Ejemplo n.º 1
0
/*---------------------------------------------------------------------------*/
static int
cc2420_prepare(const void *payload, unsigned short payload_len)
{
  uint8_t total_len;
#if CC2420_CONF_CHECKSUM
  uint16_t checksum;
#endif /* CC2420_CONF_CHECKSUM */
  GET_LOCK();

  PRINTF("cc2420: sending %d bytes\n", payload_len);

  RIMESTATS_ADD(lltx);

  /* Wait for any previous transmission to finish. */
  /*  while(status() & BV(CC2420_TX_ACTIVE));*/

  /* Write packet to TX FIFO. */
  strobe(CC2420_SFLUSHTX);

#if CC2420_CONF_CHECKSUM
  checksum = crc16_data(payload, payload_len, 0);
#endif /* CC2420_CONF_CHECKSUM */
  total_len = payload_len + AUX_LEN;
  FASTSPI_WRITE_FIFO(&total_len, 1);
  FASTSPI_WRITE_FIFO(payload, payload_len);
#if CC2420_CONF_CHECKSUM
  FASTSPI_WRITE_FIFO(&checksum, CHECKSUM_LEN);
#endif /* CC2420_CONF_CHECKSUM */

  RELEASE_LOCK();
  return 0;
}
Ejemplo n.º 2
0
int
cc2420_send(struct hdr_802_15 *hdr, u8_t hdr_len,
	    const u8_t *payload, u8_t payload_len)
{
  u8_t spiStatusByte;
  int s;

  /* struct hdr_802_15::len shall *not* be counted, thus the -1.
   * 2 == sizeof(footer).
   */
  if (((hdr_len - 1) + payload_len + 2) > MAX_PACKET_LEN)
    return -1;

  /* This code uses the CC2420 CCA (Clear Channel Assessment) to
   * implement Carrier Sense Multiple Access with Collision Avoidance
   * (CSMA-CA) and requires the receiver to be enabled and ready.
   */
  if (!receive_on)
    return -2;

  /* Wait for previous transmission to finish and RSSI. */
  do {
    spiStatusByte = cc2420_status();
    if (!(spiStatusByte & BV(CC2420_RSSI_VALID))) /* RSSI needed by CCA */
      continue;
  } while (spiStatusByte & BV(CC2420_TX_ACTIVE));

  hdr->dst_pan = pan_id;	/* Not at fixed position! xxx/bg */
  last_dst = hdr->dst;		/* Not dst either. */
  last_used_seq++;
  hdr->seq = last_used_seq;
  cc2420_ack_received = 0;

  /* Write packet to TX FIFO, appending FCS if AUTOCRC is enabled. */
  cc2420_strobe(CC2420_SFLUSHTX); /* Cancel send that never started. */
  s = splhigh();
  FASTSPI_WRITE_FIFO(hdr, hdr_len);
  FASTSPI_WRITE_FIFO(payload, payload_len);
  splx(s);

  /* Send stuff from FIFO now! */
  process_post_synch(&cc2420_retransmit_process, PROCESS_EVENT_MSG, NULL);

  return UIP_FW_OK;
}
Ejemplo n.º 3
0
/*---------------------------------------------------------------------------*/
void
cc2420_ugly_hack_send_only_one_symbol(void)
{
  uint8_t len;
  GET_LOCK();

  /* Write packet to TX FIFO. */
  strobe(CC2420_SFLUSHTX);

  len = 1;
  FASTSPI_WRITE_FIFO(&len, 1);
  FASTSPI_WRITE_FIFO(&len, 1);

  strobe(CC2420_STXON);
  while(!SFD_IS_1);

  /* Turn radio off immediately after sending the first symbol. */
  strobe(CC2420_SRFOFF);
  RELEASE_LOCK();
  return;
}
Ejemplo n.º 4
0
//-------------------------------------------------------------------------------------------------------
//  BYTE rf_tx_packet(RF_TX_INFO *pRTI)
//
//  DESCRIPTION:
//		Transmits a packet using the IEEE 802.15.4 MAC data packet format with short addresses. CCA is
//		measured only once before backet transmission (not compliant with 802.15.4 CSMA-CA).
//		The function returns:
//			- When pRTI->ackRequest is FALSE: After the transmission has begun (SFD gone high)
//			- When pRTI->ackRequest is TRUE: After the acknowledgment has been received/declared missing.
//		The acknowledgment is received through the FIFOP interrupt.
//
//  ARGUMENTS:
//      RF_TX_INFO *pRTI
//          The transmission structure, which contains all relevant info about the packet.
//
//  RETURN VALUE:
//		uint8_t
//			Successful transmission (acknowledgment received)
//-------------------------------------------------------------------------------------------------------
uint8_t rf_tx_packet(RF_TX_INFO *pRTI)
{
    uint16_t frameControlField;
    uint8_t packetLength, length;
    uint8_t success;
    uint8_t spiStatusByte;
    uint8_t checksum,i;

#ifdef RADIO_PRIORITY_CEILING
    nrk_sem_pend(radio_sem);
#endif

#ifdef CC2420_OSC_OPT
    FASTSPI_STROBE(CC2420_SXOSCON);
    nrk_spin_wait_us(OSC_STARTUP_DELAY);
#endif
    if(security_enable)
        FASTSPI_STROBE(CC2420_STXENC);

    checksum=0;
    for(i=0; i<pRTI->length; i++ )
    {
        // lets do our own payload checksum because we don't trust the CRC
        checksum+=pRTI->pPayload[i];
    }
    // Write the packet to the TX FIFO (the FCS is appended automatically when AUTOCRC is enabled)

    // These are only the MAC AGNOSTIC parameters...
    // Slots for example are at a slighly higher later since they assume TDMA
    packetLength = pRTI->length + RF_PACKET_OVERHEAD_SIZE + CHECKSUM_OVERHEAD;
    if(security_enable) packetLength+=4;  // for CTR counter


    // XXX 2 below are hacks...
    FASTSPI_STROBE(CC2420_SFLUSHRX);
    FASTSPI_STROBE(CC2420_SFLUSHRX);
    // Wait until the transceiver is idle
    while (FIFOP_IS_1 || SFD_IS_1);
    // Turn off global interrupts to avoid interference on the SPI interface
    DISABLE_GLOBAL_INT();
    // Flush the TX FIFO just in case...
    FASTSPI_STROBE(CC2420_SFLUSHTX);
    FASTSPI_STROBE(CC2420_SFLUSHTX);

    /*
        // Turn on RX if necessary
        if (!rfSettings.receiveOn) {
    		FASTSPI_STROBE(CC2420_SRXON);
    		}

        // Wait for the RSSI value to become valid
        do {
            FASTSPI_UPD_STATUS(spiStatusByte);
        } while (!(spiStatusByte & BM(CC2420_RSSI_VALID)));

    	// TX begins after the CCA check has passed
        do {
    		FASTSPI_STROBE(CC2420_STXONCCA);
    		FASTSPI_UPD_STATUS(spiStatusByte);
    		halWait(100);
        } while (!(spiStatusByte & BM(CC2420_TX_ACTIVE)));
    */
    FASTSPI_WRITE_FIFO((uint8_t*)&packetLength, 1);               // Packet length
    frameControlField = RF_FCF_NOACK;   // default
    if(auto_ack_enable) frameControlField |= RF_ACK_BM;
    if(security_enable) frameControlField |= RF_SEC_BM;
    FASTSPI_WRITE_FIFO((uint8_t*) &frameControlField, 2);         // Frame control field
    FASTSPI_WRITE_FIFO((uint8_t*) &rfSettings.txSeqNumber, 1);    // Sequence number
    FASTSPI_WRITE_FIFO((uint8_t*) &rfSettings.panId, 2);          // Dest. PAN ID
    FASTSPI_WRITE_FIFO((uint8_t*) &pRTI->destAddr, 2);            // Dest. address
    FASTSPI_WRITE_FIFO((uint8_t*) &rfSettings.myAddr, 2);         // Source address
    if(security_enable)
        FASTSPI_WRITE_FIFO((uint8_t*) &tx_ctr, 4);         // CTR counter

    FASTSPI_WRITE_FIFO((uint8_t*) pRTI->pPayload, pRTI->length);  // Payload
    FASTSPI_WRITE_FIFO((uint8_t*) &checksum, 1);         // Checksum

    if (pRTI->cca == TRUE)
    {
        uint8_t cnt;
        if (!rfSettings.receiveOn)
        {
            FASTSPI_STROBE (CC2420_SRXON);
        }

        // Wait for the RSSI value to become valid
        do
        {
            FASTSPI_UPD_STATUS (spiStatusByte);
        }
        while (!(spiStatusByte & BM (CC2420_RSSI_VALID)));
        // TX begins after the CCA check has passed
        cnt = 0;
        do
        {
            FASTSPI_STROBE (CC2420_STXONCCA);
            FASTSPI_UPD_STATUS (spiStatusByte);
            cnt++;
            if (cnt > 100)
            {
                ENABLE_GLOBAL_INT ();
                nrk_sem_post(radio_sem);
                return FALSE;
            }
            halWait (100);
        }
        while (!(spiStatusByte & BM (CC2420_TX_ACTIVE)));
    }
    else
        FASTSPI_STROBE (CC2420_STXON);

    ENABLE_GLOBAL_INT();
    // Wait for the transmission to begin before exiting (makes sure that this function cannot be called
    // a second time, and thereby cancelling the first transmission (observe the FIFOP + SFD test above).
    while (!SFD_IS_1);
    success = TRUE;

    // Turn interrupts back on
//	ENABLE_GLOBAL_INT();

    while (SFD_IS_1); // wait for packet to finish

    // Wait for the acknowledge to be received, if any
    if (auto_ack_enable)
    {
//		rfSettings.ackReceived = FALSE;

        // Wait for the SFD to go low again
        //	while (SFD_IS_1);
        // We'll enter RX automatically, so just wait until we can be sure that the
        // ack reception should have finished
        // The timeout consists of a 12-symbol turnaround time, the ack packet duration,
        // and a small margin
        halWait((12 * RF_SYMBOL_DURATION) + (RF_ACK_DURATION) + (2 * RF_SYMBOL_DURATION) + 100);

        if(FIFO_IS_1)
        {
            FASTSPI_READ_FIFO_BYTE(length);
            length &= RF_LENGTH_MASK; // Ignore MSB
            success = TRUE;

        }
        else
        {
            FASTSPI_STROBE(CC2420_SFLUSHRX);
            FASTSPI_STROBE(CC2420_SFLUSHRX);
            success = FALSE;
        }

    }


    // Turn off the receiver if it should not continue to be enabled

    DISABLE_GLOBAL_INT();
    //FASTSPI_STROBE(CC2420_SFLUSHRX);
    //FASTSPI_STROBE(CC2420_SFLUSHRX);
    //FASTSPI_STROBE(CC2420_SFLUSHTX);
    //FASTSPI_STROBE(CC2420_SFLUSHTX);

#ifdef CC2420_OSC_OPT
    FASTSPI_STROBE(CC2420_SXOSCOFF);
#endif
    FASTSPI_STROBE(CC2420_SRFOFF);  // shut off radio
    ENABLE_GLOBAL_INT();

    // agr XXX hack to test time issue
    //rf_rx_on();

    // Increment the sequence number, and return the result
    rfSettings.txSeqNumber++;
//	while (SFD_IS_1);
#ifdef RADIO_PRIORITY_CEILING
    nrk_sem_post(radio_sem);
#endif
    return success;

}
Ejemplo n.º 5
0
/**************************************************************************
This function is the same as normal TX, only it waits until the last
second to send the duty out with the high speed timer.  And by duty, I mean
the packet BIATCH...
**************************************************************************/
uint8_t rf_tx_tdma_packet(RF_TX_INFO *pRTI, uint16_t slot_start_time, uint16_t tx_guard_time)
{
    uint16_t frameControlField;
    uint8_t packetLength;
    uint8_t success;
    uint8_t spiStatusByte;
    uint8_t checksum,i;
    uint8_t timestamp;

#ifdef RADIO_PRIORITY_CEILING
    nrk_sem_pend (radio_sem);
#endif
    timestamp=_nrk_os_timer_get();
    // XXX 2 below are hacks...
#ifdef CC2420_OSC_OPT
    FASTSPI_STROBE(CC2420_SXOSCON);
    nrk_spin_wait_us(OSC_STARTUP_DELAY);
#endif
    FASTSPI_STROBE(CC2420_SFLUSHRX);
    FASTSPI_STROBE(CC2420_SFLUSHRX);
    // Wait until the transceiver is idle
    while (FIFOP_IS_1 || SFD_IS_1);
    // Turn off global interrupts to avoid interference on the SPI interface
    DISABLE_GLOBAL_INT();
    // Flush the TX FIFO just in case...
    FASTSPI_STROBE(CC2420_SFLUSHTX);
    FASTSPI_STROBE(CC2420_SFLUSHTX);

    checksum=0;
    for(i=0; i<pRTI->length; i++ )
    {
        // lets do our own payload checksum because we don't trust the CRC
        checksum+=pRTI->pPayload[i];
    }
    packetLength = pRTI->length + RF_PACKET_OVERHEAD_SIZE + CHECKSUM_OVERHEAD;
    //nrk_set_led(3);
    //do { } while(_nrk_get_high_speed_timer()<(tx_guard_time));

    // Write the packet to the TX FIFO (the FCS is appended automatically when AUTOCRC is enabled)
    // These are only the MAC AGNOSTIC parameters...
    // Slots for example are at a higher layer since they assume TDMA

    FASTSPI_WRITE_FIFO((uint8_t*)&packetLength, 1);               // Packet length
    frameControlField = pRTI->ackRequest ? RF_FCF_ACK : RF_FCF_NOACK;
    FASTSPI_WRITE_FIFO((uint8_t*) &frameControlField, 2);         // Frame control field
    FASTSPI_WRITE_FIFO((uint8_t*) &rfSettings.txSeqNumber, 1);    // Sequence number
    FASTSPI_WRITE_FIFO((uint8_t*) &rfSettings.panId, 2);          // Dest. PAN ID
    FASTSPI_WRITE_FIFO((uint8_t*) &pRTI->destAddr, 2);            // Dest. address
    FASTSPI_WRITE_FIFO((uint8_t*) &rfSettings.myAddr, 2);         // Source address

    nrk_high_speed_timer_wait(slot_start_time,tx_guard_time);
    //nrk_clr_led(3);
    /*
    DISABLE_GLOBAL_INT();
     nrk_set_led(3);
    last=0;
    do {
    if(last==_nrk_get_high_speed_timer())
    	{
    	//while(1)
    	//printf( "TX ERROR %d vs %d\r\n",_nrk_get_high_speed_timer(),tx_guard_time );
    	break;
    	}
    last=_nrk_get_high_speed_timer();
    }
    while((volatile)last<(tx_guard_time));

    ENABLE_GLOBAL_INT();
    nrk_clr_led(3);
    */
    /*
        // Turn on RX if necessary
        if (!rfSettings.receiveOn) {
    		FASTSPI_STROBE(CC2420_SRXON);
    		}

        // Wait for the RSSI value to become valid
        do {
            FASTSPI_UPD_STATUS(spiStatusByte);
        } while (!(spiStatusByte & BM(CC2420_RSSI_VALID)));

    	// TX begins after the CCA check has passed
        do {
    		FASTSPI_STROBE(CC2420_STXONCCA);
    		FASTSPI_UPD_STATUS(spiStatusByte);
    		halWait(100);
        } while (!(spiStatusByte & BM(CC2420_TX_ACTIVE)));
    */
    if (pRTI->cca == TRUE)
    {
        uint8_t cnt;
        if (!rfSettings.receiveOn)
        {
            FASTSPI_STROBE (CC2420_SRXON);
        }

        // Wait for the RSSI value to become valid
        do
        {
            FASTSPI_UPD_STATUS (spiStatusByte);
        }
        while (!(spiStatusByte & BM (CC2420_RSSI_VALID)));

        // TX begins after the CCA check has passed
        cnt = 0;
        do
        {
            FASTSPI_STROBE (CC2420_STXONCCA);
            FASTSPI_UPD_STATUS (spiStatusByte);
            cnt++;
            if (cnt > 100)
            {
                ENABLE_GLOBAL_INT ();
                nrk_sem_post(radio_sem);
                return FALSE;
            }
            halWait (100);
        }
        while (!(spiStatusByte & BM (CC2420_TX_ACTIVE)));
    }
    else
        FASTSPI_STROBE (CC2420_STXON);
    //nrk_gpio_set(DEBUG_0);


    // Fill in the rest of the packet now
    FASTSPI_WRITE_FIFO((uint8_t*) pRTI->pPayload, pRTI->length);  // Payload
    FASTSPI_WRITE_FIFO((uint8_t*) &checksum, 1);         // Checksum



    //nrk_spin_wait_us(200);
//  FASTSPI_STROBE(CC2420_STXON);
    // Wait for the transmission to begin before exiting (makes sure that this function cannot be called
    // a second time, and thereby cancelling the first transmission (observe the FIFOP + SFD test above).
    while (!SFD_IS_1);
    success = TRUE;

    // Turn interrupts back on
//	ENABLE_GLOBAL_INT();

    // Wait for the acknowledge to be received, if any
    /*if (pRTI->ackRequest) {
    	rfSettings.ackReceived = FALSE;

    	// Wait for the SFD to go low again
    	while (SFD_IS_1);
        // We'll enter RX automatically, so just wait until we can be sure that the ack reception should have finished
        // The timeout consists of a 12-symbol turnaround time, the ack packet duration, and a small margin
        halWait((12 * RF_SYMBOL_DURATION) + (RF_ACK_DURATION) + (2 * RF_SYMBOL_DURATION) + 100);

    	// If an acknowledgment has been received (by the FIFOP interrupt), the ackReceived flag should be set
    	success = rfSettings.ackReceived;
    }*/


    // Turn off the receiver if it should not continue to be enabled
    DISABLE_GLOBAL_INT();
    // XXX hack, temp out
    //if (!rfSettings.receiveOn) { while (SFD_IS_1); /*FASTSPI_STROBE(CC2420_SRFOFF);*/ }
    // while (SFD_IS_1);
    while (SFD_IS_1); // wait for packet to finish

    FASTSPI_STROBE(CC2420_SFLUSHRX);
    FASTSPI_STROBE(CC2420_SFLUSHRX);
    FASTSPI_STROBE(CC2420_SFLUSHTX);
    FASTSPI_STROBE(CC2420_SFLUSHTX);

#ifdef CC2420_OSC_OPT
    FASTSPI_STROBE(CC2420_SXOSCOFF);
#endif
    FASTSPI_STROBE(CC2420_SRFOFF);  // shut off radio
    ENABLE_GLOBAL_INT();


    // Increment the sequence number, and return the result
    rfSettings.txSeqNumber++;
//	while (SFD_IS_1);
#ifdef RADIO_PRIORITY_CEILING
    nrk_sem_post(radio_sem);
#endif

    return success;

}
Ejemplo n.º 6
0
/*---------------------------------------------------------------------------*/
int
cc2420_send(const void *payload, unsigned short payload_len)
{
  int i;
  uint8_t total_len;
  struct timestamp timestamp;
  uint16_t checksum;

  GET_LOCK();

  PRINTF("cc2420: sending %d bytes\n", payload_len);
  
  RIMESTATS_ADD(lltx);

  /* Wait for any previous transmission to finish. */
  while(status() & BV(CC2420_TX_ACTIVE));

  /* Write packet to TX FIFO. */
  strobe(CC2420_SFLUSHTX);

  checksum = crc16_data(payload, payload_len, 0);
  total_len = payload_len + AUX_LEN;
  FASTSPI_WRITE_FIFO(&total_len, 1);
  FASTSPI_WRITE_FIFO(payload, payload_len);
  FASTSPI_WRITE_FIFO(&checksum, CHECKSUM_LEN);

#if CC2420_CONF_TIMESTAMPS
  timestamp.authority_level = timesynch_authority_level();
  timestamp.time = timesynch_time();
  FASTSPI_WRITE_FIFO(&timestamp, TIMESTAMP_LEN);
#endif /* CC2420_CONF_TIMESTAMPS */

  /* The TX FIFO can only hold one packet. Make sure to not overrun
   * FIFO by waiting for transmission to start here and synchronizing
   * with the CC2420_TX_ACTIVE check in cc2420_send.
   *
   * Note that we may have to wait up to 320 us (20 symbols) before
   * transmission starts.
   */
#ifdef TMOTE_SKY
#define LOOP_20_SYMBOLS 100	/* 326us (msp430 @ 2.4576MHz) */
#elif __AVR__
#define LOOP_20_SYMBOLS 500	/* XXX */
#endif

#if WITH_SEND_CCA
  strobe(CC2420_SRXON);
  while(!(status() & BV(CC2420_RSSI_VALID)));
  strobe(CC2420_STXONCCA);
#else /* WITH_SEND_CCA */
  strobe(CC2420_STXON);
#endif /* WITH_SEND_CCA */
  
  for(i = LOOP_20_SYMBOLS; i > 0; i--) {
    if(SFD_IS_1) {
#if CC2420_CONF_TIMESTAMPS
      rtimer_clock_t txtime = timesynch_time();
#endif /* CC2420_CONF_TIMESTAMPS */

      if(receive_on) {
	ENERGEST_OFF(ENERGEST_TYPE_LISTEN);
      }
      ENERGEST_ON(ENERGEST_TYPE_TRANSMIT);

      /* We wait until transmission has ended so that we get an
	 accurate measurement of the transmission time.*/
      while(status() & BV(CC2420_TX_ACTIVE));

#if CC2420_CONF_TIMESTAMPS
      setup_time_for_transmission = txtime - timestamp.time;

      if(num_transmissions < 10000) {
	total_time_for_transmission += timesynch_time() - txtime;
	total_transmission_len += total_len;
	num_transmissions++;
      }

#endif /* CC2420_CONF_TIMESTAMPS */

#ifdef ENERGEST_CONF_LEVELDEVICE_LEVELS
      ENERGEST_OFF_LEVEL(ENERGEST_TYPE_TRANSMIT,cc2420_get_txpower());
#endif
      ENERGEST_OFF(ENERGEST_TYPE_TRANSMIT);
      if(receive_on) {
	ENERGEST_ON(ENERGEST_TYPE_LISTEN);
      }

      RELEASE_LOCK();
      return 0;
    }
  }
  
  /* If we are using WITH_SEND_CCA, we get here if the packet wasn't
     transmitted because of other channel activity. */
  RIMESTATS_ADD(contentiondrop);
  PRINTF("cc2420: do_send() transmission never started\n");
  RELEASE_LOCK();
  return -3;			/* Transmission never started! */
}