Ejemplo n.º 1
0
static uint32
build_hash_key(const void *key, Size keysize __attribute__((unused)))
{
    Assert(key);

    BMBuildHashKey *keyData = (BMBuildHashKey*)key;
	Datum *k = keyData->attributeValueArr;
	bool *isNull = keyData->isNullArr;

	int i;
	uint32 hashkey = 0;

	for(i = 0; i < cur_bmbuild->natts; i++)
	{
		/* rotate hashkey left 1 bit at each step */
		hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);

        if ( isNull[i] && cur_bmbuild->hash_func_is_strict[i])
        {
            /* leave hashkey unmodified, equivalent to hashcode 0 */
        }
        else
        {
            hashkey ^= DatumGetUInt32(FunctionCall1(&cur_bmbuild->hash_funcs[i], k[i]));
        }

	}
	return hashkey;
}
Ejemplo n.º 2
0
/*
 * Add bits of given value to the signature.
 */
void
signValue(BloomState *state, SignType *sign, Datum value, int attno)
{
	uint32		hashVal;
	int			nBit,
				j;

	/*
	 * init generator with "column's" number to get "hashed" seed for new
	 * value. We don't want to map the same numbers from different columns
	 * into the same bits!
	 */
	mySrand(attno);

	/*
	 * Init hash sequence to map our value into bits. the same values in
	 * different columns will be mapped into different bits because of step
	 * above
	 */
	hashVal = DatumGetInt32(FunctionCall1(&state->hashFn[attno], value));
	mySrand(hashVal ^ myRand());

	for (j = 0; j < state->opts.bitSize[attno]; j++)
	{
		/* prevent mutiple evaluation */
		nBit = myRand() % (state->opts.bloomLength * BITSIGNTYPE);
		SETBIT(sign, nBit);
	}
}
Ejemplo n.º 3
0
/*
 * worker_hash returns the hashed value of the given value.
 */
Datum
worker_hash(PG_FUNCTION_ARGS)
{
	Datum valueDatum = PG_GETARG_DATUM(0);
	Datum hashedValueDatum = 0;
	TypeCacheEntry *typeEntry = NULL;
	FmgrInfo *hashFunction = NULL;
	Oid valueDataType = InvalidOid;

	/* figure out hash function from the data type */
	valueDataType = get_fn_expr_argtype(fcinfo->flinfo, 0);
	typeEntry = lookup_type_cache(valueDataType, TYPECACHE_HASH_PROC_FINFO);

	if (typeEntry->hash_proc_finfo.fn_oid == InvalidOid)
	{
		ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						errmsg("cannot find a hash function for the input type"),
						errhint("Cast input to a data type with a hash function.")));
	}

	hashFunction = palloc0(sizeof(FmgrInfo));
	fmgr_info_copy(hashFunction, &(typeEntry->hash_proc_finfo), CurrentMemoryContext);

	/* calculate hash value */
	hashedValueDatum = FunctionCall1(hashFunction, valueDatum);

	PG_RETURN_INT32(hashedValueDatum);
}
Ejemplo n.º 4
0
void
hlparsetext(TSCfgInfo * cfg, HLPRSTEXT * prs, QUERYTYPE * query, char *buf, int4 buflen)
{
    int			type,
                lenlemm;
    char	   *lemm = NULL;
    WParserInfo *prsobj = findprs(cfg->prs_id);
    LexizeData	ldata;
    TSLexeme   *norms;
    ParsedLex  *lexs;

    prsobj->prs = (void *) DatumGetPointer(
                      FunctionCall2(
                          &(prsobj->start_info),
                          PointerGetDatum(buf),
                          Int32GetDatum(buflen)
                      )
                  );

    LexizeInit(&ldata, cfg);

    do
    {
        type = DatumGetInt32(FunctionCall3(
                                 &(prsobj->getlexeme_info),
                                 PointerGetDatum(prsobj->prs),
                                 PointerGetDatum(&lemm),
                                 PointerGetDatum(&lenlemm)));

        if (type > 0 && lenlemm >= MAXSTRLEN)
        {
#ifdef IGNORE_LONGLEXEME
            ereport(NOTICE,
                    (errcode(ERRCODE_SYNTAX_ERROR),
                     errmsg("A word you are indexing is too long. It will be ignored.")));
            continue;
#else
            ereport(ERROR,
                    (errcode(ERRCODE_SYNTAX_ERROR),
                     errmsg("A word you are indexing is too long")));
#endif
        }

        LexizeAddLemm(&ldata, type, lemm, lenlemm);

        do
        {
            if ((norms = LexizeExec(&ldata, &lexs)) != NULL)
                addHLParsedLex(prs, query, lexs, norms);
            else
                addHLParsedLex(prs, query, lexs, NULL);
        } while (norms);

    } while (type > 0);

    FunctionCall1(
        &(prsobj->end_info),
        PointerGetDatum(prsobj->prs)
    );
}
Ejemplo n.º 5
0
/*
 * Compute the hash value for a tuple
 *
 * The passed-in key is a pointer to TupleHashEntryData.  In an actual hash
 * table entry, the firstTuple field points to a tuple (in MinimalTuple
 * format).  LookupTupleHashEntry sets up a dummy TupleHashEntryData with a
 * NULL firstTuple field --- that cues us to look at the inputslot instead.
 * This convention avoids the need to materialize virtual input tuples unless
 * they actually need to get copied into the table.
 *
 * Also, the caller must select an appropriate memory context for running
 * the hash functions. (dynahash.c doesn't change CurrentMemoryContext.)
 */
static uint32
TupleHashTableHash(struct tuplehash_hash *tb, const MinimalTuple tuple)
{
	TupleHashTable hashtable = (TupleHashTable) tb->private_data;
	int			numCols = hashtable->numCols;
	AttrNumber *keyColIdx = hashtable->keyColIdx;
	uint32		hashkey = hashtable->hash_iv;
	TupleTableSlot *slot;
	FmgrInfo   *hashfunctions;
	int			i;

	if (tuple == NULL)
	{
		/* Process the current input tuple for the table */
		slot = hashtable->inputslot;
		hashfunctions = hashtable->in_hash_funcs;
	}
	else
	{
		/*
		 * Process a tuple already stored in the table.
		 *
		 * (this case never actually occurs due to the way simplehash.h is
		 * used, as the hash-value is stored in the entries)
		 */
		slot = hashtable->tableslot;
		ExecStoreMinimalTuple(tuple, slot, false);
		hashfunctions = hashtable->tab_hash_funcs;
	}

	for (i = 0; i < numCols; i++)
	{
		AttrNumber	att = keyColIdx[i];
		Datum		attr;
		bool		isNull;

		/* rotate hashkey left 1 bit at each step */
		hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);

		attr = slot_getattr(slot, att, &isNull);

		if (!isNull)			/* treat nulls as having hash key 0 */
		{
			uint32		hkey;

			hkey = DatumGetUInt32(FunctionCall1(&hashfunctions[i],
												attr));
			hashkey ^= hkey;
		}
	}

	/*
	 * The way hashes are combined above, among each other and with the IV,
	 * doesn't lead to good bit perturbation. As the IV's goal is to lead to
	 * achieve that, perform a round of hashing of the combined hash -
	 * resulting in near perfect perturbation.
	 */
	return murmurhash32(hashkey);
}
Ejemplo n.º 6
0
/*
 * Convert using a from-SQL transform function.
 */
static PyObject *
PLyObject_FromTransform(PLyDatumToOb *arg, Datum d)
{
	Datum		t;

	t = FunctionCall1(&arg->u.transform.typtransform, d);
	return (PyObject *) DatumGetPointer(t);
}
Ejemplo n.º 7
0
/*
 * Build a BrinDesc used to create or scan a BRIN index
 */
BrinDesc *
brin_build_desc(Relation rel)
{
	BrinOpcInfo **opcinfo;
	BrinDesc   *bdesc;
	TupleDesc	tupdesc;
	int			totalstored = 0;
	int			keyno;
	long		totalsize;
	MemoryContext cxt;
	MemoryContext oldcxt;

	cxt = AllocSetContextCreate(CurrentMemoryContext,
								"brin desc cxt",
								ALLOCSET_SMALL_INITSIZE,
								ALLOCSET_SMALL_MINSIZE,
								ALLOCSET_SMALL_MAXSIZE);
	oldcxt = MemoryContextSwitchTo(cxt);
	tupdesc = RelationGetDescr(rel);

	/*
	 * Obtain BrinOpcInfo for each indexed column.  While at it, accumulate
	 * the number of columns stored, since the number is opclass-defined.
	 */
	opcinfo = (BrinOpcInfo **) palloc(sizeof(BrinOpcInfo *) * tupdesc->natts);
	for (keyno = 0; keyno < tupdesc->natts; keyno++)
	{
		FmgrInfo   *opcInfoFn;

		opcInfoFn = index_getprocinfo(rel, keyno + 1, BRIN_PROCNUM_OPCINFO);

		opcinfo[keyno] = (BrinOpcInfo *)
			DatumGetPointer(FunctionCall1(opcInfoFn,
										  tupdesc->attrs[keyno]->atttypid));
		totalstored += opcinfo[keyno]->oi_nstored;
	}

	/* Allocate our result struct and fill it in */
	totalsize = offsetof(BrinDesc, bd_info) +
		sizeof(BrinOpcInfo *) * tupdesc->natts;

	bdesc = palloc(totalsize);
	bdesc->bd_context = cxt;
	bdesc->bd_index = rel;
	bdesc->bd_tupdesc = tupdesc;
	bdesc->bd_disktdesc = NULL; /* generated lazily */
	bdesc->bd_totalstored = totalstored;

	for (keyno = 0; keyno < tupdesc->natts; keyno++)
		bdesc->bd_info[keyno] = opcinfo[keyno];
	pfree(opcinfo);

	MemoryContextSwitchTo(oldcxt);

	return bdesc;
}
Ejemplo n.º 8
0
/* ----------------
 *		index_markpos  - mark a scan position
 * ----------------
 */
void
index_markpos(IndexScanDesc scan)
{
	FmgrInfo   *procedure;

	SCAN_CHECKS;
	GET_SCAN_PROCEDURE(ammarkpos);

	FunctionCall1(procedure, PointerGetDatum(scan));
}
Ejemplo n.º 9
0
/*
 * _hash_datum2hashkey -- given a Datum, call the index's hash procedure
 *
 * The Datum is assumed to be of the index's column type, so we can use the
 * "primary" hash procedure that's tracked for us by the generic index code.
 */
uint32
_hash_datum2hashkey(Relation rel, Datum key)
{
	FmgrInfo   *procinfo;

	/* XXX assumes index has only one attribute */
	procinfo = index_getprocinfo(rel, 1, HASHPROC);

	return DatumGetUInt32(FunctionCall1(procinfo, key));
}
Ejemplo n.º 10
0
static void
prs_setup_firstcall(FuncCallContext *funcctx, Oid prsid, text *txt)
{
	TupleDesc	tupdesc;
	MemoryContext oldcontext;
	PrsStorage *st;
	TSParserCacheEntry *prs = lookup_ts_parser_cache(prsid);
	char	   *lex = NULL;
	int			llen = 0,
				type = 0;
	void	   *prsdata;

	oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);

	st = (PrsStorage *) palloc(sizeof(PrsStorage));
	st->cur = 0;
	st->len = 16;
	st->list = (LexemeEntry *) palloc(sizeof(LexemeEntry) * st->len);

	prsdata = (void *) DatumGetPointer(FunctionCall2(&prs->prsstart,
											   PointerGetDatum(VARDATA(txt)),
									Int32GetDatum(VARSIZE(txt) - VARHDRSZ)));

	while ((type = DatumGetInt32(FunctionCall3(&prs->prstoken,
											   PointerGetDatum(prsdata),
											   PointerGetDatum(&lex),
											   PointerGetDatum(&llen)))) != 0)
	{
		if (st->cur >= st->len)
		{
			st->len = 2 * st->len;
			st->list = (LexemeEntry *) repalloc(st->list, sizeof(LexemeEntry) * st->len);
		}
		st->list[st->cur].lexeme = palloc(llen + 1);
		memcpy(st->list[st->cur].lexeme, lex, llen);
		st->list[st->cur].lexeme[llen] = '\0';
		st->list[st->cur].type = type;
		st->cur++;
	}

	FunctionCall1(&prs->prsend, PointerGetDatum(prsdata));

	st->len = st->cur;
	st->cur = 0;

	funcctx->user_fctx = (void *) st;
	tupdesc = CreateTemplateTupleDesc(2, false);
	TupleDescInitEntry(tupdesc, (AttrNumber) 1, "tokid",
					   INT4OID, -1, 0);
	TupleDescInitEntry(tupdesc, (AttrNumber) 2, "token",
					   TEXTOID, -1, 0);

	funcctx->attinmeta = TupleDescGetAttInMetadata(tupdesc);
	MemoryContextSwitchTo(oldcontext);
}
Ejemplo n.º 11
0
/* ----------------
 *		index_restrpos	- restore a scan position
 *
 * NOTE: this only restores the internal scan state of the index AM.
 * The current result tuple (scan->xs_ctup) doesn't change.  See comments
 * for ExecRestrPos().
 * ----------------
 */
void
index_restrpos(IndexScanDesc scan)
{
	FmgrInfo   *procedure;

	SCAN_CHECKS;
	GET_SCAN_PROCEDURE(amrestrpos);

	scan->kill_prior_tuple = false;		/* for safety */

	FunctionCall1(procedure, PointerGetDatum(scan));
}
Ejemplo n.º 12
0
/*
 * Compute the hash value for a tuple
 *
 * The passed-in key is a pointer to TupleHashEntryData.  In an actual hash
 * table entry, the firstTuple field points to a tuple (in MinimalTuple
 * format).  LookupTupleHashEntry sets up a dummy TupleHashEntryData with a
 * NULL firstTuple field --- that cues us to look at the inputslot instead.
 * This convention avoids the need to materialize virtual input tuples unless
 * they actually need to get copied into the table.
 *
 * Also, the caller must select an appropriate memory context for running
 * the hash functions. (dynahash.c doesn't change CurrentMemoryContext.)
 */
static uint32
TupleHashTableHash(struct tuplehash_hash *tb, const MinimalTuple tuple)
{
	TupleHashTable hashtable = (TupleHashTable) tb->private_data;
	int			numCols = hashtable->numCols;
	AttrNumber *keyColIdx = hashtable->keyColIdx;
	uint32		hashkey = hashtable->hash_iv;
	TupleTableSlot *slot;
	FmgrInfo   *hashfunctions;
	int			i;

	if (tuple == NULL)
	{
		/* Process the current input tuple for the table */
		slot = hashtable->inputslot;
		hashfunctions = hashtable->in_hash_funcs;
	}
	else
	{
		/*
		 * Process a tuple already stored in the table.
		 *
		 * (this case never actually occurs due to the way simplehash.h is
		 * used, as the hash-value is stored in the entries)
		 */
		slot = hashtable->tableslot;
		ExecStoreMinimalTuple(tuple, slot, false);
		hashfunctions = hashtable->tab_hash_funcs;
	}

	for (i = 0; i < numCols; i++)
	{
		AttrNumber	att = keyColIdx[i];
		Datum		attr;
		bool		isNull;

		/* rotate hashkey left 1 bit at each step */
		hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);

		attr = slot_getattr(slot, att, &isNull);

		if (!isNull)			/* treat nulls as having hash key 0 */
		{
			uint32		hkey;

			hkey = DatumGetUInt32(FunctionCall1(&hashfunctions[i],
												attr));
			hashkey ^= hkey;
		}
	}

	return hashkey;
}
Ejemplo n.º 13
0
/*
 * Convert using a to-SQL transform function.
 */
static Datum
PLyObject_ToTransform(PLyObToDatum *arg, PyObject *plrv,
					  bool *isnull, bool inarray)
{
	if (plrv == Py_None)
	{
		*isnull = true;
		return (Datum) 0;
	}
	*isnull = false;
	return FunctionCall1(&arg->u.transform.typtransform, PointerGetDatum(plrv));
}
Ejemplo n.º 14
0
/*
 * Compute the hash value for a tuple
 *
 * The passed-in key is a pointer to TupleHashEntryData.  In an actual hash
 * table entry, the firstTuple field points to a tuple (in MinimalTuple
 * format).  LookupTupleHashEntry sets up a dummy TupleHashEntryData with a
 * NULL firstTuple field --- that cues us to look at the inputslot instead.
 * This convention avoids the need to materialize virtual input tuples unless
 * they actually need to get copied into the table.
 *
 * CurTupleHashTable must be set before calling this, since dynahash.c
 * doesn't provide any API that would let us get at the hashtable otherwise.
 *
 * Also, the caller must select an appropriate memory context for running
 * the hash functions. (dynahash.c doesn't change CurrentMemoryContext.)
 */
static uint32
TupleHashTableHash(const void *key, Size keysize)
{
	MinimalTuple tuple = ((const TupleHashEntryData *) key)->firstTuple;
	TupleTableSlot *slot;
	TupleHashTable hashtable = CurTupleHashTable;
	int			numCols = hashtable->numCols;
	AttrNumber *keyColIdx = hashtable->keyColIdx;
	FmgrInfo   *hashfunctions;
	uint32		hashkey = 0;
	int			i;

	if (tuple == NULL)
	{
		/* Process the current input tuple for the table */
		slot = hashtable->inputslot;
		hashfunctions = hashtable->in_hash_funcs;
	}
	else
	{
		/* Process a tuple already stored in the table */
		/* (this case never actually occurs in current dynahash.c code) */
		slot = hashtable->tableslot;
		ExecStoreMinimalTuple(tuple, slot, false);
		hashfunctions = hashtable->tab_hash_funcs;
	}

	for (i = 0; i < numCols; i++)
	{
		AttrNumber	att = keyColIdx[i];
		Datum		attr;
		bool		isNull;

		/* rotate hashkey left 1 bit at each step */
		hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);

		attr = slot_getattr(slot, att, &isNull);

		if (!isNull)			/* treat nulls as having hash key 0 */
		{
			uint32		hkey;

			hkey = DatumGetUInt32(FunctionCall1(&hashfunctions[i],
												attr));
			hashkey ^= hkey;
		}
	}

	return hashkey;
}
Ejemplo n.º 15
0
/*
 * FindShardInterval finds a single shard interval in the cache for the
 * given partition column value.
 */
ShardInterval *
FindShardInterval(Datum partitionColumnValue, ShardInterval **shardIntervalCache,
				  int shardCount, char partitionMethod, FmgrInfo *compareFunction,
				  FmgrInfo *hashFunction, bool useBinarySearch)
{
	ShardInterval *shardInterval = NULL;

	if (partitionMethod == DISTRIBUTE_BY_HASH)
	{
		int hashedValue = DatumGetInt32(FunctionCall1(hashFunction,
													  partitionColumnValue));
		if (useBinarySearch)
		{
			Assert(compareFunction != NULL);

			shardInterval = SearchCachedShardInterval(Int32GetDatum(hashedValue),
													  shardIntervalCache, shardCount,
													  compareFunction);
		}
		else
		{
			uint64 hashTokenIncrement = HASH_TOKEN_COUNT / shardCount;
			int shardIndex = (uint32) (hashedValue - INT32_MIN) / hashTokenIncrement;

			Assert(shardIndex <= shardCount);

			/*
			 * If the shard count is not power of 2, the range of the last
			 * shard becomes larger than others. For that extra piece of range,
			 * we still need to use the last shard.
			 */
			if (shardIndex == shardCount)
			{
				shardIndex = shardCount - 1;
			}

			shardInterval = shardIntervalCache[shardIndex];
		}
	}
	else
	{
		Assert(compareFunction != NULL);

		shardInterval = SearchCachedShardInterval(partitionColumnValue,
												  shardIntervalCache, shardCount,
												  compareFunction);
	}

	return shardInterval;
}
Ejemplo n.º 16
0
/* ----------------
 *		index_can_return - does index support index-only scans?
 * ----------------
 */
bool
index_can_return(Relation indexRelation)
{
	FmgrInfo   *procedure;

	RELATION_CHECKS;

	/* amcanreturn is optional; assume FALSE if not provided by AM */
	if (!RegProcedureIsValid(indexRelation->rd_am->amcanreturn))
		return false;

	GET_REL_PROCEDURE(amcanreturn);

	return DatumGetBool(FunctionCall1(procedure,
									  PointerGetDatum(indexRelation)));
}
Ejemplo n.º 17
0
/* ----------------
 *		index_restrpos	- restore a scan position
 *
 * NOTE: this only restores the internal scan state of the index AM.
 * The current result tuple (scan->xs_ctup) doesn't change.  See comments
 * for ExecRestrPos().
 *
 * NOTE: in the presence of HOT chains, mark/restore only works correctly
 * if the scan's snapshot is MVCC-safe; that ensures that there's at most one
 * returnable tuple in each HOT chain, and so restoring the prior state at the
 * granularity of the index AM is sufficient.  Since the only current user
 * of mark/restore functionality is nodeMergejoin.c, this effectively means
 * that merge-join plans only work for MVCC snapshots.  This could be fixed
 * if necessary, but for now it seems unimportant.
 * ----------------
 */
void
index_restrpos(IndexScanDesc scan)
{
	FmgrInfo   *procedure;

	Assert(IsMVCCSnapshot(scan->xs_snapshot));

	SCAN_CHECKS;
	GET_SCAN_PROCEDURE(amrestrpos);

	scan->xs_continue_hot = false;

	scan->kill_prior_tuple = false;		/* for safety */

	FunctionCall1(procedure, PointerGetDatum(scan));
}
Ejemplo n.º 18
0
void 
initForecastModel(ModelInfo *modelInfo, MemoryContext memoryContext)
{
	MemoryContext oldContext = NULL;
		
	if (memoryContext != CurrentMemoryContext)
		oldContext = MemoryContextSwitchTo(memoryContext);
		
	FunctionCall1(&(modelInfo->algInfo->algInitModel), PointerGetDatum(modelInfo));
	
	modelInfo->disAggKeyDenominator=0.0;
	modelInfo->disaggkey=1;

	if (oldContext != NULL)
		MemoryContextSwitchTo(oldContext);
}
Ejemplo n.º 19
0
Datum json_agg_common_transfn( PG_FUNCTION_ARGS, bool top_object )
{
	StringInfo state;
	char *serialized_value;
	FmgrInfo	flinfo;

	state = PG_ARGISNULL(0) ? NULL : (StringInfo) PG_GETARG_POINTER(0);

	/* Append the value unless null. */
	if (!PG_ARGISNULL(1))
	{
		/* On the first time through, we ignore the delimiter. */
		if (state == NULL)
		{
			state = makeJsonAggState(fcinfo);

			if( top_object )
				appendStringInfoChar(state, '{');  /* begin top-level json object */

			if(!PG_ARGISNULL(2)) /* output array json-name */
			{
				appendStringInfoQuotedString(state, PG_TEXT_DATUM_GET_CSTR( PG_GETARG_DATUM(2) ));
				appendStringInfoChar(state, ':');  /* array name delimiter */
			}
			appendStringInfoChar(state, '[');  /* array begin */
		}
		else
			appendStringInfoChar(state, ',');  /* delimiter */

		//call to serialize_record( ... )
		MemSet( &flinfo, 0, sizeof( flinfo ) );
		flinfo.fn_addr = serialize_record;
		flinfo.fn_nargs = 1;
		flinfo.fn_mcxt = fcinfo->flinfo->fn_mcxt;

		serialized_value = PG_TEXT_DATUM_GET_CSTR( FunctionCall1( &flinfo, PG_GETARG_DATUM(1) ) );

		appendStringInfoString(state, serialized_value);	  /* append value */
	}

	/*
	 * The transition type for json_agg() is declared to be "internal",
	 * which is a pass-by-value type the same size as a pointer.
	 */

	PG_RETURN_POINTER(state);
}
Ejemplo n.º 20
0
/*
 * initialize a GiST entry with a compressed version of key
 */
void
gistcentryinit(GISTSTATE *giststate, int nkey,
			   GISTENTRY *e, Datum k, Relation r,
			   Page pg, OffsetNumber o, bool l, bool isNull)
{
	if (!isNull)
	{
		GISTENTRY  *cep;

		gistentryinit(*e, k, r, pg, o, l);
		cep = (GISTENTRY *)
			DatumGetPointer(FunctionCall1(&giststate->compressFn[nkey],
										  PointerGetDatum(e)));
		/* compressFn may just return the given pointer */
		if (cep != e)
			gistentryinit(*e, cep->key, cep->rel, cep->page, cep->offset,
						  cep->leafkey);
	}
	else
		gistentryinit(*e, (Datum) 0, r, pg, o, l);
}
Ejemplo n.º 21
0
/*
 * finalizeForecastModel
 *
 * no more input tuples to read
 */
void 
finalizeForecastModel(ModelInfo *model)
{
	int length = 0;

	FunctionCall1(&(model->algInfo->algFinalizeForecastModel),PointerGetDatum(model->model));

	length = model->model->trainingTupleCount;

	//MEASURE-CHANGE
//	length=20;

	if (model->upperBound==0) {
		if(((int)(length*0.1))<1)
			model->lowerBound = 1;
		else
			model->lowerBound = (((int)(length*0.1)));
		//XXX: CHANGE FOR MESURING

		if(!model->errorArray){
			if(((int)(length*0.1))<2)
				model->errorArray = palloc0(2*sizeof(double));
			else
				model->errorArray = palloc0(((int)(length*0.1))*sizeof(double));
		}
		else
			if(model->upperBound < ((int)(length*0.1))){
				model->errorArray = repalloc(model->errorArray, ((int)(length*0.1))*sizeof(double));
				model->errorArray[((int)(length*0.1))-1] = 0.0;
			}

		if(((int)(length*0.1))<2)
			model->upperBound = 2;
		else
			model->upperBound = ((int)(length*0.1));
	}
}
Ejemplo n.º 22
0
/*
** initialize a GiST entry with a decompressed version of key
*/
void
gistdentryinit(GISTSTATE *giststate, int nkey, GISTENTRY *e,
			   Datum k, Relation r, Page pg, OffsetNumber o,
			   int b, bool l, bool isNull)
{
	if (b && !isNull)
	{
		GISTENTRY  *dep;

		gistentryinit(*e, k, r, pg, o, b, l);
		dep = (GISTENTRY *)
			DatumGetPointer(FunctionCall1(&giststate->decompressFn[nkey],
										  PointerGetDatum(e)));
		/* decompressFn may just return the given pointer */
		if (dep != e)
		{
			gistentryinit(*e, dep->key, dep->rel, dep->page, dep->offset,
						  dep->bytes, dep->leafkey);
			pfree(dep);
		}
	}
	else
		gistentryinit(*e, (Datum) 0, r, pg, o, 0, l);
}
Ejemplo n.º 23
0
/* ----------------
 *		index_endscan - end a scan
 * ----------------
 */
void
index_endscan(IndexScanDesc scan)
{
	FmgrInfo   *procedure;

	SCAN_CHECKS;
	GET_SCAN_PROCEDURE(amendscan);

	/* Release any held pin on a heap page */
	if (BufferIsValid(scan->xs_cbuf))
	{
		ReleaseBuffer(scan->xs_cbuf);
		scan->xs_cbuf = InvalidBuffer;
	}

	/* End the AM's scan */
	FunctionCall1(procedure, PointerGetDatum(scan));

	/* Release index refcount acquired by index_beginscan */
	RelationDecrementReferenceCount(scan->indexRelation);

	/* Release the scan data structure itself */
	IndexScanEnd(scan);
}
Ejemplo n.º 24
0
static SV  *
plperl_call_perl_func(plperl_proc_desc *desc, FunctionCallInfo fcinfo)
{
	dSP;
	SV		   *retval;
	int			i;
	int			count;
	SV		   *sv;

	ENTER;
	SAVETMPS;

	PUSHMARK(SP);

	XPUSHs(&PL_sv_undef);		/* no trigger data */

	for (i = 0; i < desc->nargs; i++)
	{
		if (fcinfo->argnull[i])
			XPUSHs(&PL_sv_undef);
		else if (desc->arg_is_rowtype[i])
		{
			HeapTupleHeader td;
			Oid			tupType;
			int32		tupTypmod;
			TupleDesc	tupdesc;
			HeapTupleData tmptup;
			SV		   *hashref;

			td = DatumGetHeapTupleHeader(fcinfo->arg[i]);
			/* Extract rowtype info and find a tupdesc */
			tupType = HeapTupleHeaderGetTypeId(td);
			tupTypmod = HeapTupleHeaderGetTypMod(td);
			tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
			/* Build a temporary HeapTuple control structure */
			tmptup.t_len = HeapTupleHeaderGetDatumLength(td);
			tmptup.t_data = td;

			hashref = plperl_hash_from_tuple(&tmptup, tupdesc);
			XPUSHs(sv_2mortal(hashref));
		}
		else
		{
			char	   *tmp;

			tmp = DatumGetCString(FunctionCall1(&(desc->arg_out_func[i]),
												fcinfo->arg[i]));
			sv = newSVpv(tmp, 0);
#if PERL_BCDVERSION >= 0x5006000L
			if (GetDatabaseEncoding() == PG_UTF8)
				SvUTF8_on(sv);
#endif
			XPUSHs(sv_2mortal(sv));
			pfree(tmp);
		}
	}
	PUTBACK;

	/* Do NOT use G_KEEPERR here */
	count = perl_call_sv(desc->reference, G_SCALAR | G_EVAL);

	SPAGAIN;

	if (count != 1)
	{
		PUTBACK;
		FREETMPS;
		LEAVE;
		elog(ERROR, "didn't get a return item from function");
	}

	if (SvTRUE(ERRSV))
	{
		(void) POPs;
		PUTBACK;
		FREETMPS;
		LEAVE;
		/* XXX need to find a way to assign an errcode here */
		ereport(ERROR,
				(errmsg("error from Perl function: %s",
						strip_trailing_ws(SvPV(ERRSV, PL_na)))));
	}

	retval = newSVsv(POPs);

	PUTBACK;
	FREETMPS;
	LEAVE;

	return retval;
}
Ejemplo n.º 25
0
/*
 * Parse string and lexize words.
 *
 * prs will be filled in.
 */
void
parsetext(Oid cfgId, ParsedText *prs, char *buf, int buflen)
{
	int			type,
				lenlemm;
	char	   *lemm = NULL;
	LexizeData	ldata;
	TSLexeme   *norms;
	TSConfigCacheEntry *cfg;
	TSParserCacheEntry *prsobj;
	void	   *prsdata;

	cfg = lookup_ts_config_cache(cfgId);
	prsobj = lookup_ts_parser_cache(cfg->prsId);

	prsdata = (void *) DatumGetPointer(FunctionCall2(&prsobj->prsstart,
													 PointerGetDatum(buf),
													 Int32GetDatum(buflen)));

	LexizeInit(&ldata, cfg);

	do
	{
		type = DatumGetInt32(FunctionCall3(&(prsobj->prstoken),
										   PointerGetDatum(prsdata),
										   PointerGetDatum(&lemm),
										   PointerGetDatum(&lenlemm)));

		if (type > 0 && lenlemm >= MAXSTRLEN)
		{
#ifdef IGNORE_LONGLEXEME
			ereport(NOTICE,
					(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
					 errmsg("word is too long to be indexed"),
					 errdetail("Words longer than %d characters are ignored.",
							   MAXSTRLEN)));
			continue;
#else
			ereport(ERROR,
					(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
					 errmsg("word is too long to be indexed"),
					 errdetail("Words longer than %d characters are ignored.",
							   MAXSTRLEN)));
#endif
		}

		LexizeAddLemm(&ldata, type, lemm, lenlemm);

		while ((norms = LexizeExec(&ldata, NULL)) != NULL)
		{
			TSLexeme   *ptr = norms;

			prs->pos++;			/* set pos */

			while (ptr->lexeme)
			{
				if (prs->curwords == prs->lenwords)
				{
					prs->lenwords *= 2;
					prs->words = (ParsedWord *) repalloc((void *) prs->words, prs->lenwords * sizeof(ParsedWord));
				}

				if (ptr->flags & TSL_ADDPOS)
					prs->pos++;
				prs->words[prs->curwords].len = strlen(ptr->lexeme);
				prs->words[prs->curwords].word = ptr->lexeme;
				prs->words[prs->curwords].nvariant = ptr->nvariant;
				prs->words[prs->curwords].flags = ptr->flags & TSL_PREFIX;
				prs->words[prs->curwords].alen = 0;
				prs->words[prs->curwords].pos.pos = LIMITPOS(prs->pos);
				ptr++;
				prs->curwords++;
			}
			pfree(norms);
		}
	} while (type > 0);

	FunctionCall1(&(prsobj->prsend), PointerGetDatum(prsdata));
}
Ejemplo n.º 26
0
Archivo: tupser.c Proyecto: 50wu/gpdb
/*
 * Deserialize a HeapTuple's data from a byte-array.
 *
 * This code is based on the binary input handling functions in copy.c.
 */
HeapTuple
DeserializeTuple(SerTupInfo * pSerInfo, StringInfo serialTup)
{
	MemoryContext oldCtxt;
	TupleDesc	tupdesc;
	HeapTuple	htup;
	int			natts;
	SerAttrInfo *attrInfo;
	uint32		attr_size;

	int			i;
	StringInfoData attr_data;
	bool		fHandled;

	AssertArg(pSerInfo != NULL);
	AssertArg(serialTup != NULL);

	tupdesc = pSerInfo->tupdesc;
	natts = tupdesc->natts;

	/*
	 * Flip to our tuple-serialization memory-context, to speed up memory
	 * reclamation operations.
	 */
	AssertState(s_tupSerMemCtxt != NULL);
	oldCtxt = MemoryContextSwitchTo(s_tupSerMemCtxt);

	/* Receive nulls character-array. */
	pq_copymsgbytes(serialTup, pSerInfo->nulls, natts);
	skipPadding(serialTup);

	/* Deserialize the non-NULL attributes of this tuple */
	initStringInfo(&attr_data);
	for (i = 0; i < natts; ++i)
	{
		attrInfo = pSerInfo->myinfo + i;

		if (pSerInfo->nulls[i])	/* NULL field. */
		{
			pSerInfo->values[i] = (Datum) 0;
			continue;
		}

		/*
		 * Assume that the data's output will be handled by the special IO
		 * code, and if not then we can handle it the slow way.
		 */
		fHandled = true;
		switch (attrInfo->atttypid)
		{
			case INT4OID:
				pSerInfo->values[i] = Int32GetDatum(stringInfoGetInt32(serialTup));
				break;

			case CHAROID:
				pSerInfo->values[i] = CharGetDatum(pq_getmsgbyte(serialTup));
				skipPadding(serialTup);
				break;

			case BPCHAROID:
			case VARCHAROID:
			case INT2VECTOROID: /* postgres serialization logic broken, use our own */
			case OIDVECTOROID: /* postgres serialization logic broken, use our own */
			case ANYARRAYOID:
			{
				text	   *pText;
				int			textSize;

				textSize = stringInfoGetInt32(serialTup);

#ifdef TUPSER_SCRATCH_SPACE
				if (textSize + VARHDRSZ <= attrInfo->varlen_scratch_size)
					pText = (text *) attrInfo->pv_varlen_scratch;
				else
					pText = (text *) palloc(textSize + VARHDRSZ);
#else
				pText = (text *) palloc(textSize + VARHDRSZ);
#endif

				SET_VARSIZE(pText, textSize + VARHDRSZ);
				pq_copymsgbytes(serialTup, VARDATA(pText), textSize);
				skipPadding(serialTup);
				pSerInfo->values[i] = PointerGetDatum(pText);
				break;
			}

			case DATEOID:
			{
				/*
				 * TODO:  I would LIKE to do something more efficient, but
				 * DateADT is not strictly limited to 4 bytes by its
				 * definition.
				 */
				DateADT date;

				pq_copymsgbytes(serialTup, (char *) &date, sizeof(DateADT));
				skipPadding(serialTup);
				pSerInfo->values[i] = DateADTGetDatum(date);
				break;
			}

			case NUMERICOID:
			{
				/*
				 * Treat the numeric as a varlena variable, and just push
				 * the whole shebang to the output-buffer.	We don't care
				 * about the guts of the numeric.
				 */
				Numeric		num;
				int			numSize;

				numSize = stringInfoGetInt32(serialTup);

#ifdef TUPSER_SCRATCH_SPACE
				if (numSize + VARHDRSZ <= attrInfo->varlen_scratch_size)
					num = (Numeric) attrInfo->pv_varlen_scratch;
				else
					num = (Numeric) palloc(numSize + VARHDRSZ);
#else
				num = (Numeric) palloc(numSize + VARHDRSZ);
#endif

				SET_VARSIZE(num, numSize + VARHDRSZ);
				pq_copymsgbytes(serialTup, VARDATA(num), numSize);
				skipPadding(serialTup);
				pSerInfo->values[i] = NumericGetDatum(num);
				break;
			}

			case ACLITEMOID:
			{
				int		aclSize, k, cnt;
				char		*inputstring, *starsfree;

				aclSize = stringInfoGetInt32(serialTup);
				inputstring = (char*) palloc(aclSize  + 1);
				starsfree = (char*) palloc(aclSize  + 1);
				cnt = 0;
	

				pq_copymsgbytes(serialTup, inputstring, aclSize);
				skipPadding(serialTup);
				inputstring[aclSize] = '\0';
				for(k=0; k<aclSize; k++)
				{					
					if( inputstring[k] != '*')
					{
						starsfree[cnt] = inputstring[k];
						cnt++;
					}
				}
				starsfree[cnt] = '\0';

				pSerInfo->values[i] = DirectFunctionCall1(aclitemin, CStringGetDatum(starsfree));
				pfree(inputstring);
				break;
			}

			case 210:
			{
				int 		strsize;
				char		*smgrstr;

				strsize = stringInfoGetInt32(serialTup);
				smgrstr = (char*) palloc(strsize + 1);
				pq_copymsgbytes(serialTup, smgrstr, strsize);
				skipPadding(serialTup);
				smgrstr[strsize] = '\0';

				pSerInfo->values[i] = DirectFunctionCall1(smgrin, CStringGetDatum(smgrstr));
				break;
			}
			default:
				fHandled = false;
		}

		if (fHandled)
			continue;

		attr_size = stringInfoGetInt32(serialTup);

		/* reset attr_data to empty, and load raw data into it */

		attr_data.len = 0;
		attr_data.data[0] = '\0';
		attr_data.cursor = 0;

		appendBinaryStringInfo(&attr_data,
							   pq_getmsgbytes(serialTup, attr_size), attr_size);
		skipPadding(serialTup);

		/* Call the attribute type's binary input converter. */
		if (attrInfo->recv_finfo.fn_nargs == 1)
			pSerInfo->values[i] = FunctionCall1(&attrInfo->recv_finfo,
												PointerGetDatum(&attr_data));
		else if (attrInfo->recv_finfo.fn_nargs == 2)
			pSerInfo->values[i] = FunctionCall2(&attrInfo->recv_finfo,
												PointerGetDatum(&attr_data),
												ObjectIdGetDatum(attrInfo->recv_typio_param));
		else if (attrInfo->recv_finfo.fn_nargs == 3)
			pSerInfo->values[i] = FunctionCall3(&attrInfo->recv_finfo,
												PointerGetDatum(&attr_data),
												ObjectIdGetDatum(attrInfo->recv_typio_param),
												Int32GetDatum(tupdesc->attrs[i]->atttypmod) );  
		else
		{
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
					 errmsg("Conversion function takes %d args",attrInfo->recv_finfo.fn_nargs)));
		}

		/* Trouble if it didn't eat the whole buffer */
		if (attr_data.cursor != attr_data.len)
		{
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
					 errmsg("incorrect binary data format")));
		}
	}

	/*
	 * Construct the tuple from the Datums and nulls values.  NOTE:  Switch
	 * out of our temporary context before we form the tuple!
	 */
	MemoryContextSwitchTo(oldCtxt);

	htup = heap_form_tuple(tupdesc, pSerInfo->values, pSerInfo->nulls);

	MemoryContextReset(s_tupSerMemCtxt);

	/* All done.  Return the result. */
	return htup;
}
Ejemplo n.º 27
0
Archivo: tupser.c Proyecto: 50wu/gpdb
/*
 * Convert a HeapTuple into a byte-sequence, and store it directly
 * into a chunklist for transmission.
 *
 * This code is based on the printtup_internal_20() function in printtup.c.
 */
void
SerializeTupleIntoChunks(HeapTuple tuple, SerTupInfo * pSerInfo, TupleChunkList tcList)
{
	TupleChunkListItem tcItem = NULL;
	MemoryContext oldCtxt;
	TupleDesc	tupdesc;
	int			i,
		natts;
	bool		fHandled;

	AssertArg(tcList != NULL);
	AssertArg(tuple != NULL);
	AssertArg(pSerInfo != NULL);

	tupdesc = pSerInfo->tupdesc;
	natts = tupdesc->natts;

	/* get ready to go */
	tcList->p_first = NULL;
	tcList->p_last = NULL;
	tcList->num_chunks = 0;
	tcList->serialized_data_length = 0;
	tcList->max_chunk_length = Gp_max_tuple_chunk_size;

	if (natts == 0)
	{
		tcItem = getChunkFromCache(&pSerInfo->chunkCache);
		if (tcItem == NULL)
		{
			ereport(FATAL, (errcode(ERRCODE_OUT_OF_MEMORY),
							errmsg("Could not allocate space for first chunk item in new chunk list.")));
		}

		/* TC_EMTPY is just one chunk */
		SetChunkType(tcItem->chunk_data, TC_EMPTY);
		tcItem->chunk_length = TUPLE_CHUNK_HEADER_SIZE;
		appendChunkToTCList(tcList, tcItem);

		return;
	}

	tcItem = getChunkFromCache(&pSerInfo->chunkCache);
	if (tcItem == NULL)
	{
		ereport(FATAL, (errcode(ERRCODE_OUT_OF_MEMORY),
						errmsg("Could not allocate space for first chunk item in new chunk list.")));
	}

	/* assume that we'll take a single chunk */
	SetChunkType(tcItem->chunk_data, TC_WHOLE);
	tcItem->chunk_length = TUPLE_CHUNK_HEADER_SIZE;
	appendChunkToTCList(tcList, tcItem);

	AssertState(s_tupSerMemCtxt != NULL);

	if (is_heaptuple_memtuple(tuple))
	{
		addByteStringToChunkList(tcList, (char *)tuple, memtuple_get_size((MemTuple)tuple, NULL), &pSerInfo->chunkCache);
		addPadding(tcList, &pSerInfo->chunkCache, memtuple_get_size((MemTuple)tuple, NULL));
	}
	else
	{
		TupSerHeader tsh;

		unsigned int	datalen;
		unsigned int	nullslen;

		HeapTupleHeader t_data = tuple->t_data;

		datalen = tuple->t_len - t_data->t_hoff;
		if (HeapTupleHasNulls(tuple))
			nullslen = BITMAPLEN(HeapTupleHeaderGetNatts(t_data));
		else
			nullslen = 0;

		tsh.tuplen = sizeof(TupSerHeader) + TYPEALIGN(TUPLE_CHUNK_ALIGN,nullslen) + datalen;
		tsh.natts = HeapTupleHeaderGetNatts(t_data);
		tsh.infomask = t_data->t_infomask;

		addByteStringToChunkList(tcList, (char *)&tsh, sizeof(TupSerHeader), &pSerInfo->chunkCache);
		/* If we don't have any attributes which have been toasted, we
		 * can be very very simple: just send the raw data. */
		if ((tsh.infomask & HEAP_HASEXTERNAL) == 0)
		{
			if (nullslen)
			{
				addByteStringToChunkList(tcList, (char *)t_data->t_bits, nullslen, &pSerInfo->chunkCache);
				addPadding(tcList,&pSerInfo->chunkCache,nullslen);
			}

			addByteStringToChunkList(tcList, (char *)t_data + t_data->t_hoff, datalen, &pSerInfo->chunkCache);
			addPadding(tcList,&pSerInfo->chunkCache,datalen);
		}
		else
		{
			/* We have to be more careful when we have tuples that
			 * have been toasted. Ideally we'd like to send the
			 * untoasted attributes in as "raw" a format as possible
			 * but that makes rebuilding the tuple harder .
			 */
			oldCtxt = MemoryContextSwitchTo(s_tupSerMemCtxt);

			/* deconstruct the tuple (faster than a heap_getattr loop) */
			heap_deform_tuple(tuple, tupdesc, pSerInfo->values, pSerInfo->nulls);

			MemoryContextSwitchTo(oldCtxt);

			/* Send the nulls character-array. */
			addByteStringToChunkList(tcList, pSerInfo->nulls, natts, &pSerInfo->chunkCache);
			addPadding(tcList,&pSerInfo->chunkCache,natts);

			/*
			 * send the attributes of this tuple: NOTE anything which allocates
			 * temporary space (e.g. could result in a PG_DETOAST_DATUM) should be
			 * executed with the memory context set to s_tupSerMemCtxt
			 */
			for (i = 0; i < natts; ++i)
			{
				SerAttrInfo *attrInfo = pSerInfo->myinfo + i;
				Datum		origattr = pSerInfo->values[i],
					attr;
				bytea	   *outputbytes=0;

				/* skip null attributes (already taken care of above) */
				if (pSerInfo->nulls[i])
					continue;

				/*
				 * If we have a toasted datum, forcibly detoast it here to avoid
				 * memory leakage: we want to force the detoast allocation(s) to
				 * happen in our reset-able serialization context.
				 */
				if (attrInfo->typisvarlena)
				{
					oldCtxt = MemoryContextSwitchTo(s_tupSerMemCtxt);
					/* we want to detoast but leave compressed, if
					 * possible, but we have to handle varlena
					 * attributes (and others ?) differently than we
					 * currently do (first step is to use
					 * heap_tuple_fetch_attr() instead of
					 * PG_DETOAST_DATUM()). */
					attr = PointerGetDatum(PG_DETOAST_DATUM(origattr));
					MemoryContextSwitchTo(oldCtxt);
				}
				else
					attr = origattr;

				/*
				 * Assume that the data's output will be handled by the special IO
				 * code, and if not then we can handle it the slow way.
				 */
				fHandled = true;
				switch (attrInfo->atttypid)
				{
					case INT4OID:
						addInt32ToChunkList(tcList, DatumGetInt32(attr), &pSerInfo->chunkCache);
						break;
					case CHAROID:
						addCharToChunkList(tcList, DatumGetChar(attr), &pSerInfo->chunkCache);
						addPadding(tcList,&pSerInfo->chunkCache,1);
						break;
					case BPCHAROID:
					case VARCHAROID:
					case INT2VECTOROID: /* postgres serialization logic broken, use our own */
					case OIDVECTOROID: /* postgres serialization logic broken, use our own */
					case ANYARRAYOID:
					{
						text	   *pText = DatumGetTextP(attr);
						int32		textSize = VARSIZE(pText) - VARHDRSZ;

						addInt32ToChunkList(tcList, textSize, &pSerInfo->chunkCache);
						addByteStringToChunkList(tcList, (char *) VARDATA(pText), textSize, &pSerInfo->chunkCache);
						addPadding(tcList,&pSerInfo->chunkCache,textSize);
						break;
					}
					case DATEOID:
					{
						DateADT date = DatumGetDateADT(attr);

						addByteStringToChunkList(tcList, (char *) &date, sizeof(DateADT), &pSerInfo->chunkCache);
						break;
					}
					case NUMERICOID:
					{
						/*
						 * Treat the numeric as a varlena variable, and just push
						 * the whole shebang to the output-buffer.	We don't care
						 * about the guts of the numeric.
						 */
						Numeric		num = DatumGetNumeric(attr);
						int32		numSize = VARSIZE(num) - VARHDRSZ;

						addInt32ToChunkList(tcList, numSize, &pSerInfo->chunkCache);
						addByteStringToChunkList(tcList, (char *) VARDATA(num), numSize, &pSerInfo->chunkCache);
						addPadding(tcList,&pSerInfo->chunkCache,numSize);
						break;
					}

					case ACLITEMOID:
					{
						AclItem		*aip = DatumGetAclItemP(attr);
						char		*outputstring;
						int32		aclSize ;

						outputstring = DatumGetCString(DirectFunctionCall1(aclitemout,
																		   PointerGetDatum(aip)));

						aclSize = strlen(outputstring);
						addInt32ToChunkList(tcList, aclSize, &pSerInfo->chunkCache);
						addByteStringToChunkList(tcList, outputstring,aclSize, &pSerInfo->chunkCache);
						addPadding(tcList,&pSerInfo->chunkCache,aclSize);
						break;
					}	

					case 210: /* storage manager */
					{
						char		*smgrstr;
						int32		strsize;

						smgrstr = DatumGetCString(DirectFunctionCall1(smgrout, 0));
						strsize = strlen(smgrstr);
						addInt32ToChunkList(tcList, strsize, &pSerInfo->chunkCache);
						addByteStringToChunkList(tcList, smgrstr, strsize, &pSerInfo->chunkCache);
						addPadding(tcList,&pSerInfo->chunkCache,strsize);
						break;
					}

					default:
						fHandled = false;
				}

				if (fHandled)
					continue;

				/*
				 * the FunctionCall2 call into the send function may result in some
				 * allocations which we'd like to have contained by our reset-able
				 * context
				 */
				oldCtxt = MemoryContextSwitchTo(s_tupSerMemCtxt);						  
							  
				/* Call the attribute type's binary input converter. */
				if (attrInfo->send_finfo.fn_nargs == 1)
					outputbytes =
						DatumGetByteaP(FunctionCall1(&attrInfo->send_finfo,
													 attr));
				else if (attrInfo->send_finfo.fn_nargs == 2)
					outputbytes =
						DatumGetByteaP(FunctionCall2(&attrInfo->send_finfo,
													 attr,
													 ObjectIdGetDatum(attrInfo->send_typio_param)));
				else if (attrInfo->send_finfo.fn_nargs == 3)
					outputbytes =
						DatumGetByteaP(FunctionCall3(&attrInfo->send_finfo,
													 attr,
													 ObjectIdGetDatum(attrInfo->send_typio_param),
													 Int32GetDatum(tupdesc->attrs[i]->atttypmod)));
				else
				{
					ereport(ERROR,
							(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
							 errmsg("Conversion function takes %d args",attrInfo->recv_finfo.fn_nargs)));
				}
		
				MemoryContextSwitchTo(oldCtxt);

				/* We assume the result will not have been toasted */
				addInt32ToChunkList(tcList, VARSIZE(outputbytes) - VARHDRSZ, &pSerInfo->chunkCache);
				addByteStringToChunkList(tcList, VARDATA(outputbytes),
										 VARSIZE(outputbytes) - VARHDRSZ, &pSerInfo->chunkCache);
				addPadding(tcList,&pSerInfo->chunkCache,VARSIZE(outputbytes) - VARHDRSZ);

				/*
				 * this was allocated in our reset-able context, but we *are* done
				 * with it; and for tuples with several large columns it'd be nice to
				 * free the memory back to the context
				 */
				pfree(outputbytes);

			}

			MemoryContextReset(s_tupSerMemCtxt);
		}
	}

	/*
	 * if we have more than 1 chunk we have to set the chunk types on our
	 * first chunk and last chunk
	 */
	if (tcList->num_chunks > 1)
	{
		TupleChunkListItem first,
			last;

		first = tcList->p_first;
		last = tcList->p_last;

		Assert(first != NULL);
		Assert(first != last);
		Assert(last != NULL);

		SetChunkType(first->chunk_data, TC_PARTIAL_START);
		SetChunkType(last->chunk_data, TC_PARTIAL_END);

		/*
		 * any intervening chunks are already set to TC_PARTIAL_MID when
		 * allocated
		 */
	}

	return;
}
Ejemplo n.º 28
0
void
hlparsetext(Oid cfgId, HeadlineParsedText *prs, TSQuery query, char *buf, int buflen)
{
	int			type,
				lenlemm;
	char	   *lemm = NULL;
	LexizeData	ldata;
	TSLexeme   *norms;
	ParsedLex  *lexs;
	TSConfigCacheEntry *cfg;
	TSParserCacheEntry *prsobj;
	void	   *prsdata;

	cfg = lookup_ts_config_cache(cfgId);
	prsobj = lookup_ts_parser_cache(cfg->prsId);

	prsdata = (void *) DatumGetPointer(FunctionCall2(&(prsobj->prsstart),
													 PointerGetDatum(buf),
													 Int32GetDatum(buflen)));

	LexizeInit(&ldata, cfg);

	do
	{
		type = DatumGetInt32(FunctionCall3(&(prsobj->prstoken),
										   PointerGetDatum(prsdata),
										   PointerGetDatum(&lemm),
										   PointerGetDatum(&lenlemm)));

		if (type > 0 && lenlemm >= MAXSTRLEN)
		{
#ifdef IGNORE_LONGLEXEME
			ereport(NOTICE,
					(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
					 errmsg("word is too long to be indexed"),
					 errdetail("Words longer than %d characters are ignored.",
							   MAXSTRLEN)));
			continue;
#else
			ereport(ERROR,
					(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
					 errmsg("word is too long to be indexed"),
					 errdetail("Words longer than %d characters are ignored.",
							   MAXSTRLEN)));
#endif
		}

		LexizeAddLemm(&ldata, type, lemm, lenlemm);

		do
		{
			if ((norms = LexizeExec(&ldata, &lexs)) != NULL)
				addHLParsedLex(prs, query, lexs, norms);
			else
				addHLParsedLex(prs, query, lexs, NULL);
		} while (norms);

	} while (type > 0);

	FunctionCall1(&(prsobj->prsend), PointerGetDatum(prsdata));
}
Ejemplo n.º 29
0
Datum serialize_record( PG_FUNCTION_ARGS )
{
//	FILE* log;

//	log = fopen("/var/lib/postgresql/serializer.log", "a");
	HeapTupleHeader rec = PG_GETARG_HEAPTUPLEHEADER(0);

	HeapTupleData tuple;
	bool		needComma = false;
	int		 i;
	Datum	  *values;
	bool	   *nulls;
	StringInfoData buf;
	char *conversion_buf;

	/* Extract type info from the tuple itself */
	Oid tupType = HeapTupleHeaderGetTypeId(rec);
	int32 tupTypmod = HeapTupleHeaderGetTypMod(rec);
	TupleDesc tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
	int ncolumns = tupdesc->natts;

	/* Build a temporary HeapTuple control structure */
	tuple.t_len = HeapTupleHeaderGetDatumLength(rec);
	ItemPointerSetInvalid(&(tuple.t_self));
	tuple.t_tableOid = InvalidOid;
	tuple.t_data = rec;

//	fprintf(log, "Doing serialize_record\n");
//	fflush(log);

	values = (Datum *) palloc(ncolumns * sizeof(Datum));
	nulls = (bool *) palloc(ncolumns * sizeof(bool));

	/* Break down the tuple into fields */
	heap_deform_tuple(&tuple, tupdesc, values, nulls);

	/* And build the result string */
	initStringInfo(&buf);

	appendStringInfoChar(&buf, '{');

	for (i = 0; i < ncolumns; i++)
	{
		Oid		 column_type = tupdesc->attrs[ i ]->atttypid;
		char	   *value;
		char	   *column_name;
		char 		type_category;
		HeapTuple 	type_tuple;
		FmgrInfo flinfo;

		/* Ignore dropped columns in datatype */
		if (tupdesc->attrs[i]->attisdropped)
			continue;

		if (nulls[i])
		{
			/* emit nothing... */
			continue;
		}

		if (needComma)
			appendStringInfoChar(&buf, ',');

		needComma = true;


		/* obtain column name */
		column_name = SPI_fname( tupdesc, i + 1 );

		/* obtain type information from pg_catalog */
		type_tuple = SearchSysCache1( TYPEOID, ObjectIdGetDatum(column_type) );
		if (!HeapTupleIsValid( type_tuple ))
			elog(ERROR, "cache lookup failed for relation %u", column_type);

		type_category = ((Form_pg_type) GETSTRUCT( type_tuple ))->typcategory;

		ReleaseSysCache( type_tuple );

		/* append column name */
		appendStringInfoChar(&buf, '"');
		appendStringInfoString(&buf, column_name);
		appendStringInfoString(&buf, "\":");

		switch( type_category )
		{
			// http://www.postgresql.org/docs/current/static/catalog-pg-type.html#CATALOG-TYPCATEGORY-TABLE

			case 'A': //array
				//call to serialize_array( ... )

				MemSet( &flinfo, 0, sizeof( flinfo ) );
				flinfo.fn_addr = serialize_array;
				flinfo.fn_nargs = 1;
				flinfo.fn_mcxt = fcinfo->flinfo->fn_mcxt;

				value = PG_TEXT_DATUM_GET_CSTR( FunctionCall1( &flinfo, values[ i ] ) );

				appendStringInfoString(&buf, value);
			break;

			case 'C': //composite
				//recursive call to serialize_record( ... )
				MemSet( &flinfo, 0, sizeof( flinfo ) );
				flinfo.fn_addr = serialize_record;
				flinfo.fn_nargs = 1;
				flinfo.fn_mcxt = fcinfo->flinfo->fn_mcxt;

				value = PG_TEXT_DATUM_GET_CSTR( FunctionCall1( &flinfo, values[ i ] ) );

				appendStringInfoString(&buf, value);
			break;

			case 'N': //numeric

				conversion_buf = NULL;
				// get column text value
//				fprintf(log, "Calling ConvertToText\n");
//				fflush(log);
				value = ConvertToText( values[ i ], column_type, fcinfo->flinfo->fn_mcxt, &conversion_buf );
//				fprintf(log, "ConvertToText succeded\n");
//				fflush(log);

				appendStringInfoString(&buf, value);
//				fprintf(log, "append.... succeded\n");
//				fflush(log);

				if(conversion_buf != NULL) {
					pfree(conversion_buf);
					conversion_buf = NULL;
				}

			break;

			case 'B': //boolean
				appendStringInfoString(&buf,
					// get column boolean value
					DatumGetBool( values[ i ] ) ? "true" : "false"
				);
			break;

			default: //another

				conversion_buf = NULL;
				// get column text value
//				fprintf(log, "Calling ConvertToText\n");
//				fflush(log);
				value = ConvertToText( values[ i ], column_type, fcinfo->flinfo->fn_mcxt, &conversion_buf );
//				fprintf(log, "ConvertToText succeded\n");
//				fflush(log);

				appendStringInfoQuotedString(&buf, value);
//				fprintf(log, "append.... succeded\n");
//				fflush(log);

				if(conversion_buf != NULL) {
					pfree(conversion_buf);
					conversion_buf = NULL;
				}
		}
	}

	appendStringInfoChar(&buf, '}');

	pfree(values);
	pfree(nulls);
	ReleaseTupleDesc(tupdesc);

//	fclose(log);

	PG_RETURN_TEXT_P( PG_CSTR_GET_TEXT( buf.data ) );
}
Ejemplo n.º 30
0
Datum serialize_array(PG_FUNCTION_ARGS)
{
	ArrayType  *v = PG_GETARG_ARRAYTYPE_P(0);
	Oid		 element_type = ARR_ELEMTYPE(v);
	int16		typlen;
	bool		typbyval;
	char		typalign;
	char		typdelim;
	char	   *p, *value;
	char 		type_category;
	bool		needComma = false;

	bits8	  *bitmap;
	int		 bitmask;
	int		 nitems, i;
	int		 ndim, *dims;

	Oid			typioparam, typiofunc;
	HeapTuple 	type_tuple;
	FmgrInfo	proc, flinfo;

	StringInfoData buf;

//	FILE* log;

//	log = fopen("/var/lib/postgresql/serializer.log", "a");

//	fprintf(log, "Doing serialize_array\n");
//	fflush(log);

	/*
	 * Get info about element type, including its output conversion proc
	 */
	get_type_io_data(element_type, IOFunc_output,
					 &typlen, &typbyval,
					 &typalign, &typdelim,
					 &typioparam, &typiofunc);

	fmgr_info_cxt( typiofunc, &proc, fcinfo->flinfo->fn_mcxt );

	ndim = ARR_NDIM(v);
	dims = ARR_DIMS(v);
	nitems = ArrayGetNItems(ndim, dims);

	if( ndim > 1 )
		elog( ERROR, "multidimensional arrays doesn't supported" );

	p = ARR_DATA_PTR(v);
	bitmap = ARR_NULLBITMAP(v);
	bitmask = 1;

	/* obtain type information from pg_catalog */
	type_tuple = SearchSysCache1( TYPEOID, ObjectIdGetDatum(element_type) );
	if (!HeapTupleIsValid( type_tuple ))
		elog(ERROR, "cache lookup failed for relation %u", element_type);

	type_category = ((Form_pg_type) GETSTRUCT( type_tuple ))->typcategory;

	ReleaseSysCache( type_tuple );

	/* Build the result string */
	initStringInfo(&buf);

	appendStringInfoChar(&buf, '[');
	for (i = 0; i < nitems; i++)
	{
		if (needComma)
			appendStringInfoChar(&buf, ',');
		needComma = true;

		/* Get source element, checking for NULL */
		if (bitmap && (*bitmap & bitmask) == 0)
		{
			// append null
			appendStringInfoString(&buf, "null");
		}
		else
		{
			/* get item value and advance array data pointer */
			Datum itemvalue = fetch_att(p, typbyval, typlen);
			p = att_addlength_pointer(p, typlen, p);
			p = (char *) att_align_nominal(p, typalign);

			//------------------------
			switch( type_category )
			{
				// http://www.postgresql.org/docs/current/static/catalog-pg-type.html#CATALOG-TYPCATEGORY-TABLE

				case 'A': //array - impossible case
				break;

				case 'C': //composite
					//call to serialize_record( ... )
					MemSet( &flinfo, 0, sizeof( flinfo ) );
					flinfo.fn_addr = serialize_record;
					flinfo.fn_nargs = 1;
					flinfo.fn_mcxt = fcinfo->flinfo->fn_mcxt;

					value = PG_TEXT_DATUM_GET_CSTR( FunctionCall1( &flinfo, itemvalue ) );

					appendStringInfoString(&buf, value);
				break;

				case 'N': //numeric

					// get column text value
					value = OutputFunctionCall( &proc, itemvalue );

					appendStringInfoString(&buf, value);
				break;

				default: //another

					// get column text value
					value = OutputFunctionCall( &proc, itemvalue );

					appendStringInfoQuotedString(&buf, value);
			}
		}

		/* advance bitmap pointer if any */
		if (bitmap)
		{
			bitmask <<= 1;
			if (bitmask == 0x100)
			{
				bitmap++;
				bitmask = 1;
			}
		}
	}
	appendStringInfoChar(&buf, ']');

//	fclose(log);

	//PG_RETURN_CSTRING(retval);
	PG_RETURN_TEXT_P( PG_CSTR_GET_TEXT( buf.data ) );
}