FLA_Error FLA_Svd_uv_unb_var1( dim_t n_iter_max, FLA_Obj A, FLA_Obj s, FLA_Obj U, FLA_Obj V, dim_t k_accum, dim_t b_alg ) { FLA_Error r_val = FLA_SUCCESS; FLA_Datatype dt; FLA_Datatype dt_real; FLA_Datatype dt_comp; FLA_Obj scale, T, S, rL, rR, d, e, G, H; dim_t m_A, n_A; dim_t min_m_n; dim_t n_GH; double crossover_ratio = 17.0 / 9.0; n_GH = k_accum; m_A = FLA_Obj_length( A ); n_A = FLA_Obj_width( A ); min_m_n = FLA_Obj_min_dim( A ); dt = FLA_Obj_datatype( A ); dt_real = FLA_Obj_datatype_proj_to_real( A ); dt_comp = FLA_Obj_datatype_proj_to_complex( A ); // Create matrices to hold block Householder transformations. FLA_Bidiag_UT_create_T( A, &T, &S ); // Create vectors to hold the realifying scalars. FLA_Obj_create( dt, min_m_n, 1, 0, 0, &rL ); FLA_Obj_create( dt, min_m_n, 1, 0, 0, &rR ); // Create vectors to hold the diagonal and sub-diagonal. FLA_Obj_create( dt_real, min_m_n, 1, 0, 0, &d ); FLA_Obj_create( dt_real, min_m_n-1, 1, 0, 0, &e ); // Create matrices to hold the left and right Givens scalars. FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &G ); FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &H ); // Create a real scaling factor. FLA_Obj_create( dt_real, 1, 1, 0, 0, &scale ); // Compute a scaling factor; If none is needed, sigma will be set to one. FLA_Svd_compute_scaling( A, scale ); // Scale the matrix if scale is non-unit. if ( !FLA_Obj_equals( scale, FLA_ONE ) ) FLA_Scal( scale, A ); if ( m_A < crossover_ratio * n_A ) { // Reduce the matrix to bidiagonal form. // Apply scalars to rotate elements on the superdiagonal to the real domain. // Extract the diagonal and superdiagonal from A. FLA_Bidiag_UT( A, T, S ); FLA_Bidiag_UT_realify( A, rL, rR ); FLA_Bidiag_UT_extract_real_diagonals( A, d, e ); // Form U and V. FLA_Bidiag_UT_form_U( A, T, U ); FLA_Bidiag_UT_form_V( A, S, V ); // Apply the realifying scalars in rL and rR to U and V, respectively. { FLA_Obj UL, UR; FLA_Obj VL, VR; FLA_Part_1x2( U, &UL, &UR, min_m_n, FLA_LEFT ); FLA_Part_1x2( V, &VL, &VR, min_m_n, FLA_LEFT ); FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE, rL, UL ); FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL ); } // Perform a singular value decomposition on the bidiagonal matrix. r_val = FLA_Bsvd_v_opt_var1( n_iter_max, d, e, G, H, U, V, b_alg ); } else // if ( crossover_ratio * n_A <= m_A ) { FLA_Obj TQ, R; FLA_Obj AT, AB; FLA_Obj UL, UR; // Perform a QR factorization on A and form Q in U. FLA_QR_UT_create_T( A, &TQ ); FLA_QR_UT( A, TQ ); FLA_QR_UT_form_Q( A, TQ, U ); FLA_Obj_free( &TQ ); // Set the lower triangle of R to zero and then copy the upper // triangle of A to R. FLA_Part_2x1( A, &AT, &AB, n_A, FLA_TOP ); FLA_Obj_create( dt, n_A, n_A, 0, 0, &R ); FLA_Setr( FLA_LOWER_TRIANGULAR, FLA_ZERO, R ); FLA_Copyr( FLA_UPPER_TRIANGULAR, AT, R ); // Reduce the matrix to bidiagonal form. // Apply scalars to rotate elements on the superdiagonal to the real domain. // Extract the diagonal and superdiagonal from A. FLA_Bidiag_UT( R, T, S ); FLA_Bidiag_UT_realify( R, rL, rR ); FLA_Bidiag_UT_extract_real_diagonals( R, d, e ); // Form V from right Householder vectors in upper triangle of R. FLA_Bidiag_UT_form_V( R, S, V ); // Form U in R. FLA_Bidiag_UT_form_U( R, T, R ); // Apply the realifying scalars in rL and rR to U and V, respectively. FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE, rL, R ); FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, V ); // Perform a singular value decomposition on the bidiagonal matrix. r_val = FLA_Bsvd_v_opt_var1( n_iter_max, d, e, G, H, R, V, b_alg ); // Multiply R into U, storing the result in A and then copying back // to U. FLA_Part_1x2( U, &UL, &UR, n_A, FLA_LEFT ); FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, FLA_ONE, UL, R, FLA_ZERO, A ); FLA_Copy( A, UL ); FLA_Obj_free( &R ); } // Copy the converged eigenvalues to the output vector. FLA_Copy( d, s ); // Sort the singular values and singular vectors in descending order. FLA_Sort_svd( FLA_BACKWARD, s, U, V ); // If the matrix was scaled, rescale the singular values. if ( !FLA_Obj_equals( scale, FLA_ONE ) ) FLA_Inv_scal( scale, s ); FLA_Obj_free( &scale ); FLA_Obj_free( &T ); FLA_Obj_free( &S ); FLA_Obj_free( &rL ); FLA_Obj_free( &rR ); FLA_Obj_free( &d ); FLA_Obj_free( &e ); FLA_Obj_free( &G ); FLA_Obj_free( &H ); return r_val; }
FLA_Error REF_Svdd_uv_components( FLA_Obj A, FLA_Obj s, FLA_Obj U, FLA_Obj V, double* dtime_bred, double* dtime_bsvd, double* dtime_appq, double* dtime_qrfa, double* dtime_gemm ) /* { *dtime_bred = 1; *dtime_bsvd = 1; *dtime_appq = 1; *dtime_qrfa = 1; *dtime_gemm = 1; return FLA_Svdd_external( FLA_SVD_VECTORS_ALL, A, s, U, V ); } */ { FLA_Datatype dt_A; FLA_Datatype dt_A_real; dim_t m_A, n_A; dim_t min_m_n; FLA_Obj tq, tu, tv, d, e, Ur, Vr, W; FLA_Obj eT, epsilonB; FLA_Uplo uplo = FLA_UPPER_TRIANGULAR; double crossover_ratio = 16.0 / 10.0; double dtime_temp; dt_A = FLA_Obj_datatype( A ); dt_A_real = FLA_Obj_datatype_proj_to_real( A ); m_A = FLA_Obj_length( A ); n_A = FLA_Obj_width( A ); min_m_n = FLA_Obj_min_dim( A ); FLA_Obj_create( dt_A, min_m_n, 1, 0, 0, &tq ); FLA_Obj_create( dt_A, min_m_n, 1, 0, 0, &tu ); FLA_Obj_create( dt_A, min_m_n, 1, 0, 0, &tv ); FLA_Obj_create( dt_A_real, min_m_n, 1, 0, 0, &d ); FLA_Obj_create( dt_A_real, min_m_n, 1, 0, 0, &e ); FLA_Obj_create( dt_A_real, n_A, n_A, 0, 0, &Ur ); FLA_Obj_create( dt_A_real, n_A, n_A, 0, 0, &Vr ); FLA_Part_2x1( e, &eT, &epsilonB, 1, FLA_BOTTOM ); if ( m_A >= n_A ) { if ( m_A < crossover_ratio * n_A ) { dtime_temp = FLA_Clock(); { // Reduce to bidiagonal form. FLA_Bidiag_blk_external( A, tu, tv ); FLA_Bidiag_UT_extract_diagonals( A, d, eT ); } *dtime_bred = FLA_Clock() - dtime_temp; dtime_temp = FLA_Clock(); { // Divide-and-conquor algorithm. FLA_Bsvdd_external( uplo, d, e, Ur, Vr ); } *dtime_bsvd = FLA_Clock() - dtime_temp; dtime_temp = FLA_Clock(); { // Form U. FLA_Copy_external( Ur, U ); FLA_Bidiag_apply_U_external( FLA_LEFT, FLA_NO_TRANSPOSE, A, tu, U ); // Form V. FLA_Copy_external( Vr, V ); FLA_Bidiag_apply_V_external( FLA_RIGHT, FLA_CONJ_TRANSPOSE, A, tv, V ); } *dtime_appq = FLA_Clock() - dtime_temp; *dtime_qrfa = 0.0; *dtime_gemm = 0.0; } else { FLA_Obj AT, AB; FLA_Obj UL, UR; FLA_Part_2x1( A, &AT, &AB, n_A, FLA_TOP ); FLA_Part_1x2( U, &UL, &UR, n_A, FLA_LEFT ); // Create a temporary n-by-n matrix R. FLA_Obj_create( dt_A, n_A, n_A, 0, 0, &W ); dtime_temp = FLA_Clock(); { // Perform a QR factorization. FLA_QR_blk_external( A, tq ); FLA_Copyr_external( FLA_LOWER_TRIANGULAR, A, UL ); FLA_Setr( FLA_LOWER_TRIANGULAR, FLA_ZERO, A ); } *dtime_qrfa = FLA_Clock() - dtime_temp; dtime_temp = FLA_Clock(); { // Form Q. FLA_QR_form_Q_external( U, tq ); } *dtime_appq = FLA_Clock() - dtime_temp; dtime_temp = FLA_Clock(); { // Reduce R to bidiagonal form. FLA_Bidiag_blk_external( AT, tu, tv ); FLA_Bidiag_UT_extract_diagonals( A, d, eT ); } *dtime_bred = FLA_Clock() - dtime_temp; dtime_temp = FLA_Clock(); { // Divide-and-conquor algorithm. FLA_Bsvdd_external( uplo, d, e, Ur, Vr ); } *dtime_bsvd = FLA_Clock() - dtime_temp; dtime_temp = FLA_Clock(); { // Form U in W. FLA_Copy_external( Ur, W ); FLA_Bidiag_apply_U_external( FLA_LEFT, FLA_NO_TRANSPOSE, AT, tu, W ); // Form V. FLA_Copy_external( Vr, V ); FLA_Bidiag_apply_V_external( FLA_RIGHT, FLA_CONJ_TRANSPOSE, AT, tv, V ); } *dtime_appq += FLA_Clock() - dtime_temp; dtime_temp = FLA_Clock(); { // Multiply R into U, storing the result in A and then copying // back to U. FLA_Gemm_external( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, FLA_ONE, UL, W, FLA_ZERO, A ); FLA_Copy( A, UL ); } *dtime_gemm = FLA_Clock() - dtime_temp; // Free R. FLA_Obj_free( &W ); } } else { FLA_Check_error_code( FLA_NOT_YET_IMPLEMENTED ); } // Copy singular values to output vector. FLA_Copy( d, s ); // Sort singular values and vectors. FLA_Sort_svd( FLA_BACKWARD, s, U, V ); FLA_Obj_free( &tq ); FLA_Obj_free( &tu ); FLA_Obj_free( &tv ); FLA_Obj_free( &d ); FLA_Obj_free( &e ); FLA_Obj_free( &Ur ); FLA_Obj_free( &Vr ); return FLA_SUCCESS; }
FLA_Error FLA_Svd_uv_var2_components( dim_t n_iter_max, dim_t k_accum, dim_t b_alg, FLA_Obj A, FLA_Obj s, FLA_Obj U, FLA_Obj V, double* dtime_bred, double* dtime_bsvd, double* dtime_appq, double* dtime_qrfa, double* dtime_gemm ) { FLA_Error r_val = FLA_SUCCESS; FLA_Datatype dt; FLA_Datatype dt_real; FLA_Datatype dt_comp; FLA_Obj T, S, rL, rR, d, e, G, H, RG, RH, W; dim_t m_A, n_A; dim_t min_m_n; dim_t n_GH; double crossover_ratio = 17.0 / 9.0; double dtime_temp; n_GH = k_accum; m_A = FLA_Obj_length( A ); n_A = FLA_Obj_width( A ); min_m_n = FLA_Obj_min_dim( A ); dt = FLA_Obj_datatype( A ); dt_real = FLA_Obj_datatype_proj_to_real( A ); dt_comp = FLA_Obj_datatype_proj_to_complex( A ); // If the matrix is a scalar, then the SVD is easy. if ( min_m_n == 1 ) { FLA_Copy( A, s ); FLA_Set_to_identity( U ); FLA_Set_to_identity( V ); return FLA_SUCCESS; } // Create matrices to hold block Householder transformations. FLA_Bidiag_UT_create_T( A, &T, &S ); // Create vectors to hold the realifying scalars. FLA_Obj_create( dt, min_m_n, 1, 0, 0, &rL ); FLA_Obj_create( dt, min_m_n, 1, 0, 0, &rR ); // Create vectors to hold the diagonal and sub-diagonal. FLA_Obj_create( dt_real, min_m_n, 1, 0, 0, &d ); FLA_Obj_create( dt_real, min_m_n-1, 1, 0, 0, &e ); // Create matrices to hold the left and right Givens scalars. FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &G ); FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &H ); // Create matrices to hold the left and right Givens matrices. FLA_Obj_create( dt_real, min_m_n, min_m_n, 0, 0, &RG ); FLA_Obj_create( dt_real, min_m_n, min_m_n, 0, 0, &RH ); FLA_Obj_create( dt, m_A, n_A, 0, 0, &W ); if ( m_A >= n_A ) { if ( m_A < crossover_ratio * n_A ) { dtime_temp = FLA_Clock(); { // Reduce the matrix to bidiagonal form. // Apply scalars to rotate elements on the sub-diagonal to the real domain. // Extract the diagonal and sub-diagonal from A. FLA_Bidiag_UT( A, T, S ); FLA_Bidiag_UT_realify( A, rL, rR ); FLA_Bidiag_UT_extract_diagonals( A, d, e ); } *dtime_bred = FLA_Clock() - dtime_temp; dtime_temp = FLA_Clock(); { // Form U and V. FLA_Bidiag_UT_form_U( A, T, U ); FLA_Bidiag_UT_form_V( A, S, V ); } *dtime_appq = FLA_Clock() - dtime_temp; // Apply the realifying scalars in rL and rR to U and V, respectively. { FLA_Obj UL, UR; FLA_Obj VL, VR; FLA_Part_1x2( U, &UL, &UR, min_m_n, FLA_LEFT ); FLA_Part_1x2( V, &VL, &VR, min_m_n, FLA_LEFT ); FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE, rL, UL ); FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL ); } dtime_temp = FLA_Clock(); { // Perform a singular value decomposition on the bidiagonal matrix. r_val = FLA_Bsvd_v_opt_var2( n_iter_max, d, e, G, H, RG, RH, W, U, V, b_alg ); } *dtime_bsvd = FLA_Clock() - dtime_temp; } else // if ( crossover_ratio * n_A <= m_A ) { FLA_Obj TQ, R; FLA_Obj AT, AB; FLA_Obj UL, UR; //FLA_QR_UT_create_T( A, &TQ ); FLA_Obj_create( dt, 32, n_A, 0, 0, &TQ ); dtime_temp = FLA_Clock(); { // Perform a QR factorization on A and form Q in U. FLA_QR_UT( A, TQ ); } *dtime_qrfa = FLA_Clock() - dtime_temp; dtime_temp = FLA_Clock(); { FLA_QR_UT_form_Q( A, TQ, U ); } *dtime_appq = FLA_Clock() - dtime_temp; FLA_Obj_free( &TQ ); // Set the lower triangle of R to zero and then copy the upper // triangle of A to R. FLA_Part_2x1( A, &AT, &AB, n_A, FLA_TOP ); FLA_Obj_create( dt, n_A, n_A, 0, 0, &R ); FLA_Setr( FLA_LOWER_TRIANGULAR, FLA_ZERO, R ); FLA_Copyr( FLA_UPPER_TRIANGULAR, AT, R ); dtime_temp = FLA_Clock(); { // Reduce the matrix to bidiagonal form. // Apply scalars to rotate elements on the superdiagonal to the real domain. // Extract the diagonal and superdiagonal from A. FLA_Bidiag_UT( R, T, S ); FLA_Bidiag_UT_realify( R, rL, rR ); FLA_Bidiag_UT_extract_diagonals( R, d, e ); } *dtime_bred = FLA_Clock() - dtime_temp; dtime_temp = FLA_Clock(); { // Form V from right Householder vectors in upper triangle of R. FLA_Bidiag_UT_form_V( R, S, V ); // Form U in R. FLA_Bidiag_UT_form_U( R, T, R ); } *dtime_appq += FLA_Clock() - dtime_temp; // Apply the realifying scalars in rL and rR to U and V, respectively. FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE, rL, R ); FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, V ); dtime_temp = FLA_Clock(); { // Perform a singular value decomposition on the bidiagonal matrix. r_val = FLA_Bsvd_v_opt_var2( n_iter_max, d, e, G, H, RG, RH, W, R, V, b_alg ); } *dtime_bsvd = FLA_Clock() - dtime_temp; dtime_temp = FLA_Clock(); { // Multiply R into U, storing the result in A and then copying back // to U. FLA_Part_1x2( U, &UL, &UR, n_A, FLA_LEFT ); FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, FLA_ONE, UL, R, FLA_ZERO, A ); FLA_Copy( A, UL ); } *dtime_gemm = FLA_Clock() - dtime_temp; FLA_Obj_free( &R ); } } else // if ( m_A < n_A ) { FLA_Check_error_code( FLA_NOT_YET_IMPLEMENTED ); } // Copy the converged eigenvalues to the output vector. FLA_Copy( d, s ); // Sort the singular values and singular vectors in descending order. FLA_Sort_svd( FLA_BACKWARD, s, U, V ); FLA_Obj_free( &T ); FLA_Obj_free( &S ); FLA_Obj_free( &rL ); FLA_Obj_free( &rR ); FLA_Obj_free( &d ); FLA_Obj_free( &e ); FLA_Obj_free( &G ); FLA_Obj_free( &H ); FLA_Obj_free( &RG ); FLA_Obj_free( &RH ); FLA_Obj_free( &W ); return r_val; }
FLA_Error FLA_Svd_ext_u_unb_var1( FLA_Svd_type jobu, FLA_Svd_type jobv, dim_t n_iter_max, FLA_Obj A, FLA_Obj s, FLA_Obj U, FLA_Obj V, dim_t k_accum, dim_t b_alg ) { FLA_Error r_val = FLA_SUCCESS; FLA_Datatype dt; FLA_Datatype dt_real; FLA_Datatype dt_comp; FLA_Obj scale, T, S, rL, rR, d, e, G, H, C; // C is dummy. dim_t m_A, n_A, min_m_n; dim_t n_GH; double crossover_ratio = 17.0 / 9.0; FLA_Bool u_is_formed = FALSE, v_is_formed = FALSE; int apply_scale; n_GH = k_accum; m_A = FLA_Obj_length( A ); n_A = FLA_Obj_width( A ); min_m_n = min( m_A, n_A ); dt = FLA_Obj_datatype( A ); dt_real = FLA_Obj_datatype_proj_to_real( A ); dt_comp = FLA_Obj_datatype_proj_to_complex( A ); // Create matrices to hold block Householder transformations. FLA_Bidiag_UT_create_T( A, &T, &S ); // Create vectors to hold the realifying scalars. if ( FLA_Obj_is_complex( A ) ) { FLA_Obj_create( dt, min_m_n, 1, 0, 0, &rL ); FLA_Obj_create( dt, min_m_n, 1, 0, 0, &rR ); } // Create vectors to hold the diagonal and sub-diagonal. FLA_Obj_create( dt_real, min_m_n, 1, 0, 0, &d ); FLA_Obj_create( dt_real, min_m_n-1, 1, 0, 0, &e ); // Create matrices to hold the left and right Givens scalars. FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &G ); FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &H ); // Create a real scaling factor. FLA_Obj_create( dt_real, 1, 1, 0, 0, &scale ); // Scale matrix A if necessary. FLA_Max_abs_value( A, scale ); apply_scale = ( FLA_Obj_gt( scale, FLA_OVERFLOW_SQUARE_THRES ) == TRUE ) - ( FLA_Obj_lt( scale, FLA_UNDERFLOW_SQUARE_THRES ) == TRUE ); if ( apply_scale ) FLA_Scal( apply_scale > 0 ? FLA_SAFE_MIN : FLA_SAFE_INV_MIN, A ); if ( m_A < crossover_ratio * n_A ) { // Reduce the matrix to bidiagonal form. // Apply scalars to rotate elements on the superdiagonal to the real domain. // Extract the diagonal and superdiagonal from A. FLA_Bidiag_UT( A, T, S ); if ( FLA_Obj_is_complex( A ) ) FLA_Bidiag_UT_realify( A, rL, rR ); FLA_Bidiag_UT_extract_real_diagonals( A, d, e ); // Form U and V. if ( u_is_formed == FALSE ) { switch ( jobu ) { case FLA_SVD_VECTORS_MIN_OVERWRITE: if ( jobv != FLA_SVD_VECTORS_NONE ) FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, A, S, FLA_NO_TRANSPOSE, V ); v_is_formed = TRUE; // For this case, V should be formed here. U = A; case FLA_SVD_VECTORS_ALL: case FLA_SVD_VECTORS_MIN_COPY: FLA_Bidiag_UT_form_U_ext( FLA_UPPER_TRIANGULAR, A, T, FLA_NO_TRANSPOSE, U ); u_is_formed = TRUE; break; case FLA_SVD_VECTORS_NONE: // Do nothing break; } } if ( v_is_formed == FALSE ) { if ( jobv == FLA_SVD_VECTORS_MIN_OVERWRITE ) { FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, A, S, FLA_CONJ_TRANSPOSE, A ); v_is_formed = TRUE; /* and */ V = A; // This V is actually V^H. // V^H -> V FLA_Obj_flip_base( &V ); FLA_Obj_flip_view( &V ); if ( FLA_Obj_is_complex( A ) ) FLA_Conjugate( V ); } else if ( jobv != FLA_SVD_VECTORS_NONE ) { FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, A, S, FLA_NO_TRANSPOSE, V ); v_is_formed = TRUE; } } // For complex matrices, apply realification transformation. if ( FLA_Obj_is_complex( A ) && jobu != FLA_SVD_VECTORS_NONE ) { FLA_Obj UL, UR; FLA_Part_1x2( U, &UL, &UR, min_m_n, FLA_LEFT ); FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE, rL, UL ); } if ( FLA_Obj_is_complex( A ) && jobv != FLA_SVD_VECTORS_NONE ) { FLA_Obj VL, VR; FLA_Part_1x2( V, &VL, &VR, min_m_n, FLA_LEFT ); FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL ); } // Perform a singular value decomposition on the upper bidiagonal matrix. r_val = FLA_Bsvd_ext_opt_var1( n_iter_max, d, e, G, H, jobu, U, jobv, V, FALSE, C, // C is not referenced b_alg ); } else // if ( crossover_ratio * n_A <= m_A ) { FLA_Obj TQ, R; FLA_Obj AT, AB; // Perform a QR factorization on A. FLA_QR_UT_create_T( A, &TQ ); FLA_QR_UT( A, TQ ); // Set the lower triangle of R to zero and then copy the upper // triangle of A to R. FLA_Part_2x1( A, &AT, &AB, n_A, FLA_TOP ); FLA_Obj_create( dt, n_A, n_A, 0, 0, &R ); FLA_Setr( FLA_LOWER_TRIANGULAR, FLA_ZERO, R ); FLA_Copyr( FLA_UPPER_TRIANGULAR, AT, R ); // Form U; if necessary overwrite on A. if ( u_is_formed == FALSE ) { switch ( jobu ) { case FLA_SVD_VECTORS_MIN_OVERWRITE: U = A; case FLA_SVD_VECTORS_ALL: case FLA_SVD_VECTORS_MIN_COPY: FLA_QR_UT_form_Q( A, TQ, U ); u_is_formed = TRUE; break; case FLA_SVD_VECTORS_NONE: // Do nothing break; } } FLA_Obj_free( &TQ ); // Reduce the matrix to bidiagonal form. // Apply scalars to rotate elements on the superdiagonal to the real domain. // Extract the diagonal and superdiagonal from A. FLA_Bidiag_UT( R, T, S ); if ( FLA_Obj_is_complex( R ) ) FLA_Bidiag_UT_realify( R, rL, rR ); FLA_Bidiag_UT_extract_real_diagonals( R, d, e ); if ( v_is_formed == FALSE ) { if ( jobv == FLA_SVD_VECTORS_MIN_OVERWRITE ) { FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, R, S, FLA_CONJ_TRANSPOSE, AT ); v_is_formed = TRUE; /* and */ V = AT; // This V is actually V^H. // V^H -> V FLA_Obj_flip_base( &V ); FLA_Obj_flip_view( &V ); if ( FLA_Obj_is_complex( A ) ) FLA_Conjugate( V ); } else if ( jobv != FLA_SVD_VECTORS_NONE ) { FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, R, S, FLA_NO_TRANSPOSE, V ); v_is_formed = TRUE; } } // Apply householder vectors U in R. FLA_Bidiag_UT_form_U_ext( FLA_UPPER_TRIANGULAR, R, T, FLA_NO_TRANSPOSE, R ); // Apply the realifying scalars in rL and rR to U and V, respectively. if ( FLA_Obj_is_complex( A ) && jobu != FLA_SVD_VECTORS_NONE ) { FLA_Obj RL, RR; FLA_Part_1x2( R, &RL, &RR, min_m_n, FLA_LEFT ); FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE, rL, RL ); } if ( FLA_Obj_is_complex( A ) && jobv != FLA_SVD_VECTORS_NONE ) { FLA_Obj VL, VR; FLA_Part_1x2( V, &VL, &VR, min_m_n, FLA_LEFT ); FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL ); } // Perform a singular value decomposition on the bidiagonal matrix. r_val = FLA_Bsvd_ext_opt_var1( n_iter_max, d, e, G, H, jobu, R, jobv, V, FALSE, C, b_alg ); // Multiply R into U, storing the result in A and then copying back // to U. if ( jobu != FLA_SVD_VECTORS_NONE ) { FLA_Obj UL, UR; FLA_Part_1x2( U, &UL, &UR, min_m_n, FLA_LEFT ); if ( jobu == FLA_SVD_VECTORS_MIN_OVERWRITE || jobv == FLA_SVD_VECTORS_MIN_OVERWRITE ) { FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, UL, &C ); FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, FLA_ONE, UL, R, FLA_ZERO, C ); FLA_Copy( C, UL ); FLA_Obj_free( &C ); } else { FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, FLA_ONE, UL, R, FLA_ZERO, A ); FLA_Copy( A, UL ); } } FLA_Obj_free( &R ); } // Copy the converged eigenvalues to the output vector. FLA_Copy( d, s ); // No sort is required as it is applied on FLA_Bsvd. if ( apply_scale ) FLA_Scal( apply_scale < 0 ? FLA_SAFE_MIN : FLA_SAFE_INV_MIN, s ); // When V is overwritten, flip it again. if ( jobv == FLA_SVD_VECTORS_MIN_OVERWRITE ) { // Always apply conjugation first wrt dimensions used; then, flip base. if ( FLA_Obj_is_complex( V ) ) FLA_Conjugate( V ); FLA_Obj_flip_base( &V ); } FLA_Obj_free( &scale ); FLA_Obj_free( &T ); FLA_Obj_free( &S ); if ( FLA_Obj_is_complex( A ) ) { FLA_Obj_free( &rL ); FLA_Obj_free( &rR ); } FLA_Obj_free( &d ); FLA_Obj_free( &e ); FLA_Obj_free( &G ); FLA_Obj_free( &H ); return r_val; }