ;
            }
         }
      }
   }
}
if ( msglvl > 0 ) {
   fprintf(msgFile, 
           "\n |L| = %.0f, |L11| = %.0f, |L22| = %.0f, |A21| = %.0f", 
           nL, nL11, nL22, nA21) ;
   fprintf(msgFile, 
      "\n storage: explicit = %.0f, semi-implicit = %.0f, ratio = %.3f"
      "\n opcount: explicit = %.0f, semi-implicit = %.0f, ratio = %.3f",
      nL, nL11 + nA21 + nL22, 
      nL/(nL11 + nA21 + nL22),
      2*nL, 4*nL11 + 2*nA21 + 2*nL22,
      2*nL/(4*nL11 + 2*nA21 + 2*nL22)) ;
   fprintf(msgFile, "\n ratios %8.3f %8.3f %8.3f",
           nPhi/nV,
           nL/(nL11 + nA21 + nL22),
           2*nL/(4*nL11 + 2*nA21 + 2*nL22)) ;
}
/*
   ------------------------
   free the working storage
   ------------------------
*/
Graph_free(graph) ;
ETree_free(etree) ;
IV_free(mapIV) ;
IVL_free(symbfacIVL) ;
IVfree(frontmap) ;

fprintf(msgFile, "\n") ;
fclose(msgFile) ;

return(1) ; }