Ejemplo n.º 1
0
int main(int argc, const char * argv[])
{
	A* a1 = new A();
	A* a2 = new A();
	std::vector<B*> objects = {
		new B(1, a1),
		new B(2, a2),
		new B(3, a1),
		new B(4, a2),
		new B(5, a1),
		new B(6, nullptr)
	};
	std::vector<B*> result;
	
	// predicate0
	std::copy_if(objects.begin(), objects.end(), std::back_inserter(result), predicate0);
	printResults("predicate0", result);
	
	// Functor
	std::copy_if(objects.begin(), objects.end(), std::back_inserter(result), Functor(a1));
	printResults("Functor(a1)", result);
	std::copy_if(objects.begin(), objects.end(), std::back_inserter(result), Functor(a2));
	printResults("Functor(a2)", result);
	
	// predicate1
	auto predicate1 = [a2](B* b) -> bool {return b->getA() == a2;};
	std::copy_if(objects.begin(), objects.end(), std::back_inserter(result), predicate1);
	printResults("predicate1", result);
	
	// predicate2
	auto predicate2 = [a1](B* b) -> bool {
		return std::equal_to<A*>()(b->getA(), a1);
	};
	std::copy_if(objects.begin(), objects.end(), std::back_inserter(result), predicate2);
	printResults("predicate2", result);
	
	// FunctorWrapper
	std::copy_if(objects.begin(), objects.end(), std::back_inserter(result), FunctorWrapper(std::equal_to<A*>(), a2));
	printResults("FunctorWrapper", result);
	
	// predicate3
	auto equalToA1 = std::bind(std::equal_to<A*>(), std::placeholders::_1, a1);
	auto predicate3 = [equalToA1](B* b) -> bool {
		return equalToA1(b->getA());
	};
	std::copy_if(objects.begin(), objects.end(), std::back_inserter(result), predicate3);
	printResults("predicate3", result);
	
	// ComposingWrapper + MethodWrapper
	std::copy_if(objects.begin(), objects.end(), std::back_inserter(result), ComposingWrapper(equalToA1, MethodWrapper(static_cast<A*(B::*)()>(&B::getA))));
	printResults("ComposingWrapper + MethodWrapper", result);
	
	// predicate4
	auto predicate4 = std::bind(std::equal_to<A*>(), std::bind(static_cast<A*(B::*)() const>(&B::getA), std::placeholders::_1), a2);
	std::copy_if(objects.begin(), objects.end(), std::back_inserter(result), predicate4);
	printResults("predicate4", result);
}
Ejemplo n.º 2
0
int main(int argc, char *argv[]){

  auto r = Functor()(2, 1);
  std::cout << "r: " << r << std::endl;

  return 0;
}
Ejemplo n.º 3
0
/*-------------------------------------------------------------------------*/
AtomInf *Get_Functor_Arity(WamWord start_word,int *arity,WamWord **arg_adr)

{
 WamWord word,tag,*adr;

 Deref(start_word,word,tag,adr)

 switch(tag)
    {
     case CST:
         *arity=0;
         return UnTag_CST(word);

     case LST:
         adr=UnTag_LST(word);
         *arity=2;
         *arg_adr=&Car(adr);
         return atom_dot;

     case STC:
         adr=UnTag_STC(word);
         *arity=Arity(adr);
         *arg_adr=&Arg(adr,0);
         return Functor(adr);

     default:
         return NULL;
    }
}
Ejemplo n.º 4
0
Archivo: main.cpp Proyecto: CCJY/coliru
int main()
{    
    // const-operator()
    
    // 1. rvalue reference:
    wrapper(Functor());
    
    // 2. lvalue reference:
    Functor f; wrapper(f);
    
    // 3. const lvalue reference:
    const Functor cf; wrapper(cf);
    
    // 4. const rvalue reference:
     wrapper(make_functor());
     
    // non-const operator()
    
    // 1. rvalue reference:
    wrapper(NonConstFunctor());
    
    // 2. lvalue reference:
    NonConstFunctor ncf; wrapper(ncf);
    
    // 3. const lvalue reference:
    const NonConstFunctor cncf; wrapper(cncf);
    
    // 4. const rvalue reference:
    wrapper(make_non_const_functor());
}
void TestWakeups()
{
    tbb::task_scheduler_init my(tbb::task_scheduler_init::deferred);
    if( tbb::task_scheduler_init::default_num_threads() <= NUM_TASKS )
        my.initialize(NUM_TASKS*2);
    Harness::SpinBarrier barrier(NUM_TASKS);
    REMARK("Missing wake-up: affinity_partitioner\n");
    tbb::affinity_partitioner aff;
    for (size_t i = 0; i < NUM_REPEATS; ++i)
        tbb::parallel_for(tbb::blocked_range<int>(0, NUM_TASKS), Functor(barrier), aff);
    REMARK("Missing wake-up: simple_partitioner\n");
    for (size_t i = 0; i < NUM_REPEATS; ++i)
        tbb::parallel_for(tbb::blocked_range<int>(0, NUM_TASKS), Functor(barrier), tbb::simple_partitioner());
    REMARK("Missing wake-up: auto_partitioner\n");
    for (size_t i = 0; i < NUM_REPEATS; ++i)
        tbb::parallel_for(tbb::blocked_range<int>(0, NUM_TASKS), Functor(barrier)); // auto
}
Ejemplo n.º 6
0
 std::shared_ptr<AsyncFuture<typename std::result_of<Functor()>::type>>
 Post(const Functor& func, async_type_t) {
   auto future = CreateFuture<typename std::result_of<Functor()>::type>();
   auto func_wrapper = [func = std::move(func), future, this]() mutable {
     if (running_) {
       future->SetValue(func());
     }
     //TODO: what value do we set on the promise if we're no longer running?
   };
   master_scheduler_.io_service_.post(std::move(func_wrapper));
   return future;
 }
Ejemplo n.º 7
0
 std::future<typename std::result_of<Functor()>::type>
 Post(const Functor& func) {
   auto func_promise = std::make_shared<std::promise<typename std::result_of<Functor()>::type>>();
   auto func_future = func_promise->get_future();
   auto func_wrapper = [func = std::move(func), func_promise, this]() mutable {
     if (running_) {
       func_promise->set_value(func());
     }
     //TODO: what value do we set on the promise if we're no longer running?
   };
   master_scheduler_.io_service_.post(std::move(func_wrapper));
   return func_future;
 }
Ejemplo n.º 8
0
void webMain()
{
	// Test various ways of passing callbacks to JavaScript code
	setTimeout(cheerp::Callback(plainFunction), 0);
	setTimeout(cheerp::Callback(Functor()), 0);
	setTimeout(cheerp::Callback([]()
	{
		assertEqual(callbackCount++, 2, "Calling back non-capturing lambdas");
	}), 0);
	int capturedInt=43;
	setTimeout(cheerp::Callback([capturedInt]()
	{
		assertEqual(capturedInt, 43, "Calling back capturing lambdas 1/2");
		assertEqual(callbackCount++, 3, "Calling back capturing lambdas 2/2");
		assertEqual(Functor::destructorCalled, 3, "Calling back functors 3/3");
	}), 0);
}
Ejemplo n.º 9
0
int main(int argc, const char** argv)
{
	SQLite3x::DB db("sqlite3x.db");

	db.Exec("CREATE TABLE IF NOT EXISTS %s (%s INT, %s TEXT);", "example", "id", "name");

	db.Query("INSERT INTO example VALUES (?, ?);")->Bind(2, "Me")->Execute();
	db.Query("INSERT INTO example VALUES (%d, \"%s\");", 4, "You")->Execute();
	db.Query("INSERT INTO example VALUES (%d, ?);", 2)->Bind("Me again")->Execute();

	db.Query("SELECT NULL FROM example LIMIT 1;")->Execute(Functor());

	db.Query("SELECT * FROM example;")->Execute(&Function);

	db.Query("SELECT * FROM example WHERE %s=?;", "id")->Bind(2)->Execute([](int id, std::string name){ std::cout << std::endl << "Hello, my name is " << name << " and I'm id " << id; });

	return 0;
}
Ejemplo n.º 10
0
void test1 () {
    struct V {
        float x = 1.0f;
        float GetX() const { return x; } 
        V() {}
    } const v;
    Class c;
    const Class cc;
    Fun< int (int) >   fun0;
    Fun< int (int) >   fun1(&Twice);  
    Fun< int (int) >   fun2(&Class::Twice);
    Fun< int () >      fun3(&VoidParam);
    Fun< int () >      fun4(&Class::VoidParam);
    Fun< int () >      fun5(&Class::VoidParamConst);
    Fun< void(int&) >  fun6(&Class::Void);
    Fun< int (int) >   fun7((Functor()));
    auto               fun8(RetFun());
    Fun< float (int, int) > fun9([=](int i, int j) {return float(i/j);});
    Fun< float (int, int) > fun10(fun9);
    Fun< float () > fun11([v](){return v.GetX();});
    Fun< void() > vd;

    try { 
         fun0(9); //must throw
         assert(false);
    } catch(...) {}
    fun0 = fun1;
    assert(fun0(2)    == fun1(2));
    assert(fun1(2)    ==  4);
    assert(fun2(c, 3) ==  6);
    assert(fun5(cc)   ==  2);
    assert(fun7(6)    == 18);
    assert(fun8(7)    == 21);
    assert(fun9(10,4) == float(10/4));
    assert(fun10(20, 8) == fun9(20, 8));
    assert(fun11() == 1.0f);
    //void return type
    int i = 0;
    fun6(c, i);
    assert(i == 1234);
}
Ejemplo n.º 11
0
/*-------------------------------------------------------------------------*/
AtomInf *Get_Compound(WamWord tag,WamWord word,int *arity,WamWord **arg_adr)

{
 WamWord *adr;

 switch(tag)
    {
     case LST:
         adr=UnTag_LST(word);
         *arity=2;
         *arg_adr=&Car(adr);
         return atom_dot;

     case STC:
         adr=UnTag_STC(word);
         *arity=Arity(adr);
         *arg_adr=&Arg(adr,0);
         return Functor(adr);

     default:
         return NULL;
    }
}
Ejemplo n.º 12
0
Fun< int(int) > RetFun() {
    return Functor();
}
Ejemplo n.º 13
0
 void traverse( Functor execute = Functor()) 
 {
     char word[100] = {0};
     traverse_node(root, execute,word,0);
 }
Ejemplo n.º 14
0
/*-------------------------------------------------------------------------*
 * SHOW_STRUCTURE                                                          *
 *                                                                         *
 *-------------------------------------------------------------------------*/
static void
Show_Structure(int depth, int prec, int context, WamWord *stc_adr)
{
  WamWord word, tag_mask;
  WamWord *adr;
  WamWord f_n = Functor_And_Arity(stc_adr);
  int functor = Functor(stc_adr);
  int arity = Arity(stc_adr);
  OperInf *oper;
  int nb_args_to_disp;
  int i, j, n;
  char str[32];
  Bool bracket;
  Bool surround_space;
  char *p;


  depth--;

  if (name_vars && f_n == dollar_varname_1 && stc_adr >= name_number_above_H)
    {
      DEREF(Arg(stc_adr, 0), word, tag_mask);
      if (tag_mask == TAG_ATM_MASK)
	{
	  p = pl_atom_tbl[UnTag_ATM(word)].name;
	  if (Is_Valid_Var_Name(p))
	    {
	      Out_String(p);
	      pl_last_writing = W_IDENTIFIER;
	      return;
	    }
	}
    }

  if (number_vars && f_n == dollar_var_1 && stc_adr >= name_number_above_H)
    {
      DEREF(Arg(stc_adr, 0), word, tag_mask);
      if (tag_mask == TAG_INT_MASK && (n = UnTag_INT(word)) >= 0)
	{
	  i = n % 26;
	  j = n / 26;

	  Out_Char('A' + i);

	  if (j)
	    {
	      sprintf(str, "%d", j);
	      Out_String(str);
	    }

	  pl_last_writing = W_IDENTIFIER;
	  return;
	}
    }

  if (ignore_op || arity > 2)
    goto functional;

  if (f_n == curly_brackets_1)
    {
      Out_Char('{');
      if (space_args)
	Out_Space();
      Show_Term(depth, MAX_PREC, GENERAL_TERM, Arg(stc_adr, 0));
      if (space_args)
	Out_Space();
      Out_Char('}');
      return;
    }

  bracket = FALSE;

  if (arity == 1 && (oper = Pl_Lookup_Oper(functor, PREFIX)))
    {
#if 1
      /* Koen de Bosschere says "in case of ambiguity :          */
      /* select the associative operator over the nonassociative */
      /* select prefix over postfix".                            */

      OperInf *oper1;

      if (oper->prec > oper->right
	  && (oper1 = Pl_Lookup_Oper(functor, POSTFIX))
	  && oper1->left == oper1->prec)
	{
	  oper = oper1;
	  goto postfix;
	}
#endif
      if (oper->prec > prec || (context == INSIDE_LEFT_ASSOC_OP &&
				(oper->prec == oper->right
				 && oper->prec == prec)))
	{			/* prevent also the case: fy T yf(x) */
	  Out_Char('(');
	  bracket = TRUE;
	}


      Show_Atom(GENERAL_TERM, functor);

      last_prefix_op = W_PREFIX_OP_ANY;

      if (space_args
#if SPACE_ARGS_RESTRICTED	/* space_args -> space after fx operator */
	  && oper->prec > oper->right
#endif
	  )
	Out_Space();
      else
	if (strcmp(pl_atom_tbl[functor].name, "-") == 0)
	  {
	    last_prefix_op = W_PREFIX_OP_MINUS;
	    p_bracket_minus = &bracket;
	  }

      Show_Term(depth, oper->right, INSIDE_ANY_OP, Arg(stc_adr, 0));
      last_prefix_op = W_NO_PREFIX_OP;

      /* Here we need a while(bracket--) instead of if(bracket) because
       * in some cases with the minus op and additional bracket is needed.
       * Example: with op(100, xfx, &) (recall the prec of - is 200). 
       * The term ((-(1)) & b must be displayed as: (- (1)) & b
       * Concerning the sub-term - (1), the first ( is emitted  10 lines above
       * because the precedence of - (200) is > precedence of & (100).
       * The second ( is emitted by Need_Space() because the argument of - begins 
       * by a digit. At the return we have to close 2 ).
       */

      while (bracket--)	
	Out_Char(')');

      return;
    }


  if (arity == 1 && (oper = Pl_Lookup_Oper(functor, POSTFIX)))
    {
    postfix:
      if (oper->prec > prec)
	{
	  Out_Char('(');
	  bracket = TRUE;
	}

      context =
	(oper->left == oper->prec) ? INSIDE_LEFT_ASSOC_OP : INSIDE_ANY_OP;

      Show_Term(depth, oper->left, context, Arg(stc_adr, 0));

      if (space_args
#if SPACE_ARGS_RESTRICTED	/* space_args -> space before xf operator */
	  && oper->prec > oper->left
#endif
	  )
	Out_Space();

      Show_Atom(GENERAL_TERM, functor);

      if (bracket)
	Out_Char(')');

      return;
    }


  if (arity == 2 && (oper = Pl_Lookup_Oper(functor, INFIX)))
    {
      if (oper->prec > prec || (context == INSIDE_LEFT_ASSOC_OP &&
				(oper->prec == oper->right
				 && oper->prec == prec)))
	{			/* prevent also the case: T xfy U yf(x) */
	  Out_Char('(');
	  bracket = TRUE;
	}

      context =
	(oper->left == oper->prec) ? INSIDE_LEFT_ASSOC_OP : INSIDE_ANY_OP;

      Show_Term(depth, oper->left, context, Arg(stc_adr, 0));

#if 1 /* to show | unquoted if it is an infix operator with prec > 1000 */
      if (functor == ATOM_CHAR('|') && oper->prec > 1000)
	{
	  if (space_args)
	    Out_Space();
	  Out_Char('|');
	  if (space_args)
	    Out_Space();
	}
      else
#endif
	if (functor == ATOM_CHAR(','))
	  {
	    Out_Char(',');
	    if (space_args)
	      Out_Space();
	  }
	else
	  {
	    surround_space = FALSE;

	    if (pl_atom_tbl[functor].prop.type == IDENTIFIER_ATOM ||
		pl_atom_tbl[functor].prop.type == OTHER_ATOM ||
		(space_args
#ifdef SPACE_ARGS_RESTRICTED	/* space_args -> space around xfx operators */
		 && oper->left != oper->prec && oper->right != oper->prec
#endif
		 ))
	      {
		surround_space = TRUE;
		Out_Space();
	      }

	    Show_Atom(GENERAL_TERM, functor);

	    if (surround_space)
	      Out_Space();
	  }

      Show_Term(depth, oper->right, INSIDE_ANY_OP, Arg(stc_adr, 1));

      if (bracket)
	Out_Char(')');

      return;
    }



 functional:			/* functional notation */

  Show_Atom(GENERAL_TERM, functor);
  Out_Char('(');

  nb_args_to_disp = i = (arity < depth + 1 || depth < 0) ? arity : depth + 1;
  adr = &Arg(stc_adr, 0);

  goto start_display;

  do
    {
      Out_Char(',');
      if (space_args)
	Out_Space();
    start_display:
      Show_Term(depth, MAX_ARG_OF_FUNCTOR_PREC, GENERAL_TERM, *adr++);
    }
  while (--i);

  if (arity != nb_args_to_disp)
    {
      Out_Char(',');
      if (space_args)
	Out_Space();
      Show_Atom(GENERAL_TERM, atom_dots);
    }

  Out_Char(')');
}
Ejemplo n.º 15
0
/*-------------------------------------------------------------------------*
 * LOAD_MATH_EXPRESSION                                                    *
 *                                                                         *
 *-------------------------------------------------------------------------*/
static WamWord
Load_Math_Expression(WamWord exp)
{
  WamWord word, tag_mask;
  WamWord *adr;
  WamWord *lst_adr;
  ArithInf *arith;

  DEREF(exp, word, tag_mask);

  if (tag_mask == TAG_INT_MASK || tag_mask == TAG_FLT_MASK)
    return word;

  if (tag_mask == TAG_LST_MASK)
    {
      lst_adr = UnTag_LST(word);
      DEREF(Cdr(lst_adr), word, tag_mask);
      if (word != NIL_WORD)
	{
	  word = Pl_Put_Structure(ATOM_CHAR('/'), 2);
	  Pl_Unify_Atom(ATOM_CHAR('.'));
	  Pl_Unify_Integer(2);
	  Pl_Err_Type(pl_type_evaluable, word);
	}
      DEREF(Car(lst_adr), word, tag_mask);
      if (tag_mask == TAG_REF_MASK)
	Pl_Err_Instantiation();

      if (tag_mask != TAG_INT_MASK) 
	{
	  Pl_Err_Type(pl_type_integer, word);
	}
      return word;
    }

  if (tag_mask == TAG_STC_MASK)
    {
      adr = UnTag_STC(word);

      arith = (ArithInf *) Pl_Hash_Find(arith_tbl, Functor_And_Arity(adr));
      if (arith == NULL)
	{
	  word = Pl_Put_Structure(ATOM_CHAR('/'), 2);
	  Pl_Unify_Atom(Functor(adr));
	  Pl_Unify_Integer(Arity(adr));
	  Pl_Err_Type(pl_type_evaluable, word);
	}
      
      if (Arity(adr) == 1)
	return (*(arith->fct)) (Load_Math_Expression(Arg(adr, 0)));

      return (*(arith->fct)) (Load_Math_Expression(Arg(adr, 0)),
			      Load_Math_Expression(Arg(adr, 1)));
    }

  if (tag_mask == TAG_REF_MASK)
    Pl_Err_Instantiation();

  if (tag_mask == TAG_ATM_MASK)
    {
      word = Pl_Put_Structure(ATOM_CHAR('/'), 2);
      Pl_Unify_Value(exp);
      Pl_Unify_Integer(0);		/* then type_error */
    }

  Pl_Err_Type(pl_type_evaluable, word);
  return word;
}
Ejemplo n.º 16
0
/*-------------------------------------------------------------------------*/
static Bool G_Assign_Element(GVarElt *g_elem,WamWord gval_word,
                             Bool backtrack,Bool copy)

{
 WamWord  word,tag,*adr;
 AtomInf *atom;
 int      size;
 int      size_base=0;
 GVarElt  save_g_elem;


 save_g_elem=*g_elem;

 Deref(gval_word,word,tag,adr)

 if (tag==STC)                                      
    {
     adr=UnTag_STC(word);
     atom=Functor(adr);

     if (atom==atom_g_array || atom==atom_g_array_extend)      /* an array */
        {
         if (!G_Assign_Array(g_elem,adr,atom==atom_g_array_extend,copy))
             return FALSE;

         goto finish;
        }
    }



 if (!copy || tag==CST || tag==INT)                              /* a link */
    {
     if (tag==REF && Is_A_Local_Adr(adr))
        {
         word=Tag_Value(REF,H);
         Globalize_Local_Unbound_Var(adr);
        }

     g_elem->size=0;
     g_elem->val=Global_UnMove(tag) ? Tag_Value(REF,adr) : word;
     goto finish;
    }

                                                                 /* a copy */
 size=Term_Size(word);

 if ((adr=(WamWord *) Lib1(malloc,size*sizeof(WamWord)))==NULL)
     Fatal_Error(ERR_ALLOC_FAULT);

 g_elem->size=size+size_base; 
 g_elem->val=(WamWord) adr;

 Copy_Term(adr,&word);



finish:

 if (backtrack)
    {
     Trail_Push(save_g_elem.val);            /* push frame (see G_Untrail) */
     Trail_Push(save_g_elem.size);
     Trail_Push(g_elem);
     Trail_FC(G_Untrail)
    }
  else
Ejemplo n.º 17
0
	apply()
		: fn(Functor())
	{
	}
Ejemplo n.º 18
0
/*-------------------------------------------------------------------------*
 * PL_BLT_FUNCTOR                                                          *
 *                                                                         *
 *-------------------------------------------------------------------------*/
Bool FC
Pl_Blt_Functor(WamWord term_word, WamWord functor_word, WamWord arity_word)
{
  WamWord word, tag_mask;
  WamWord *adr;
  WamWord tag_functor;
  int arity;
  Bool res;


  Pl_Set_C_Bip_Name("functor", 3);

  DEREF(term_word, word, tag_mask);
  if (tag_mask != TAG_REF_MASK)
    {
      if (tag_mask == TAG_LST_MASK)
	res = Pl_Un_Atom_Check(ATOM_CHAR('.'), functor_word) &&
	  Pl_Un_Integer_Check(2, arity_word);
      else if (tag_mask == TAG_STC_MASK)
	{
	  adr = UnTag_STC(word);
	  res = Pl_Un_Atom_Check(Functor(adr), functor_word) &&
	    Pl_Un_Integer_Check(Arity(adr), arity_word);
	}
      else
	res = Pl_Unify(word, functor_word) && Pl_Un_Integer_Check(0, arity_word);

      goto finish;
    }


				/* tag_mask == TAG_REF_MASK */

  DEREF(functor_word, word, tag_mask);
  if (tag_mask == TAG_REF_MASK)
    Pl_Err_Instantiation();

  if (tag_mask != TAG_ATM_MASK && tag_mask != TAG_INT_MASK && 
      tag_mask != TAG_FLT_MASK)
    Pl_Err_Type(pl_type_atomic, functor_word);

  tag_functor = tag_mask;
  functor_word = word;

  arity = Pl_Rd_Positive_Check(arity_word);

  if (arity > MAX_ARITY)
    Pl_Err_Representation(pl_representation_max_arity);

  if (tag_functor == TAG_ATM_MASK && UnTag_ATM(functor_word) == ATOM_CHAR('.')
      && arity == 2)
    {
      res = (Pl_Get_List(term_word)) ? Pl_Unify_Void(2), TRUE : FALSE;
      goto finish;
    }

  if (tag_functor == TAG_ATM_MASK && arity > 0)
    {
      res = (Pl_Get_Structure(UnTag_ATM(functor_word), arity, term_word)) ?
	Pl_Unify_Void(arity), TRUE : FALSE;
      goto finish;
    }

  if (arity != 0)
    Pl_Err_Type(pl_type_atom, functor_word);

  res = Pl_Unify(functor_word, term_word);

finish:
  Pl_Unset_C_Bip_Name();

  return res;
}
Ejemplo n.º 19
0
/*-------------------------------------------------------------------------*
 * PL_BLT_UNIV                                                             *
 *                                                                         *
 *-------------------------------------------------------------------------*/
Bool FC
Pl_Blt_Univ(WamWord term_word, WamWord list_word)
{
  WamWord word, tag_mask;
  WamWord *adr;
  WamWord car_word;
  int lst_length;
  WamWord *arg1_adr;
  WamWord *term_adr, *lst_adr, *stc_adr;
  WamWord functor_word, functor_tag;
  int functor;
  int arity;


  Pl_Set_C_Bip_Name("=..", 2);

  DEREF(term_word, word, tag_mask);

  if (tag_mask == TAG_REF_MASK)
    goto list_to_term;

				/* from term to list functor+args */

  if (tag_mask == TAG_LST_MASK)
    {
      adr = UnTag_LST(word);
      car_word = Tag_ATM(ATOM_CHAR('.'));
      lst_length = 1 + 2;
      arg1_adr = &Car(adr);
    }
  else if (tag_mask == TAG_STC_MASK)
    {
      adr = UnTag_STC(word);
      car_word = Tag_ATM(Functor(adr));
      lst_length = 1 + Arity(adr);
      arg1_adr = &Arg(adr, 0);
    }
#ifndef NO_USE_FD_SOLVER
  else if (tag_mask == TAG_FDV_MASK)
    {
      adr = UnTag_FDV(word);
      car_word = Tag_REF(adr);	/* since Dont_Separate_Tag */
      lst_length = 1 + 0;
    } 
#endif
  else				/* TAG_ATM/INT/FLT_MASK */
    {
      car_word = word;
      lst_length = 1 + 0;
    }

  Pl_Check_For_Un_List(list_word);

  Pl_Unset_C_Bip_Name();

  for (;;)
    {
      if (!Pl_Get_List(list_word) || !Pl_Unify_Value(car_word))
	return FALSE;

      list_word = Pl_Unify_Variable();

      if (--lst_length == 0)
	break;

      car_word = *arg1_adr++;
    }

  return Pl_Get_Nil(list_word);

  /* from list functor+args to term */

list_to_term:

  term_adr = UnTag_REF(word);

  DEREF(list_word, word, tag_mask);
  if (tag_mask == TAG_REF_MASK)
    Pl_Err_Instantiation();

  if (word == NIL_WORD)
    Pl_Err_Domain(pl_domain_non_empty_list, list_word);

  if (tag_mask != TAG_LST_MASK)
    Pl_Err_Type(pl_type_list, list_word);

  lst_adr = UnTag_LST(word);
  DEREF(Car(lst_adr), functor_word, functor_tag);
  if (functor_tag == TAG_REF_MASK)
    Pl_Err_Instantiation();

  DEREF(Cdr(lst_adr), word, tag_mask);

  if (word == NIL_WORD)
    {
      if (functor_tag != TAG_ATM_MASK && functor_tag != TAG_INT_MASK &&
	  functor_tag != TAG_FLT_MASK)
	Pl_Err_Type(pl_type_atomic, functor_word);

      term_word = functor_word;
      goto finish;
    }

  if (functor_tag != TAG_ATM_MASK)
    Pl_Err_Type(pl_type_atom, functor_word);

  if (tag_mask == TAG_REF_MASK)
    Pl_Err_Instantiation();

  if (tag_mask != TAG_LST_MASK)
    Pl_Err_Type(pl_type_list, list_word);

  functor = UnTag_ATM(functor_word);

  stc_adr = H;

  H++;				/* space for f/n maybe lost if a list */
  arity = 0;

  for (;;)
    {
      arity++;
      lst_adr = UnTag_LST(word);
      DEREF(Car(lst_adr), word, tag_mask);
      Do_Copy_Of_Word(tag_mask, word); /* since Dont_Separate_Tag */
      Global_Push(word);

      DEREF(Cdr(lst_adr), word, tag_mask);
      if (word == NIL_WORD)
	break;

      if (tag_mask == TAG_REF_MASK)
	Pl_Err_Instantiation();

      if (tag_mask != TAG_LST_MASK)
	Pl_Err_Type(pl_type_list, list_word);
    }

  if (arity > MAX_ARITY)
    Pl_Err_Representation(pl_representation_max_arity);

  if (functor == ATOM_CHAR('.') && arity == 2)	/* a list */
    term_word = Tag_LST(stc_adr + 1);
  else
    {
      *stc_adr = Functor_Arity(functor, arity);
      term_word = Tag_STC(stc_adr);
    }

finish:
  Bind_UV(term_adr, term_word);
  Pl_Unset_C_Bip_Name();
  return TRUE;
}
Ejemplo n.º 20
0
 HDINLINE void
 operator( )( T_Types const & ... ts )
 {
     Functor( )( getForwardedValue( ts ) ... );
     NextCall( )( ts ... );
 }
Ejemplo n.º 21
0
	apply2()
		: fn(Functor())
	{
	}
int Discrete_function::make_valid() {
  values_.erase( std::remove_if( values_.begin(), values_.end(), Functor( NaN ) ),
                 values_.end() );
  return values_.size();
}
Ejemplo n.º 23
0
/*-------------------------------------------------------------------------*
 * NORMALIZE                                                               *
 *                                                                         *
 * This functions normalizes a term.                                       *
 * Input:                                                                  *
 *    e_word: term to normalize                                            *
 *    sign  : current sign of the term (-1 or +1)                          *
 *                                                                         *
 * Output:                                                                 *
 *    p     : the associated polynomial term                               *
 *                                                                         *
 * Normalizes the term and loads it into p.                                *
 * Non-Linear operations are simplified and loaded into a stack to be      *
 * executed later.                                                         *
 *                                                                         *
 * T1*T2 : T1 and T2 are normalized to give the polynomials p1 and p2, with*
 *         p1 = c1 + a1X1 + a2X2 + ... + anXn                              *
 *         p2 = c2 + b1X1 + b2X2 + ... + bmXm                              *
 *         and replaced by c1*c2 +                                         *
 *                         a1X1 * c2 + a1X1 * b1X1 + ... + a1X1 * bmXm     *
 *                         ...                                             *
 *                         anX1 * c2 + anXn * b1X1 + ... + anXn * bmXm     *
 *                                                                         *
 * T1**T2: T1 and T2 are loaded into 2 new words word1 and word2 that can  *
 *         be integers or variables (tagged words). The code emitted       *
 *         depends on 3 possibilities (var**var is not allowed)            *
 *         (+ optim 1**T2, 0**T2, T1**0, T1**1), NB 0**0=1                 *
 *-------------------------------------------------------------------------*/
static Bool
Normalize(WamWord e_word, int sign, Poly *p)
{
  WamWord word, tag_mask;
  WamWord *adr;
  WamWord *fdv_adr;
  WamWord word1, word2, word3;
  WamWord f_n, le_word, re_word;
  int i;
  PlLong n1, n2, n3;

 terminal_rec:

  DEREF(e_word, word, tag_mask);

  if (tag_mask == TAG_FDV_MASK)
    {
      fdv_adr = UnTag_FDV(word);
      Add_Monom(p, sign, 1, Tag_REF(fdv_adr));
      return TRUE;
    }

  if (tag_mask == TAG_INT_MASK)
    {
      n1 = UnTag_INT(word);
      if (n1 > MAX_COEF_FOR_SORT)
	sort = TRUE;

      Add_Cst_To_Poly(p, sign, n1);
      return TRUE;
    }

  if (tag_mask == TAG_REF_MASK)
    {
      if (vars_sp - vars_tbl >= VARS_STACK_SIZE)
	Pl_Err_Resource(pl_resource_too_big_fd_constraint);

      *vars_sp++ = word;
      Add_Monom(p, sign, 1, word);
      return TRUE;
    }

  if (tag_mask == TAG_ATM_MASK)
    {
      word = Pl_Put_Structure(ATOM_CHAR('/'), 2);
      Pl_Unify_Value(e_word);
      Pl_Unify_Integer(0);
    type_error:
      Pl_Err_Type(pl_type_fd_evaluable, word);
    }

  if (tag_mask != TAG_STC_MASK)
    goto type_error;


  adr = UnTag_STC(word);

  f_n = Functor_And_Arity(adr);
  for (i = 0; i < NB_OF_OP; i++)
    if (arith_tbl[i] == f_n)
      break;

  le_word = Arg(adr, 0);
  re_word = Arg(adr, 1);

  switch (i)
    {
    case PLUS_1:
      e_word = le_word;
      goto terminal_rec;

    case PLUS_2:
      if (!Normalize(le_word, sign, p))
	return FALSE;
      e_word = re_word;
      goto terminal_rec;

    case MINUS_2:
      if (!Normalize(le_word, sign, p))
	return FALSE;
      e_word = re_word;
      sign = -sign;
      goto terminal_rec;

    case MINUS_1:
      e_word = le_word;
      sign = -sign;
      goto terminal_rec;

    case TIMES_2:
#ifdef DEVELOP_TIMES_2
#if 1				/* optimize frequent use: INT*VAR */
      DEREF(le_word, word, tag_mask);
      if (tag_mask != TAG_INT_MASK)
	goto any;

      n1 = UnTag_INT(word);

      if (n1 > MAX_COEF_FOR_SORT)
	sort = TRUE;

      DEREF(re_word, word, tag_mask);
      if (tag_mask != TAG_REF_MASK)
	{
	  if (tag_mask != TAG_FDV_MASK)
	    goto any;
	  else
	    {
	      fdv_adr = UnTag_FDV(word);
	      word = Tag_REF(fdv_adr);
	    }
	}
      Add_Monom(p, sign, n1, word);
      return TRUE;
    any:
#endif
      {
	Poly p1, p2;
	int i1, i2;

	New_Poly(p1);
	New_Poly(p2);

	if (!Normalize(le_word, 1, &p1) || !Normalize(re_word, 1, &p2))
	  return FALSE;

	Add_Cst_To_Poly(p, sign, p1.c * p2.c);

	for (i1 = 0; i1 < p1.nb_monom; i1++)
	  {
	    Add_Monom(p, sign, p1.m[i1].a * p2.c, p1.m[i1].x_word);
	    for (i2 = 0; i2 < p2.nb_monom; i2++)
	      if (!Add_Multiply_Monom(p, sign, p1.m + i1, p2.m + i2))
		return FALSE;
	  }

	for (i2 = 0; i2 < p2.nb_monom; i2++)
	  Add_Monom(p, sign, p2.m[i2].a * p1.c, p2.m[i2].x_word);

	return TRUE;
      }
#else
      if (!Load_Term_Into_Word(le_word, &word1) ||
	  !Load_Term_Into_Word(re_word, &word2))
	return FALSE;

      if (Tag_Is_INT(word1))
	{
	  n1 = UnTag_INT(word1);
	  if (Tag_Is_INT(word2))
	    {
	      n2 = UnTag_INT(word2);
	      n1 = n1 * n2;
	      Add_Cst_To_Poly(p, sign, n1);
	      return TRUE;
	    }

	  Add_Monom(p, sign, n1, word2);
	  return TRUE;
	}

      if (Tag_Is_INT(word2))
	{
	  n2 = UnTag_INT(word2);
	  Add_Monom(p, sign, n2, word1);
	  return TRUE;
	}


      word1 = (word1 == word2)
	? Push_Delayed_Cstr(DC_X2_EQ_Y, word1, 0, 0)
	: Push_Delayed_Cstr(DC_XY_EQ_Z, word1, word2, 0);

      Add_Monom(p, sign, 1, word1);
      return TRUE;
#endif

    case POWER_2:
      if (!Load_Term_Into_Word(le_word, &word1) ||
	  !Load_Term_Into_Word(re_word, &word2))
	return FALSE;

      if (Tag_Is_INT(word1))
	{
	  n1 = UnTag_INT(word1);
	  if (Tag_Is_INT(word2))
	    {
	      n2 = UnTag_INT(word2);
	      if ((n1 = Pl_Power(n1, n2)) < 0)
		return FALSE;

	      Add_Cst_To_Poly(p, sign, n1);
	      return TRUE;
	    }

	  if (n1 == 1)
	    {
	      Add_Cst_To_Poly(p, sign, 1);
	      return TRUE;
	    }

	  word = (n1 == 0)
	    ? Push_Delayed_Cstr(DC_ZERO_POWER_N_EQ_Y, word2, 0, 0)
	    : Push_Delayed_Cstr(DC_A_POWER_N_EQ_Y, word1, word2, 0);
	  goto end_power;
	}

      if (Tag_Mask_Of(word2) != TAG_INT_MASK)
	Pl_Err_Instantiation();
      else
	{
	  n2 = UnTag_INT(word2);
	  if (n2 == 0)
	    {
	      Add_Cst_To_Poly(p, sign, 1);
	      return TRUE;
	    }

	  word = (n2 == 1)
	    ? word1
	    : (n2 == 2)
	    ? Push_Delayed_Cstr(DC_X2_EQ_Y, word1, 0, 0)
	    : Push_Delayed_Cstr(DC_X_POWER_A_EQ_Y, word1, word2, 0);
	}
    end_power:
      Add_Monom(p, sign, 1, word);
      return TRUE;

    case MIN_2:
      if (!Load_Term_Into_Word(le_word, &word1) ||
	  !Load_Term_Into_Word(re_word, &word2))
	return FALSE;

      if (Tag_Is_INT(word1))
	{
	  n1 = UnTag_INT(word1);
	  if (Tag_Is_INT(word2))
	    {
	      n2 = UnTag_INT(word2);
	      n1 = math_min(n1, n2);
	      Add_Cst_To_Poly(p, sign, n1);
	      return TRUE;
	    }

	  word = Push_Delayed_Cstr(DC_MIN_X_A_EQ_Z, word2, word1, 0);
	  goto end_min;
	}

      if (Tag_Is_INT(word2))
	word = Push_Delayed_Cstr(DC_MIN_X_A_EQ_Z, word1, word2, 0);
      else
	word = Push_Delayed_Cstr(DC_MIN_X_Y_EQ_Z, word1, word2, 0);

    end_min:
      Add_Monom(p, sign, 1, word);
      return TRUE;

    case MAX_2:
      if (!Load_Term_Into_Word(le_word, &word1) ||
	  !Load_Term_Into_Word(re_word, &word2))
	return FALSE;

      if (Tag_Is_INT(word1))
	{
	  n1 = UnTag_INT(word1);
	  if (Tag_Is_INT(word2))
	    {
	      n2 = UnTag_INT(word2);
	      n1 = math_max(n1, n2);
	      Add_Cst_To_Poly(p, sign, n1);
	      return TRUE;
	    }

	  word = Push_Delayed_Cstr(DC_MAX_X_A_EQ_Z, word2, word1, 0);
	  goto end_max;
	}

      if (Tag_Is_INT(word2))
	word = Push_Delayed_Cstr(DC_MAX_X_A_EQ_Z, word1, word2, 0);
      else
	word = Push_Delayed_Cstr(DC_MAX_X_Y_EQ_Z, word1, word2, 0);

    end_max:
      Add_Monom(p, sign, 1, word);
      return TRUE;

    case DIST_2:
      if (!Load_Term_Into_Word(le_word, &word1) ||
	  !Load_Term_Into_Word(re_word, &word2))
	return FALSE;

      if (Tag_Is_INT(word1))
	{
	  n1 = UnTag_INT(word1);
	  if (Tag_Is_INT(word2))
	    {
	      n2 = UnTag_INT(word2);
	      n1 = (n1 >= n2) ? n1 - n2 : n2 - n1;
	      Add_Cst_To_Poly(p, sign, n1);
	      return TRUE;
	    }

	  word = Push_Delayed_Cstr(DC_ABS_X_MINUS_A_EQ_Z, word2, word1, 0);
	  goto end_dist;
	}

      if (Tag_Is_INT(word2))
	word = Push_Delayed_Cstr(DC_ABS_X_MINUS_A_EQ_Z, word1, word2, 0);
      else
	word = Push_Delayed_Cstr(DC_ABS_X_MINUS_Y_EQ_Z, word1, word2, 0);

    end_dist:
      Add_Monom(p, sign, 1, word);
      return TRUE;

    case QUOT_2:
      word3 = Make_Self_Ref(H);	/* word3 = remainder */
      Global_Push(word3);
      goto quot_rem;

    case REM_2:
      word3 = Make_Self_Ref(H);	/* word3 = remainder */
      Global_Push(word3);
      goto quot_rem;

    case QUOT_REM_3:
    quot_rem:
    if (!Load_Term_Into_Word(le_word, &word1) ||
	!Load_Term_Into_Word(re_word, &word2) ||
	(i == QUOT_REM_3 && !Load_Term_Into_Word(Arg(adr, 2), &word3)))
      return FALSE;

    if (Tag_Is_INT(word1))
      {
	n1 = UnTag_INT(word1);
	if (Tag_Is_INT(word2))
	  {
	    n2 = UnTag_INT(word2);
	    if (n2 == 0)
	      return FALSE;
	    n3 = n1 % n2;

	    if (i == QUOT_2 || i == QUOT_REM_3)
	      {
		if (i == QUOT_REM_3)
		  PRIM_CSTR_2(pl_x_eq_c, word3, word);
		else
		  H--;	/* recover word3 space */
		n3 = n1 / n2;
	      }

	    Add_Cst_To_Poly(p, sign, n3);
	    return TRUE;
	  }

	word = Push_Delayed_Cstr(DC_QUOT_REM_A_Y_R_EQ_Z, word1, word2,
				 word3);
	goto end_quot_rem;
      }

    if (Tag_Is_INT(word2))
      word = Push_Delayed_Cstr(DC_QUOT_REM_X_A_R_EQ_Z, word1, word2,
			       word3);
    else
      word = Push_Delayed_Cstr(DC_QUOT_REM_X_Y_R_EQ_Z, word1, word2,
			       word3);

    end_quot_rem:
    Add_Monom(p, sign, 1, (i == REM_2) ? word3 : word);
    return TRUE;

    case DIV_2:
      if (!Load_Term_Into_Word(le_word, &word1) ||
	  !Load_Term_Into_Word(re_word, &word2))
	return FALSE;

      if (Tag_Is_INT(word1))
	{
	  n1 = UnTag_INT(word1);
	  if (Tag_Is_INT(word2))
	    {
	      n2 = UnTag_INT(word2);
	      if (n2 == 0 || n1 % n2 != 0)
		return FALSE;
	      n1 /= n2;
	      Add_Cst_To_Poly(p, sign, n1);
	      return TRUE;
	    }

	  word = Push_Delayed_Cstr(DC_DIV_A_Y_EQ_Z, word1, word2, 0);
	  goto end_div;
	}

      if (Tag_Is_INT(word2))
	word = Push_Delayed_Cstr(DC_DIV_X_A_EQ_Z, word1, word2, 0);
      else
	word = Push_Delayed_Cstr(DC_DIV_X_Y_EQ_Z, word1, word2, 0);

    end_div:
      Add_Monom(p, sign, 1, word);
      return TRUE;

    default:
      word = Pl_Put_Structure(ATOM_CHAR('/'), 2);
      Pl_Unify_Atom(Functor(adr));
      Pl_Unify_Integer(Arity(adr));
      goto type_error;
    }

  return TRUE;
}
Ejemplo n.º 24
0
int main() {
    foo(Functor()); // match #1
    foo(boost::function<void(int const&)>(Functor())); // match #2
    foo(Base());    // match #3
    foo(Derived()); // match #3
}
Ejemplo n.º 25
0
/*-------------------------------------------------------------------------*
 * SIMPLIFY                                                                *
 *                                                                         *
 * This function returns the result of the simplified boolean expression   *
 * given in e_word. NOT operators are only applied to variables.           *
 *                                                                         *
 * Input:                                                                  *
 *    sign  : current sign of the boolean term (-1 (inside a ~) or +1)     *
 *    e_word: boolean term to simplify                                     *
 *                                                                         *
 * Output:                                                                 *
 *    The returned result is a pointer to a node of the following form:    *
 *                                                                         *
 *    for binary boolean not operator (~):                                 *
 *        [1]: variable involved (tagged word)                             *
 *        [0]: operator NOT                                                *
 *                                                                         *
 *    for unary boolean operators (<=> ~<=> ==> ~==> /\ ~/\ \/ ~\/):       *
 *        [2]: right boolean exp (pointer to node)                         *
 *        [1]: left  boolean exp (pointer to node)                         *
 *        [0]: operator (EQUIV, NEQUIV, IMPLY, NIMPLY, AND, NAND, OR, NOR) *
 *                                                                         *
 *    for boolean false value (0):                                         *
 *        [0]: ZERO                                                        *
 *                                                                         *
 *    for boolean true value (1):                                          *
 *        [0]: ONE                                                         *
 *                                                                         *
 *    for boolean variable:                                                *
 *        [0]: tagged word                                                 *
 *                                                                         *
 *    for binary math operators (= \= < >= > <=) (partial / full AC):      *
 *        [2]: right math exp (tagged word)                                *
 *        [1]: left  math exp (tagged word)                                *
 *        [0]: operator (EQ, NEQ, LT, LTE, EQ_F, NEQ_F, LT_F, LTE_F)       *
 *             (GT, GTE, GT_F, and GTE_F becomes LT, LTE, LT_F and LTE_F)  *
 *                                                                         *
 * These nodes are stored in a hybrid stack. NB: XOR same as NEQUIV        *
 *-------------------------------------------------------------------------*/
static WamWord *
Simplify(int sign, WamWord e_word)
{
  WamWord word, tag_mask;
  WamWord *adr;
  WamWord f_n, le_word, re_word;
  int op, n;
  WamWord *exp, *sp1;
  WamWord l, r;

#ifdef DEBUG
  printf("ENTERING %5ld: %2d: ", sp - stack, sign);
  Pl_Write(e_word);
  printf("\n");
#endif

  exp = sp;

  if (sp - stack > BOOL_STACK_SIZE - 5)
    Pl_Err_Resource(pl_resource_too_big_fd_constraint);

  DEREF(e_word, word, tag_mask);
  if (tag_mask == TAG_REF_MASK || tag_mask == TAG_FDV_MASK)
    {
      adr = UnTag_Address(word);
      if (vars_sp - vars_tbl == VARS_STACK_SIZE)
	Pl_Err_Resource(pl_resource_too_big_fd_constraint);

      *vars_sp++ = word;
      *vars_sp++ = 0;		/* bool var */

      if (sign != 1)
	*sp++ = NOT;

      *sp++ = Tag_REF(adr);
      return exp;
    }

  if (tag_mask == TAG_INT_MASK)
    {
      n = UnTag_INT(word);
      if ((unsigned) n > 1)
	goto type_error;

      *sp++ = ZERO + ((sign == 1) ? n : 1 - n);
      return exp;
    }

  if (tag_mask == TAG_ATM_MASK)
    {
      word = Pl_Put_Structure(ATOM_CHAR('/'), 2);
      Pl_Unify_Value(e_word);
      Pl_Unify_Integer(0);
    type_error:
      Pl_Err_Type(pl_type_fd_bool_evaluable, word);
    }


  if (tag_mask != TAG_STC_MASK)
    goto type_error;

  adr = UnTag_STC(word);

  f_n = Functor_And_Arity(adr);
  if (bool_xor == f_n)
    op = NEQUIV;
  else
    {
      for (op = 0; op < NB_OF_OP; op++)
	if (bool_tbl[op] == f_n)
	  break;

      if (op == NB_OF_OP)
	{
	  word = Pl_Put_Structure(ATOM_CHAR('/'), 2);
	  Pl_Unify_Atom(Functor(adr));
	  Pl_Unify_Integer(Arity(adr));
	  goto type_error;
	}
    }

  le_word = Arg(adr, 0);
  re_word = Arg(adr, 1);

  if (op == NOT)
    return Simplify(-sign, le_word);

  if (sign != 1)
    op = (op % 2 == EQ % 2) ? op + 1 : op - 1;

  if (op >= EQ && op <= LTE_F)
    {
      Add_Fd_Variables(le_word);
      Add_Fd_Variables(re_word);

      n = (op == GT || op == GT_F) ? op - 2 :
	(op == GTE || op == GTE_F) ? op + 2 : op;

      *sp++ = n;
      *sp++ = (n == op) ? le_word : re_word;
      *sp++ = (n == op) ? re_word : le_word;
      return exp;
    }

  sp += 3;
  exp[0] = op;
  exp[1] = (WamWord) Simplify(1, le_word);
  sp1 = sp;
  exp[2] = (WamWord) Simplify(1, re_word);

  l = *(WamWord *) (exp[1]);
  r = *(WamWord *) (exp[2]);

  /* NB: beware when calling below Simplify() (while has been just called above)
   * this can ran into stack overflow (N^2 space complexity). 
   * Try to recover the stack before calling Simplify().
   * Other stack recovery are less important (e.g. when only using exp[1]).
   *
   * In the following exp[] += sizeof(WamWord) is used to "skip" the NOT
   * in a simplification (points to the next cell).
   */

  switch (op)
    {
    case EQUIV:
      if (l == ZERO)		/* 0 <=> R is ~R */
	{
	  sp = exp;
	  return Simplify(-1, re_word);
	}

      if (l == ONE)		/* 1 <=> R is R */
	{
	  return (WamWord *) exp[2];
	}

      if (r == ZERO)		/* L <=> 0 is ~L */
	{
	  sp = exp;
	  return Simplify(-1, le_word);
	}

      if (r == ONE)		/* L <=> 1 is L */
	{
	  sp = sp1;
	  return (WamWord *) exp[1];
	}

      if (l == NOT)		/* ~X <=> R is X <=> ~R */
	{
	  exp[1] += sizeof(WamWord); 
	  sp = sp1;
	  exp[2] = (WamWord) Simplify(-1, re_word);
	  break;
	}

      if (r == NOT)		/* L <=> ~X is ~L <=> X */
	{			/* NB: cannot recover the stack */	  
	  exp[1] = (WamWord) Simplify(-1, le_word);
	  exp[2] += sizeof(WamWord);
	  break;
	}
      break;

    case NEQUIV:
      if (l == ZERO)		/* 0 ~<=> R is R */
	{
	  return (WamWord *) exp[2];
	}

      if (l == ONE)		/* 1 ~<=> R is ~R */
	{
	  sp = exp;
	  return Simplify(-1, re_word);
	}

      if (r == ZERO)		/* L ~<=> 0 is L */
	{
	  sp = sp1;
	  return (WamWord *) exp[1];
	}

      if (r == ONE)		/* L ~<=> 1 is ~L */
	{
	  sp = exp;
	  return Simplify(-1, le_word);
	}

      if (l == NOT)		/* ~X ~<=> R is X <=> R */
	{
	  exp[0] = EQUIV;
	  exp[1] += sizeof(WamWord);
	  break;
	}

      if (r == NOT)		/* L ~<=> ~X is L <=> X */
	{
	  exp[0] = EQUIV;
	  exp[2] += sizeof(WamWord);
	  break;
	}

      if (IsVar(l) && !IsVar(r)) /* X ~<=> R is X <=> ~R */
	{
	  exp[0] = EQUIV;
	  sp = sp1;
	  exp[2] = (WamWord) Simplify(-1, re_word);
	  break;
	}

      if (IsVar(r) && !IsVar(l)) /* L ~<=> X is L <=> ~X */
	{
	  exp[0] = EQUIV;	/* NB: cannot recover the stack */
	  exp[1] = (WamWord) Simplify(-1, le_word);
	  break;
	}
      break;

    case IMPLY:
      if (l == ZERO || r == ONE) /* 0 ==> R is 1 , L ==> 1 is 1 */
	{
	  sp = exp;
	  *sp++ = ONE;
	  break;
	}

      if (l == ONE)		/* 1 ==> R is R */
	{
	  return (WamWord *) exp[2];
	}

      if (r == ZERO)		/* L ==> 0 is ~L */
	return sp = exp, Simplify(-1, le_word);

      if (l == NOT)		/* ~X ==> R is X \/ R */
	{
	  exp[0] = OR;
	  exp[1] += sizeof(WamWord);
	  break;
	}

      if (r == NOT)		/* L ==> ~X is X ==> ~L */
	{
	  exp[1] = exp[2] + sizeof(WamWord);
	  exp[2] = (WamWord) Simplify(-1, le_word);
	  break;
	}
      break;

    case NIMPLY:
      if (l == ZERO || r == ONE) /* 0 ~==> R is 0 , L ~==> 1 is 0 */
	{
	  sp = exp;
	  *sp++ = ZERO;
	  break;
	}

      if (l == ONE)		/* 1 ~==> R is ~R */
	{
	  sp = exp;
	  return Simplify(-1, re_word);
	}

      if (r == ZERO)		/* L ~==> 0 is L */
	{
	  sp = sp1;
	  return (WamWord *) exp[1];
	}

      if (l == NOT)		/* ~X ~==> R is X ~\/ R */
	{
	  exp[0] = NOR;
	  exp[1] += sizeof(WamWord);
	  break;
	}

      if (r == NOT)		/* L ~==> ~X is L /\ X */
	{
	  exp[0] = AND;
	  exp[2] += sizeof(WamWord);
	  break;
	}
      break;

    case AND:
      if (l == ZERO || r == ZERO) /* 0 /\ R is 0 , L /\ 0 is 0 */
	{
	  sp = exp;
	  *sp++ = ZERO;
	  break;
	}

      if (l == ONE)		/* 1 /\ R is R */
	{
	  return (WamWord *) exp[2];
	}

      if (r == ONE)		/* L /\ 1 is L */
	{
	  sp = sp1;
	  return (WamWord *) exp[1];
	}

      if (l == NOT)		/* ~X /\ R is R ~==> X */
	{
	  exp[0] = NIMPLY;
	  word = exp[1];
	  exp[1] = exp[2];
	  exp[2] = word + sizeof(WamWord);
	  break;
	}

      if (r == NOT)		/* L /\ ~X is L ~==> X */
	{
	  exp[0] = NIMPLY;
	  exp[2] += sizeof(WamWord);
	  break;
	}
      break;

    case NAND:
      if (l == ZERO || r == ZERO) /* 0 ~/\ R is 1 , L ~/\ 0 is 1 */
	{
	  sp = exp;
	  *sp++ = ONE;
	  break;
	}

      if (l == ONE)		/* 1 ~/\ R is ~R */
	{
	  sp = exp;
	  return Simplify(-1, re_word);
	}

      if (r == ONE)		/* L ~/\ 1 is ~L */
	{
	  sp = exp;
	  return Simplify(-1, le_word);
	}

      if (l == NOT)		/* ~X ~/\ R is R ==> X */
	{
	  exp[0] = IMPLY;
	  word = exp[1];
	  exp[1] = exp[2];
	  exp[2] = word + sizeof(WamWord);
	  break;
	}

      if (r == NOT)		/* L ~/\ ~X is L ==> X */
	{
	  exp[0] = IMPLY;
	  exp[2] += sizeof(WamWord);
	  break;
	}
      break;

    case OR:
      if (l == ONE || r == ONE)	/* 1 \/ R is 1 , L \/ 1 is 1 */
	{
	  sp = exp;
	  *sp++ = ONE;
	  break;
	}

      if (l == ZERO)		/* 0 \/ R is R */
	{
	  return (WamWord *) exp[2];
	}

      if (r == ZERO)		/* L \/ 0 is L */
	{
	  sp = sp1;
	  return (WamWord *) exp[1];
	}

      if (l == NOT)		/* ~X \/ R is X ==> R */
	{
	  exp[0] = IMPLY;
	  exp[1] += sizeof(WamWord);
	  break;
	}

      if (r == NOT)		/* L \/ ~X is X ==> L */
	{
	  exp[0] = IMPLY;
	  word = exp[1];
	  exp[1] = exp[2] + sizeof(WamWord);
	  exp[2] = word;
	  break;
	}
      break;

    case NOR:
      if (l == ONE || r == ONE)	/* 1 ~\/ R is 0 , L ~\/ 1 is 0 */
	{
	  sp = exp;
	  *sp++ = ZERO;
	  break;
	}

      if (l == ZERO)		/* 0 ~\/ R is ~R */
	{
	  sp = exp;
	  return Simplify(-1, re_word);
	}

      if (r == ZERO)		/* L ~\/ 0 is ~L */
	{
	  sp = exp;
	  return Simplify(-1, le_word);
	}

      if (l == NOT)		/* ~X ~\/ R is X ~==> R */
	{
	  exp[0] = NIMPLY;
	  exp[1] += sizeof(WamWord);
	  break;
	}

      if (r == NOT)		/* L ~\/ ~X is X ~==> L */
	{
	  exp[0] = NIMPLY;
	  word = exp[1];
	  exp[1] = exp[2] + sizeof(WamWord);
	  exp[2] = word;
	  break;
	}
      break;
    }

  return exp;
}
Ejemplo n.º 26
0
void TestTupleForeach()
{
	tp_for_each(Functor(), std::make_tuple<int, double>(1, 2.5));
}