Ejemplo n.º 1
0
int32_t GBVideoProcessEvents(struct GBVideo* video, int32_t cycles) {
	video->eventDiff += cycles;
	if (video->nextEvent != INT_MAX) {
		video->nextEvent -= cycles;
	}
	if (video->nextEvent <= 0) {
		if (video->nextMode != INT_MAX) {
			video->nextMode -= video->eventDiff;
		}
		if (video->nextFrame != INT_MAX) {
			video->nextFrame -= video->eventDiff;
		}
		video->nextEvent = INT_MAX;
		GBVideoProcessDots(video);
		if (video->nextMode <= 0) {
			int lyc = video->p->memory.io[REG_LYC];
			switch (video->mode) {
			case 0:
				if (video->frameskipCounter <= 0) {
					video->renderer->finishScanline(video->renderer, video->ly);
				}
				++video->ly;
				video->p->memory.io[REG_LY] = video->ly;
				video->stat = GBRegisterSTATSetLYC(video->stat, lyc == video->ly);
				if (video->ly < GB_VIDEO_VERTICAL_PIXELS) {
					video->nextMode = GB_VIDEO_MODE_2_LENGTH + (video->p->memory.io[REG_SCX] & 7);
					video->mode = 2;
					if (!GBRegisterSTATIsHblankIRQ(video->stat) && GBRegisterSTATIsOAMIRQ(video->stat)) {
						video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT);
					}
				} else {
					video->nextMode = GB_VIDEO_HORIZONTAL_LENGTH;
					video->mode = 1;

					if (video->nextFrame != 0) {
						video->nextFrame = 0;
					}

					if (GBRegisterSTATIsVblankIRQ(video->stat) || GBRegisterSTATIsOAMIRQ(video->stat)) {
						video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT);
					}
					video->p->memory.io[REG_IF] |= (1 << GB_IRQ_VBLANK);

					struct mCoreThread* thread = mCoreThreadGet();
					mCoreThreadFrameEnded(thread);
				}
				if (GBRegisterSTATIsLYCIRQ(video->stat) && lyc == video->ly) {
					video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT);
				}
				GBUpdateIRQs(video->p);
				break;
			case 1:
				// TODO: One M-cycle delay
				++video->ly;
				if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS + 1) {
					video->ly = 0;
					video->p->memory.io[REG_LY] = video->ly;
					// TODO: Cache SCX & 7 in case it changes during mode 2
					video->nextMode = GB_VIDEO_MODE_2_LENGTH + (video->p->memory.io[REG_SCX] & 7);
					video->mode = 2;
					if (GBRegisterSTATIsOAMIRQ(video->stat)) {
						video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT);
						GBUpdateIRQs(video->p);
					}
					video->renderer->finishFrame(video->renderer);
					if (video->p->memory.mbcType == GB_MBC7 && video->p->memory.rotation && video->p->memory.rotation->sample) {
						video->p->memory.rotation->sample(video->p->memory.rotation);
					}
					break;
				} else if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS) {
					video->p->memory.io[REG_LY] = 0;
					video->nextMode = GB_VIDEO_HORIZONTAL_LENGTH - 8;
				} else if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS - 1) {
					video->p->memory.io[REG_LY] = video->ly;
					video->nextMode = 8;
				} else {
					video->p->memory.io[REG_LY] = video->ly;
					video->nextMode = GB_VIDEO_HORIZONTAL_LENGTH;
				}

				video->stat = GBRegisterSTATSetLYC(video->stat, lyc == video->p->memory.io[REG_LY]);
				if (GBRegisterSTATIsLYCIRQ(video->stat) && lyc == video->p->memory.io[REG_LY]) {
					video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT);
					GBUpdateIRQs(video->p);
				}
				break;
			case 2:
				_cleanOAM(video, video->ly);
				video->dotCounter = 0;
				video->nextEvent = GB_VIDEO_HORIZONTAL_LENGTH;
				video->x = 0;
				// TODO: Estimate sprite timings better
				video->nextMode = GB_VIDEO_MODE_3_LENGTH_BASE + video->objMax * 11 - (video->p->memory.io[REG_SCX] & 7);
				video->mode = 3;
				break;
			case 3:
				video->nextMode = GB_VIDEO_MODE_0_LENGTH_BASE - video->objMax * 11;
				video->mode = 0;
				if (GBRegisterSTATIsHblankIRQ(video->stat)) {
					video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT);
					GBUpdateIRQs(video->p);
				}
				if (video->ly < GB_VIDEO_VERTICAL_PIXELS && video->p->memory.isHdma && video->p->memory.io[REG_HDMA5] != 0xFF) {
					video->p->memory.hdmaRemaining = 0x10;
					video->p->memory.hdmaNext = video->p->cpu->cycles;
				}
				break;
			}
			video->stat = GBRegisterSTATSetMode(video->stat, video->mode);
			video->p->memory.io[REG_STAT] = video->stat;
		}
		if (video->nextFrame <= 0) {
			if (video->p->cpu->executionState == LR35902_CORE_FETCH) {
				GBFrameEnded(video->p);
				video->nextFrame = GB_VIDEO_TOTAL_LENGTH;
				video->nextEvent = GB_VIDEO_TOTAL_LENGTH;

				--video->frameskipCounter;
				if (video->frameskipCounter < 0) {
					mCoreSyncPostFrame(video->p->sync);
					video->frameskipCounter = video->frameskip;
				}
				++video->frameCounter;

				if (video->p->stream && video->p->stream->postVideoFrame) {
					const color_t* pixels;
					size_t stride;
					video->renderer->getPixels(video->renderer, &stride, (const void**) &pixels);
					video->p->stream->postVideoFrame(video->p->stream, pixels, stride);
				}
				struct mCoreThread* thread = mCoreThreadGet();
				mCoreThreadFrameStarted(thread);
			} else {
				video->nextFrame = 4 - ((video->p->cpu->executionState + 1) & 3);
				if (video->nextFrame < video->nextEvent) {
					video->nextEvent = video->nextFrame;
				}
			}
		}
		if (video->nextMode < video->nextEvent) {
			video->nextEvent = video->nextMode;
		}
		video->eventDiff = 0;
	}
	return video->nextEvent;
}
Ejemplo n.º 2
0
void GBIOWrite(struct GB* gb, unsigned address, uint8_t value) {
	switch (address) {
	case REG_DIV:
		GBTimerDivReset(&gb->timer);
		return;
	case REG_NR10:
		if (gb->audio.enable) {
			GBAudioWriteNR10(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR11:
		if (gb->audio.enable) {
			GBAudioWriteNR11(&gb->audio, value);
		} else {
			if (gb->audio.style == GB_AUDIO_DMG) {
				GBAudioWriteNR11(&gb->audio, value & _registerMask[REG_NR11]);
			}
			value = 0;
		}
		break;
	case REG_NR12:
		if (gb->audio.enable) {
			GBAudioWriteNR12(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR13:
		if (gb->audio.enable) {
			GBAudioWriteNR13(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR14:
		if (gb->audio.enable) {
			GBAudioWriteNR14(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR21:
		if (gb->audio.enable) {
			GBAudioWriteNR21(&gb->audio, value);
		} else {
			if (gb->audio.style == GB_AUDIO_DMG) {
				GBAudioWriteNR21(&gb->audio, value & _registerMask[REG_NR21]);
			}
			value = 0;
		}
		break;
	case REG_NR22:
		if (gb->audio.enable) {
			GBAudioWriteNR22(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR23:
		if (gb->audio.enable) {
			GBAudioWriteNR23(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR24:
		if (gb->audio.enable) {
			GBAudioWriteNR24(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR30:
		if (gb->audio.enable) {
			GBAudioWriteNR30(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR31:
		if (gb->audio.enable || gb->audio.style == GB_AUDIO_DMG) {
			GBAudioWriteNR31(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR32:
		if (gb->audio.enable) {
			GBAudioWriteNR32(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR33:
		if (gb->audio.enable) {
			GBAudioWriteNR33(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR34:
		if (gb->audio.enable) {
			GBAudioWriteNR34(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR41:
		if (gb->audio.enable || gb->audio.style == GB_AUDIO_DMG) {
			GBAudioWriteNR41(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR42:
		if (gb->audio.enable) {
			GBAudioWriteNR42(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR43:
		if (gb->audio.enable) {
			GBAudioWriteNR43(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR44:
		if (gb->audio.enable) {
			GBAudioWriteNR44(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR50:
		if (gb->audio.enable) {
			GBAudioWriteNR50(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR51:
		if (gb->audio.enable) {
			GBAudioWriteNR51(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR52:
		GBAudioWriteNR52(&gb->audio, value);
		value &= 0x80;
		value |= gb->memory.io[REG_NR52] & 0x0F;
		break;
	case REG_WAVE_0:
	case REG_WAVE_1:
	case REG_WAVE_2:
	case REG_WAVE_3:
	case REG_WAVE_4:
	case REG_WAVE_5:
	case REG_WAVE_6:
	case REG_WAVE_7:
	case REG_WAVE_8:
	case REG_WAVE_9:
	case REG_WAVE_A:
	case REG_WAVE_B:
	case REG_WAVE_C:
	case REG_WAVE_D:
	case REG_WAVE_E:
	case REG_WAVE_F:
		if (!gb->audio.playingCh3 || gb->audio.style != GB_AUDIO_DMG) {
			gb->audio.ch3.wavedata8[address - REG_WAVE_0] = value;
		} else if(gb->audio.ch3.readable) {
			gb->audio.ch3.wavedata8[gb->audio.ch3.window >> 1] = value;
		}
		break;
	case REG_JOYP:
	case REG_TIMA:
	case REG_TMA:
	case REG_LYC:
		// Handled transparently by the registers
		break;
	case REG_TAC:
		value = GBTimerUpdateTAC(&gb->timer, value);
		break;
	case REG_IF:
		gb->memory.io[REG_IF] = value | 0xE0;
		GBUpdateIRQs(gb);
		return;
	case REG_LCDC:
		// TODO: handle GBC differences
		value = gb->video.renderer->writeVideoRegister(gb->video.renderer, address, value);
		GBVideoWriteLCDC(&gb->video, value);
		break;
	case REG_DMA:
		GBMemoryDMA(gb, value << 8);
		break;
	case REG_SCY:
	case REG_SCX:
	case REG_WY:
	case REG_WX:
		GBVideoProcessDots(&gb->video);
		value = gb->video.renderer->writeVideoRegister(gb->video.renderer, address, value);
		break;
	case REG_BGP:
	case REG_OBP0:
	case REG_OBP1:
		GBVideoProcessDots(&gb->video);
		GBVideoWritePalette(&gb->video, address, value);
		break;
	case REG_STAT:
		GBVideoWriteSTAT(&gb->video, value);
		break;
	case REG_IE:
		gb->memory.ie = value;
		GBUpdateIRQs(gb);
		return;
	default:
		if (gb->model >= GB_MODEL_CGB) {
			switch (address) {
			case REG_KEY1:
				value &= 0x1;
				value |= gb->memory.io[address] & 0x80;
				break;
			case REG_VBK:
				GBVideoSwitchBank(&gb->video, value);
				break;
			case REG_HDMA1:
			case REG_HDMA2:
			case REG_HDMA3:
			case REG_HDMA4:
				// Handled transparently by the registers
				break;
			case REG_HDMA5:
				GBMemoryWriteHDMA5(gb, value);
				value &= 0x7F;
				break;
			case REG_BCPS:
				gb->video.bcpIndex = value & 0x3F;
				gb->video.bcpIncrement = value & 0x80;
				gb->memory.io[REG_BCPD] = gb->video.palette[gb->video.bcpIndex >> 1] >> (8 * (gb->video.bcpIndex & 1));
				break;
			case REG_BCPD:
				GBVideoProcessDots(&gb->video);
				GBVideoWritePalette(&gb->video, address, value);
				break;
			case REG_OCPS:
				gb->video.ocpIndex = value & 0x3F;
				gb->video.ocpIncrement = value & 0x80;
				gb->memory.io[REG_OCPD] = gb->video.palette[8 * 4 + (gb->video.ocpIndex >> 1)] >> (8 * (gb->video.ocpIndex & 1));
				break;
			case REG_OCPD:
				GBVideoProcessDots(&gb->video);
				GBVideoWritePalette(&gb->video, address, value);
				break;
			case REG_SVBK:
				GBMemorySwitchWramBank(&gb->memory, value);
				value = gb->memory.wramCurrentBank;
				break;
			default:
				goto failed;
			}
			goto success;
		}
		failed:
		mLOG(GB_IO, STUB, "Writing to unknown register FF%02X:%02X", address, value);
		if (address >= GB_SIZE_IO) {
			return;
		}
		break;
	}