Ejemplo n.º 1
0
TYPED_TEST(DataTransformTest, TestCropSize) {
    TransformationParameter transform_param;
    const bool unique_pixels = false;  // all pixels the same equal to label
    const int label = 0;
    const int channels = 3;
    const int height = 4;
    const int width = 5;
    const int crop_size = 2;

    transform_param.set_crop_size(crop_size);
    Datum datum;
    FillDatum(label, channels, height, width, unique_pixels, &datum);
    DataTransformer<TypeParam> transformer(transform_param, TEST);
    transformer.InitRand();
    Blob<TypeParam> blob(1, channels, crop_size, crop_size);
    for (int iter = 0; iter < this->num_iter_; ++iter) {
        transformer.Transform(datum, &blob);
        EXPECT_EQ(blob.num(), 1);
        EXPECT_EQ(blob.channels(), datum.channels());
        EXPECT_EQ(blob.height(), crop_size);
        EXPECT_EQ(blob.width(), crop_size);
        for (int j = 0; j < blob.count(); ++j) {
            EXPECT_EQ(blob.cpu_data()[j], label);
        }
    }
}
Ejemplo n.º 2
0
TYPED_TEST(DataTransformTest, TestMeanValues) {
  TransformationParameter transform_param;
  const bool unique_pixels = false;  // pixels are equal to label
  const int_tp label = 0;
  const int_tp channels = 3;
  const int_tp height = 4;
  const int_tp width = 5;

  transform_param.add_mean_value(0);
  transform_param.add_mean_value(1);
  transform_param.add_mean_value(2);
  Datum datum;
  FillDatum(label, channels, height, width, unique_pixels, &datum);
  Blob<TypeParam>* blob = new Blob<TypeParam>(1, channels, height, width);
  DataTransformer<TypeParam>* transformer =
      new DataTransformer<TypeParam>(transform_param, TEST,
                                     Caffe::GetDefaultDevice());
  transformer->InitRand();
  transformer->Transform(datum, blob);
  for (int_tp c = 0; c < channels; ++c) {
    for (int_tp j = 0; j < height * width; ++j) {
      EXPECT_EQ(blob->cpu_data()[blob->offset(0, c) + j], label - c);
    }
  }
}
Ejemplo n.º 3
0
TYPED_TEST(DataTransformTest, TestCropSize) {
  TransformationParameter transform_param;
  const bool unique_pixels = false;  // all pixels the same equal to label
  const int_tp label = 0;
  const int_tp channels = 3;
  const int_tp height = 4;
  const int_tp width = 5;
  const int_tp crop_size = 2;

  transform_param.set_crop_size(crop_size);
  Datum datum;
  FillDatum(label, channels, height, width, unique_pixels, &datum);
  DataTransformer<TypeParam>* transformer =
      new DataTransformer<TypeParam>(transform_param, TEST,
                                     Caffe::GetDefaultDevice());
  transformer->InitRand();
  Blob<TypeParam>* blob =
      new Blob<TypeParam>(1, channels, crop_size, crop_size);
  for (int_tp iter = 0; iter < this->num_iter_; ++iter) {
    transformer->Transform(datum, blob);
    EXPECT_EQ(blob->num(), 1);
    EXPECT_EQ(blob->channels(), datum.channels());
    EXPECT_EQ(blob->height(), crop_size);
    EXPECT_EQ(blob->width(), crop_size);
    for (int_tp j = 0; j < blob->count(); ++j) {
      EXPECT_EQ(blob->cpu_data()[j], label);
    }
  }
}
Ejemplo n.º 4
0
TYPED_TEST(DataTransformTest, TestMirrorTest) {
  TransformationParameter transform_param;
  const bool unique_pixels = true;  // pixels are consecutive ints [0,size]
  const int_tp label = 0;
  const int_tp channels = 3;
  const int_tp height = 4;
  const int_tp width = 5;
  const int_tp size = channels * height * width;

  transform_param.set_mirror(true);
  Datum datum;
  FillDatum(label, channels, height, width, unique_pixels, &datum);
  int_tp num_matches = this->NumSequenceMatches(transform_param, datum, TEST);
  EXPECT_LT(num_matches, size * this->num_iter_);
}
Ejemplo n.º 5
0
TYPED_TEST(DataTransformTest, TestCropTest) {
    TransformationParameter transform_param;
    const bool unique_pixels = true;  // pixels are consecutive ints [0,size]
    const int label = 0;
    const int channels = 3;
    const int height = 4;
    const int width = 5;
    const int crop_size = 2;
    const int size = channels * crop_size * crop_size;

    transform_param.set_crop_size(crop_size);
    Datum datum;
    FillDatum(label, channels, height, width, unique_pixels, &datum);
    int num_matches = this->NumSequenceMatches(transform_param, datum, TEST);
    EXPECT_EQ(num_matches, size * this->num_iter_);
}
Ejemplo n.º 6
0
TYPED_TEST(DataTransformTest, TestMeanValue) {
    TransformationParameter transform_param;
    const bool unique_pixels = false;  // pixels are equal to label
    const int label = 0;
    const int channels = 3;
    const int height = 4;
    const int width = 5;
    const int mean_value = 2;

    transform_param.add_mean_value(mean_value);
    Datum datum;
    FillDatum(label, channels, height, width, unique_pixels, &datum);
    Blob<TypeParam> blob(1, channels, height, width);
    DataTransformer<TypeParam> transformer(transform_param, TEST);
    transformer.InitRand();
    transformer.Transform(datum, &blob);
    for (int j = 0; j < blob.count(); ++j) {
        EXPECT_EQ(blob.cpu_data()[j], label - mean_value);
    }
}
Ejemplo n.º 7
0
TYPED_TEST(DataTransformTest, TestCropMirrorTest) {
    TransformationParameter transform_param;
    const bool unique_pixels = true;  // pixels are consecutive ints [0,size]
    const int label = 0;
    const int channels = 3;
    const int height = 4;
    const int width = 5;
    const int crop_size = 2;

    Datum datum;
    FillDatum(label, channels, height, width, unique_pixels, &datum);
    transform_param.set_crop_size(crop_size);
    int num_matches_crop = this->NumSequenceMatches(transform_param, datum, TEST);

    transform_param.set_mirror(true);
    int num_matches_crop_mirror =
        this->NumSequenceMatches(transform_param, datum, TEST);
    // When doing crop and mirror we expect less num_matches than just crop
    EXPECT_LT(num_matches_crop_mirror, num_matches_crop);
}
Ejemplo n.º 8
0
TYPED_TEST(DataTransformTest, TestEmptyTransformUniquePixels) {
    TransformationParameter transform_param;
    const bool unique_pixels = true;  // pixels are consecutive ints [0,size]
    const int label = 0;
    const int channels = 3;
    const int height = 4;
    const int width = 5;

    Datum datum;
    FillDatum(label, channels, height, width, unique_pixels, &datum);
    Blob<TypeParam> blob(1, 3, 4, 5);
    DataTransformer<TypeParam> transformer(transform_param, TEST);
    transformer.InitRand();
    transformer.Transform(datum, &blob);
    EXPECT_EQ(blob.num(), 1);
    EXPECT_EQ(blob.channels(), datum.channels());
    EXPECT_EQ(blob.height(), datum.height());
    EXPECT_EQ(blob.width(), datum.width());
    for (int j = 0; j < blob.count(); ++j) {
        EXPECT_EQ(blob.cpu_data()[j], j);
    }
}
Ejemplo n.º 9
0
TYPED_TEST(DataTransformTest, TestMeanValue) {
  TransformationParameter transform_param;
  const bool unique_pixels = false;  // pixels are equal to label
  const int label = 0;
  const int channels = 3;
  const int height = 4;
  const int width = 5;
  const int mean_value = 2;

  transform_param.add_mean_value(mean_value);
  Datum datum;
  FillDatum(label, channels, height, width, unique_pixels, &datum);
  Blob<TypeParam>* blob = new Blob<TypeParam>(1, channels, height, width);
  DataTransformer<TypeParam>* transformer =
      new DataTransformer<TypeParam>(transform_param, TEST,
                                     Caffe::GetDefaultDeviceContext());
  transformer->InitRand();
  transformer->Transform(datum, blob);
  for (int j = 0; j < blob->count(); ++j) {
    EXPECT_EQ(blob->cpu_data()[j], label - mean_value);
  }
}
Ejemplo n.º 10
0
TYPED_TEST(DataTransformTest, TestMeanFile) {
  TransformationParameter transform_param;
  const bool unique_pixels = true;  // pixels are consecutive ints [0,size]
  const int_tp label = 0;
  const int_tp channels = 3;
  const int_tp height = 4;
  const int_tp width = 5;
  const int_tp size = channels * height * width;

  // Create a mean file
  string* mean_file = new string();
  MakeTempFilename(mean_file);
  BlobProto blob_mean;
  blob_mean.set_num(1);
  blob_mean.set_channels(channels);
  blob_mean.set_height(height);
  blob_mean.set_width(width);

  for (int_tp j = 0; j < size; ++j) {
      blob_mean.add_data(j);
  }

  LOG(INFO) << "Using temporary mean_file " << *mean_file;
  WriteProtoToBinaryFile(blob_mean, *mean_file);

  transform_param.set_mean_file(*mean_file);
  Datum datum;
  FillDatum(label, channels, height, width, unique_pixels, &datum);
  Blob<TypeParam>* blob = new Blob<TypeParam>(1, channels, height, width);
  DataTransformer<TypeParam>* transformer =
      new DataTransformer<TypeParam>(transform_param, TEST,
                                     Caffe::GetDefaultDevice());
  transformer->InitRand();
  transformer->Transform(datum, blob);
  for (int_tp j = 0; j < blob->count(); ++j) {
      EXPECT_EQ(blob->cpu_data()[j], 0);
  }
}
Ejemplo n.º 11
0
TYPED_TEST(DataTransformTest, TestMeanValues) {
    TransformationParameter transform_param;
    const bool unique_pixels = false;  // pixels are equal to label
    const int label = 0;
    const int channels = 3;
    const int height = 4;
    const int width = 5;

    transform_param.add_mean_value(0);
    transform_param.add_mean_value(1);
    transform_param.add_mean_value(2);
    Datum datum;
    FillDatum(label, channels, height, width, unique_pixels, &datum);
    Blob<TypeParam> blob(1, channels, height, width);
    DataTransformer<TypeParam> transformer(transform_param, TEST);
    transformer.InitRand();
    transformer.Transform(datum, &blob);
    for (int c = 0; c < channels; ++c) {
        for (int j = 0; j < height * width; ++j) {
            EXPECT_EQ(blob.cpu_data()[blob.offset(0, c) + j], label - c);
        }
    }
}
Ejemplo n.º 12
0
TYPED_TEST(DataTransformTest, TestEmptyTransform) {
  TransformationParameter transform_param;
  const bool unique_pixels = false;  // all pixels the same equal to label
  const int label = 0;
  const int channels = 3;
  const int height = 4;
  const int width = 5;

  Datum datum;
  FillDatum(label, channels, height, width, unique_pixels, &datum);
  Blob<TypeParam>* blob = new Blob<TypeParam>(1, channels, height, width);
  DataTransformer<TypeParam>* transformer =
      new DataTransformer<TypeParam>(transform_param, TEST);
  transformer->InitRand();
  transformer->Transform(datum, blob);
  EXPECT_EQ(blob->num(), 1);
  EXPECT_EQ(blob->channels(), datum.channels());
  EXPECT_EQ(blob->height(), datum.height());
  EXPECT_EQ(blob->width(), datum.width());
  for (int j = 0; j < blob->count(); ++j) {
    EXPECT_EQ(blob->cpu_data()[j], label);
  }
}
Ejemplo n.º 13
0
TYPED_TEST(DataTransformTest, TestEmptyTransformUniquePixels) {
  TransformationParameter transform_param;
  const bool unique_pixels = true;  // pixels are consecutive ints [0,size]
  const int_tp label = 0;
  const int_tp channels = 3;
  const int_tp height = 4;
  const int_tp width = 5;

  Datum datum;
  FillDatum(label, channels, height, width, unique_pixels, &datum);
  Blob<TypeParam>* blob = new Blob<TypeParam>(1, 3, 4, 5);
  DataTransformer<TypeParam>* transformer =
      new DataTransformer<TypeParam>(transform_param, TEST,
                                     Caffe::GetDefaultDevice());
  transformer->InitRand();
  transformer->Transform(datum, blob);
  EXPECT_EQ(blob->num(), 1);
  EXPECT_EQ(blob->channels(), datum.channels());
  EXPECT_EQ(blob->height(), datum.height());
  EXPECT_EQ(blob->width(), datum.width());
  for (int_tp j = 0; j < blob->count(); ++j) {
    EXPECT_EQ(blob->cpu_data()[j], j);
  }
}
Ejemplo n.º 14
0
TYPED_TEST(DataTransformTest, TestMeanFile) {
    TransformationParameter transform_param;
    const bool unique_pixels = true;  // pixels are consecutive ints [0,size]
    const int label = 0;
    const int channels = 3;
    const int height = 4;
    const int width = 5;
    const int size = channels * height * width;

    // Create a mean file
    string mean_file;
    MakeTempFilename(&mean_file);
    BlobProto blob_mean;
    blob_mean.set_num(1);
    blob_mean.set_channels(channels);
    blob_mean.set_height(height);
    blob_mean.set_width(width);

    for (int j = 0; j < size; ++j) {
        blob_mean.add_data(j);
    }

    LOG(INFO) << "Using temporary mean_file " << mean_file;
    WriteProtoToBinaryFile(blob_mean, mean_file);

    transform_param.set_mean_file(mean_file);
    Datum datum;
    FillDatum(label, channels, height, width, unique_pixels, &datum);
    Blob<TypeParam> blob(1, channels, height, width);
    DataTransformer<TypeParam> transformer(transform_param, TEST);
    transformer.InitRand();
    transformer.Transform(datum, &blob);
    for (int j = 0; j < blob.count(); ++j) {
        EXPECT_EQ(blob.cpu_data()[j], 0);
    }
}