Ejemplo n.º 1
0
void actualPhaseFlip(MultidimArray<double> &I, CTFDescription ctf)
{
    // Perform the Fourier transform
    FourierTransformer transformer;
    MultidimArray< std::complex<double> > M_inFourier;
    transformer.FourierTransform(I,M_inFourier,false);

    Matrix1D<double> freq(2); // Frequencies for Fourier plane
    int yDim=YSIZE(I);
    int xDim=XSIZE(I);
    double iTm=1.0/ctf.Tm;
    for (size_t i=0; i<YSIZE(M_inFourier); ++i)
    {
    	FFT_IDX2DIGFREQ(i, yDim, YY(freq));
    	YY(freq) *= iTm;
        for (size_t j=0; j<XSIZE(M_inFourier); ++j)
        {
        	FFT_IDX2DIGFREQ(j, xDim, XX(freq));
        	XX(freq) *= iTm;
            ctf.precomputeValues(XX(freq),YY(freq));
            if (ctf.getValuePureWithoutDampingAt()<0)
                DIRECT_A2D_ELEM(M_inFourier,i,j)*=-1;
        }
    }

    // Perform inverse Fourier transform and finish
    transformer.inverseFourierTransform();
}
Ejemplo n.º 2
0
TEST_F( FftwTest, fft_IDX2DIGFREQ)
{
	double w;
    FFT_IDX2DIGFREQ(0,128,w);
    EXPECT_EQ(0,w);
    FFT_IDX2DIGFREQ(1,128,w);
    EXPECT_EQ(1.0/128.0,w);
    FFT_IDX2DIGFREQ(64,128,w);
    EXPECT_EQ(0.5,w);
    FFT_IDX2DIGFREQ(65,128,w);
    EXPECT_EQ(-63.0/128.0,w);
    FFT_IDX2DIGFREQ(127,128,w);
    EXPECT_EQ(-1.0/128.0,w);

    FFT_IDX2DIGFREQ(0,129,w);
    EXPECT_EQ(0,w);
    FFT_IDX2DIGFREQ(1,129,w);
    EXPECT_EQ(1.0/129.0,w);
    FFT_IDX2DIGFREQ(64,129,w);
    EXPECT_EQ(64.0/129.0,w);
    FFT_IDX2DIGFREQ(65,129,w);
    EXPECT_EQ(-64.0/129.0,w);
    FFT_IDX2DIGFREQ(128,129,w);
    EXPECT_EQ(-1.0/129.0,w);

    size_t i=255;
    size_t dim=256;
    FFT_IDX2DIGFREQ(i,dim,w);
    EXPECT_EQ(-1.0/256.0,w);
}
Ejemplo n.º 3
0
void FourierProjector::project(double rot, double tilt, double psi)
{
    double freqy, freqx;
    std::complex< double > f;
    Euler_angles2matrix(rot,tilt,psi,E);

    projectionFourier.initZeros();
    double shift=-FIRST_XMIPP_INDEX(volumeSize);
    double xxshift = -2 * PI * shift / volumeSize;
    double maxFreq2=maxFrequency*maxFrequency;
    double volumePaddedSize=XSIZE(VfourierRealCoefs);
    for (size_t i=0; i<YSIZE(projectionFourier); ++i)
    {
        FFT_IDX2DIGFREQ(i,volumeSize,freqy);
        double freqy2=freqy*freqy;
        double phasey=(double)(i) * xxshift;

        double freqYvol_X=MAT_ELEM(E,1,0)*freqy;
        double freqYvol_Y=MAT_ELEM(E,1,1)*freqy;
        double freqYvol_Z=MAT_ELEM(E,1,2)*freqy;
        for (size_t j=0; j<XSIZE(projectionFourier); ++j)
        {
            // The frequency of pairs (i,j) in 2D
            FFT_IDX2DIGFREQ(j,volumeSize,freqx);

            // Do not consider pixels with high frequency
            if ((freqy2+freqx*freqx)>maxFreq2)
                continue;

            // Compute corresponding frequency in the volume
            double freqvol_X=freqYvol_X+MAT_ELEM(E,0,0)*freqx;
            double freqvol_Y=freqYvol_Y+MAT_ELEM(E,0,1)*freqx;
            double freqvol_Z=freqYvol_Z+MAT_ELEM(E,0,2)*freqx;

            double c,d;
            if (BSplineDeg==0)
            {
                // 0 order interpolation
                // Compute corresponding index in the volume
                int kVolume=(int)round(freqvol_Z*volumePaddedSize);
                int iVolume=(int)round(freqvol_Y*volumePaddedSize);
                int jVolume=(int)round(freqvol_X*volumePaddedSize);
                c = A3D_ELEM(VfourierRealCoefs,kVolume,iVolume,jVolume);
                d = A3D_ELEM(VfourierImagCoefs,kVolume,iVolume,jVolume);
            }
            else if (BSplineDeg==1)
            {
                // B-spline linear interpolation
                double kVolume=freqvol_Z*volumePaddedSize;
                double iVolume=freqvol_Y*volumePaddedSize;
                double jVolume=freqvol_X*volumePaddedSize;
                c=VfourierRealCoefs.interpolatedElement3D(jVolume,iVolume,kVolume);
                d=VfourierImagCoefs.interpolatedElement3D(jVolume,iVolume,kVolume);
            }
            else
            {
                // B-spline cubic interpolation
                double kVolume=freqvol_Z*volumePaddedSize;
                double iVolume=freqvol_Y*volumePaddedSize;
                double jVolume=freqvol_X*volumePaddedSize;
                c=VfourierRealCoefs.interpolatedElementBSpline3D(jVolume,iVolume,kVolume);
                d=VfourierImagCoefs.interpolatedElementBSpline3D(jVolume,iVolume,kVolume);
            }

            // Phase shift to move the origin of the image to the corner
            double dotp = (double)(j) * xxshift + phasey;
            double a,b;
            sincos(dotp,&b,&a);

            // Multiply Fourier coefficient in volume times phase shift
            double ac = a * c;
            double bd = b * d;
            double ab_cd = (a + b) * (c + d);

            // And store the multiplication
            double *ptrI_ij=(double *)&DIRECT_A2D_ELEM(projectionFourier,i,j);
            *ptrI_ij = ac - bd;
            *(ptrI_ij+1) = ab_cd - ac - bd;
        }
    }
    //VfourierRealCoefs.clear();
    //VfourierImagCoefs.clear();
    transformer2D.inverseFourierTransform();
}
Ejemplo n.º 4
0
void FourierProjector::project(double rot, double tilt, double psi, const MultidimArray<double> *ctf)
{
    double freqy, freqx;
    std::complex< double > f;
    Euler_angles2matrix(rot,tilt,psi,E);

    projectionFourier.initZeros();
    double maxFreq2=maxFrequency*maxFrequency;
    int Xdim=(int)XSIZE(VfourierRealCoefs);
    int Ydim=(int)YSIZE(VfourierRealCoefs);
    int Zdim=(int)ZSIZE(VfourierRealCoefs);

    for (size_t i=0; i<YSIZE(projectionFourier); ++i)
    {
        FFT_IDX2DIGFREQ(i,volumeSize,freqy);
        double freqy2=freqy*freqy;

        double freqYvol_X=MAT_ELEM(E,1,0)*freqy;
        double freqYvol_Y=MAT_ELEM(E,1,1)*freqy;
        double freqYvol_Z=MAT_ELEM(E,1,2)*freqy;
        for (size_t j=0; j<XSIZE(projectionFourier); ++j)
        {
            // The frequency of pairs (i,j) in 2D
            FFT_IDX2DIGFREQ(j,volumeSize,freqx);

            // Do not consider pixels with high frequency
            if ((freqy2+freqx*freqx)>maxFreq2)
                continue;

            // Compute corresponding frequency in the volume
            double freqvol_X=freqYvol_X+MAT_ELEM(E,0,0)*freqx;
            double freqvol_Y=freqYvol_Y+MAT_ELEM(E,0,1)*freqx;
            double freqvol_Z=freqYvol_Z+MAT_ELEM(E,0,2)*freqx;

            double c,d;
            if (BSplineDeg==0)
            {
                // 0 order interpolation
                // Compute corresponding index in the volume
                int kVolume=(int)round(freqvol_Z*volumePaddedSize);
                int iVolume=(int)round(freqvol_Y*volumePaddedSize);
                int jVolume=(int)round(freqvol_X*volumePaddedSize);
                c = A3D_ELEM(VfourierRealCoefs,kVolume,iVolume,jVolume);
                d = A3D_ELEM(VfourierImagCoefs,kVolume,iVolume,jVolume);
            }
            else if (BSplineDeg==1)
            {
                // B-spline linear interpolation
                double kVolume=freqvol_Z*volumePaddedSize;
                double iVolume=freqvol_Y*volumePaddedSize;
                double jVolume=freqvol_X*volumePaddedSize;
                c=VfourierRealCoefs.interpolatedElement3D(jVolume,iVolume,kVolume);
                d=VfourierImagCoefs.interpolatedElement3D(jVolume,iVolume,kVolume);
            }
            else
            {
                // B-spline cubic interpolation
                double kVolume=freqvol_Z*volumePaddedSize;
                double iVolume=freqvol_Y*volumePaddedSize;
                double jVolume=freqvol_X*volumePaddedSize;

                // Commented for speed-up, the corresponding code is below
                // c=VfourierRealCoefs.interpolatedElementBSpline3D(jVolume,iVolume,kVolume);
                // d=VfourierImagCoefs.interpolatedElementBSpline3D(jVolume,iVolume,kVolume);

                // The code below is a replicate for speed reasons of interpolatedElementBSpline3D
                double z=kVolume;
                double y=iVolume;
                double x=jVolume;

                // Logical to physical
                z -= STARTINGZ(VfourierRealCoefs);
                y -= STARTINGY(VfourierRealCoefs);
                x -= STARTINGX(VfourierRealCoefs);

                int l1 = (int)ceil(x - 2);
                int l2 = l1 + 3;

                int m1 = (int)ceil(y - 2);
                int m2 = m1 + 3;

                int n1 = (int)ceil(z - 2);
                int n2 = n1 + 3;

                c = d = 0.0;
                double aux;
                for (int nn = n1; nn <= n2; nn++)
                {
                    int equivalent_nn=nn;
                    if      (nn<0)
                        equivalent_nn=-nn-1;
                    else if (nn>=Zdim)
                        equivalent_nn=2*Zdim-nn-1;
                    double yxsumRe = 0.0, yxsumIm = 0.0;
                    for (int m = m1; m <= m2; m++)
                    {
                        int equivalent_m=m;
                        if      (m<0)
                            equivalent_m=-m-1;
                        else if (m>=Ydim)
                            equivalent_m=2*Ydim-m-1;
                        double xsumRe = 0.0, xsumIm = 0.0;
                        for (int l = l1; l <= l2; l++)
                        {
                            double xminusl = x - (double) l;
                            int equivalent_l=l;
                            if      (l<0)
                                equivalent_l=-l-1;
                            else if (l>=Xdim)
                                equivalent_l=2*Xdim-l-1;
                            double CoeffRe = (double) DIRECT_A3D_ELEM(VfourierRealCoefs,equivalent_nn,equivalent_m,equivalent_l);
                            double CoeffIm = (double) DIRECT_A3D_ELEM(VfourierImagCoefs,equivalent_nn,equivalent_m,equivalent_l);
                            BSPLINE03(aux,xminusl);
                            xsumRe += CoeffRe * aux;
                            xsumIm += CoeffIm * aux;
                        }

                        double yminusm = y - (double) m;
                        BSPLINE03(aux,yminusm);
						yxsumRe += xsumRe * aux;
						yxsumIm += xsumIm * aux;
                    }

                    double zminusn = z - (double) nn;
                    BSPLINE03(aux,zminusn);
					c += yxsumRe * aux;
					d += yxsumIm * aux;
                }
            }

            // Phase shift to move the origin of the image to the corner
            double a=DIRECT_A2D_ELEM(phaseShiftImgA,i,j);
            double b=DIRECT_A2D_ELEM(phaseShiftImgB,i,j);
            if (ctf!=NULL)
            {
            	double ctfij=DIRECT_A2D_ELEM(*ctf,i,j);
            	a*=ctfij;
            	b*=ctfij;
            }

            // Multiply Fourier coefficient in volume times phase shift
            double ac = a * c;
            double bd = b * d;
            double ab_cd = (a + b) * (c + d);

            // And store the multiplication
            double *ptrI_ij=(double *)&DIRECT_A2D_ELEM(projectionFourier,i,j);
            *ptrI_ij = ac - bd;
            *(ptrI_ij+1) = ab_cd - ac - bd;
        }
    }
    transformer2D.inverseFourierTransform();
}