/**
* Sets the surface grids based on a ncepNam (surface only!) forecast.
* @param input The WindNinjaInputs for misc. info.
* @param airGrid The air temperature grid to be filled.
* @param cloudGrid The cloud cover grid to be filled.
* @param uGrid The u velocity grid to be filled.
* @param vGrid The v velocity grid to be filled.
* @param wGrid The w velocity grid to be filled (filled with zeros here?).
*/
void genericSurfInitialization::setSurfaceGrids( WindNinjaInputs &input,
        AsciiGrid<double> &airGrid,
        AsciiGrid<double> &cloudGrid,
        AsciiGrid<double> &uGrid,
        AsciiGrid<double> &vGrid,
        AsciiGrid<double> &wGrid )
{
    int bandNum = -1;

    //get time list
    std::vector<boost::local_time::local_date_time> timeList( getTimeList(input.ninjaTimeZone) );
    //Search time list for our time to identify our band number for cloud/speed/dir
    for(unsigned int i = 0; i < timeList.size(); i++)
    {
        if(input.ninjaTime == timeList[i])
        {
            bandNum = i + 1;
            break;
        }
    }
    if(bandNum < 0)
        throw std::runtime_error("Could not match ninjaTime with a band number in the forecast file.");

    //get some info from the nam file in input

    //Acquire a lock to protect the non-thread safe netCDF library
#ifdef _OPENMP
    omp_guard netCDF_guard(netCDF_lock);
#endif

    GDALDataset* poDS;

    //attempt to grab the projection from the dem?
    //check for member prjString first
    std::string dstWkt;
    dstWkt = input.dem.prjString;
    if ( dstWkt.empty() ) {
        //try to open original
        poDS = (GDALDataset*)GDALOpen( input.dem.fileName.c_str(), GA_ReadOnly );
        if( poDS == NULL ) {
            CPLDebug( "ncepNdfdInitialization::setSurfaceGrids()",
                    "Bad projection reference" );
            //throw();
        }
        dstWkt = poDS->GetProjectionRef();
        if( dstWkt.empty() ) {
            CPLDebug( "ncepNdfdInitialization::setSurfaceGrids()",
                    "Bad projection reference" );
            //throw()
        }
        GDALClose((GDALDatasetH) poDS );
    }

    poDS = (GDALDataset*)GDALOpen( input.forecastFilename.c_str(), GA_ReadOnly );

    if( poDS == NULL ) {
        CPLDebug( "ncepNdfdInitialization::setSurfaceGrids()",
                "Bad forecast file" );
    }
    else
        GDALClose((GDALDatasetH) poDS );

    // open ds one by one and warp, then write to grid
    GDALDataset *srcDS, *wrpDS;
    std::string temp;
    std::string srcWkt;

    std::vector<std::string> varList = getVariableList();

    /*
     * Set the initial values in the warped dataset to no data
     */
    GDALWarpOptions* psWarpOptions;

    for( unsigned int i = 0;i < varList.size();i++ ) {

        temp = "NETCDF:" + input.forecastFilename + ":" + varList[i];

        srcDS = (GDALDataset*)GDALOpenShared( temp.c_str(), GA_ReadOnly );
        if( srcDS == NULL ) {
            CPLDebug( "ncepNdfdInitialization::setSurfaceGrids()",
                    "Bad forecast file" );
        }

        srcWkt = srcDS->GetProjectionRef();

        if( srcWkt.empty() ) {
            CPLDebug( "ncepNdfdInitialization::setSurfaceGrids()",
                    "Bad forecast file" );
            //throw
        }

        /*
         * Grab the first band to get the nodata value for the variable,
         * assume all bands have the same ndv
         */
        GDALRasterBand *poBand = srcDS->GetRasterBand( 1 );
        int pbSuccess;
        double dfNoData = poBand->GetNoDataValue( &pbSuccess );

        psWarpOptions = GDALCreateWarpOptions();

        int nBandCount = srcDS->GetRasterCount();

        psWarpOptions->nBandCount = nBandCount;

        psWarpOptions->padfDstNoDataReal =
            (double*) CPLMalloc( sizeof( double ) * nBandCount );
        psWarpOptions->padfDstNoDataImag =
            (double*) CPLMalloc( sizeof( double ) * nBandCount );

        for( int b = 0;b < srcDS->GetRasterCount();b++ ) {
            psWarpOptions->padfDstNoDataReal[b] = dfNoData;
            psWarpOptions->padfDstNoDataImag[b] = dfNoData;
        }

        if( pbSuccess == false )
            dfNoData = -9999.0;

        psWarpOptions->papszWarpOptions =
            CSLSetNameValue( psWarpOptions->papszWarpOptions,
                            "INIT_DEST", "NO_DATA" );

        wrpDS = (GDALDataset*) GDALAutoCreateWarpedVRT( srcDS, srcWkt.c_str(),
                                                        dstWkt.c_str(),
                                                        GRA_NearestNeighbour,
                                                        1.0, psWarpOptions );

        if( varList[i] == "Temperature_height_above_ground" ) {
            GDAL2AsciiGrid( wrpDS, bandNum, airGrid );
        if( CPLIsNan( dfNoData ) ) {
        airGrid.set_noDataValue(-9999.0);
        airGrid.replaceNan( -9999.0 );
        }
    }
        else if( varList[i] == "V-component_of_wind_height_above_ground" ) {
            GDAL2AsciiGrid( wrpDS, bandNum, vGrid );
        if( CPLIsNan( dfNoData ) ) {
        vGrid.set_noDataValue(-9999.0);
        vGrid.replaceNan( -9999.0 );
        }
    }
        else if( varList[i] == "U-component_of_wind_height_above_ground" ) {
            GDAL2AsciiGrid( wrpDS, bandNum, uGrid );
        if( CPLIsNan( dfNoData ) ) {
        uGrid.set_noDataValue(-9999.0);
        uGrid.replaceNan( -9999.0 );
        }
    }
        else if( varList[i] == "Total_cloud_cover" ) {
            GDAL2AsciiGrid( wrpDS, bandNum, cloudGrid );
        if( CPLIsNan( dfNoData ) ) {
        cloudGrid.set_noDataValue(-9999.0);
        cloudGrid.replaceNan( -9999.0 );
        }
    }

        GDALDestroyWarpOptions( psWarpOptions );
        GDALClose((GDALDatasetH) srcDS );
        GDALClose((GDALDatasetH) wrpDS );
    }
    cloudGrid /= 100.0;

    wGrid.set_headerData( uGrid );
    wGrid = 0.0;
}
Ejemplo n.º 2
0
int QgsRasterCalculator::processCalculation( QProgressDialog* p )
{
  //prepare search string / tree
  QString errorString;
  QgsRasterCalcNode* calcNode = QgsRasterCalcNode::parseRasterCalcString( mFormulaString, errorString );
  if ( !calcNode )
  {
    //error
  }

  double targetGeoTransform[6];
  outputGeoTransform( targetGeoTransform );

  //open all input rasters for reading
  QMap< QString, GDALRasterBandH > mInputRasterBands; //raster references and corresponding scanline data
  QMap< QString, QgsRasterMatrix* > inputScanLineData; //stores raster references and corresponding scanline data
  QVector< GDALDatasetH > mInputDatasets; //raster references and corresponding dataset

  QVector<QgsRasterCalculatorEntry>::const_iterator it = mRasterEntries.constBegin();
  for ( ; it != mRasterEntries.constEnd(); ++it )
  {
    if ( !it->raster ) // no raster layer in entry
    {
      return 2;
    }
    GDALDatasetH inputDataset = GDALOpen( it->raster->source().toLocal8Bit().data(), GA_ReadOnly );
    if ( inputDataset == NULL )
    {
      return 2;
    }

    //check if the input dataset is south up or rotated. If yes, use GDALAutoCreateWarpedVRT to create a north up raster
    double inputGeoTransform[6];
    if ( GDALGetGeoTransform( inputDataset, inputGeoTransform ) == CE_None
         && ( inputGeoTransform[1] < 0.0
              || inputGeoTransform[2] != 0.0
              || inputGeoTransform[4] != 0.0
              || inputGeoTransform[5] > 0.0 ) )
    {
      GDALDatasetH vDataset = GDALAutoCreateWarpedVRT( inputDataset, NULL, NULL, GRA_NearestNeighbour, 0.2, NULL );
      mInputDatasets.push_back( vDataset );
      mInputDatasets.push_back( inputDataset );
      inputDataset = vDataset;
    }
    else
    {
      mInputDatasets.push_back( inputDataset );
    }


    GDALRasterBandH inputRasterBand = GDALGetRasterBand( inputDataset, it->bandNumber );
    if ( inputRasterBand == NULL )
    {
      return 2;
    }

    int nodataSuccess;
    double nodataValue = GDALGetRasterNoDataValue( inputRasterBand, &nodataSuccess );

    mInputRasterBands.insert( it->ref, inputRasterBand );
    inputScanLineData.insert( it->ref, new QgsRasterMatrix( mNumOutputColumns, 1, new float[mNumOutputColumns], nodataValue ) );
  }

  //open output dataset for writing
  GDALDriverH outputDriver = openOutputDriver();
  if ( outputDriver == NULL )
  {
    return 1;
  }
  GDALDatasetH outputDataset = openOutputFile( outputDriver );
  GDALRasterBandH outputRasterBand = GDALGetRasterBand( outputDataset, 1 );

  float outputNodataValue = -FLT_MAX;
  GDALSetRasterNoDataValue( outputRasterBand, outputNodataValue );

  float* resultScanLine = ( float * ) CPLMalloc( sizeof( float ) * mNumOutputColumns );

  if ( p )
  {
    p->setMaximum( mNumOutputRows );
  }

  QgsRasterMatrix resultMatrix;

  //read / write line by line
  for ( int i = 0; i < mNumOutputRows; ++i )
  {
    if ( p )
    {
      p->setValue( i );
    }

    if ( p && p->wasCanceled() )
    {
      break;
    }

    //fill buffers
    QMap< QString, QgsRasterMatrix* >::iterator bufferIt = inputScanLineData.begin();
    for ( ; bufferIt != inputScanLineData.end(); ++bufferIt )
    {
      double sourceTransformation[6];
      GDALRasterBandH sourceRasterBand = mInputRasterBands[bufferIt.key()];
      GDALGetGeoTransform( GDALGetBandDataset( sourceRasterBand ), sourceTransformation );
      //the function readRasterPart calls GDALRasterIO (and ev. does some conversion if raster transformations are not the same)
      readRasterPart( targetGeoTransform, 0, i, mNumOutputColumns, 1, sourceTransformation, sourceRasterBand, bufferIt.value()->data() );
    }

    if ( calcNode->calculate( inputScanLineData, resultMatrix ) )
    {
      bool resultIsNumber = resultMatrix.isNumber();
      float* calcData;

      if ( resultIsNumber ) //scalar result. Insert number for every pixel
      {
        calcData = new float[mNumOutputColumns];
        for ( int j = 0; j < mNumOutputColumns; ++j )
        {
          calcData[j] = resultMatrix.number();
        }
      }
      else //result is real matrix
      {
        calcData = resultMatrix.data();
      }

      //replace all matrix nodata values with output nodatas
      for ( int j = 0; j < mNumOutputColumns; ++j )
      {
        if ( calcData[j] == resultMatrix.nodataValue() )
        {
          calcData[j] = outputNodataValue;
        }
      }

      //write scanline to the dataset
      if ( GDALRasterIO( outputRasterBand, GF_Write, 0, i, mNumOutputColumns, 1, calcData, mNumOutputColumns, 1, GDT_Float32, 0, 0 ) != CE_None )
      {
        qWarning( "RasterIO error!" );
      }

      if ( resultIsNumber )
      {
        delete[] calcData;
      }
    }

  }

  if ( p )
  {
    p->setValue( mNumOutputRows );
  }

  //close datasets and release memory
  delete calcNode;
  QMap< QString, QgsRasterMatrix* >::iterator bufferIt = inputScanLineData.begin();
  for ( ; bufferIt != inputScanLineData.end(); ++bufferIt )
  {
    delete bufferIt.value();
  }
  inputScanLineData.clear();

  QVector< GDALDatasetH >::iterator datasetIt = mInputDatasets.begin();
  for ( ; datasetIt != mInputDatasets.end(); ++ datasetIt )
  {
    GDALClose( *datasetIt );
  }

  if ( p && p->wasCanceled() )
  {
    //delete the dataset without closing (because it is faster)
    GDALDeleteDataset( outputDriver, mOutputFile.toLocal8Bit().data() );
    return 3;
  }
  GDALClose( outputDataset );
  CPLFree( resultScanLine );
  return 0;
}
/**
* Sets the surface grids based on a ncep HRRR (surface only!) forecast.
* @param input The WindNinjaInputs for misc. info.
* @param airGrid The air temperature grid to be filled.
* @param cloudGrid The cloud cover grid to be filled.
* @param uGrid The u velocity grid to be filled.
* @param vGrid The v velocity grid to be filled.
* @param wGrid The w velocity grid to be filled (filled with zeros here?).
*/
void ncepHrrrSurfInitialization::setSurfaceGrids( WindNinjaInputs &input,
        AsciiGrid<double> &airGrid,
        AsciiGrid<double> &cloudGrid,
        AsciiGrid<double> &uGrid,
        AsciiGrid<double> &vGrid,
        AsciiGrid<double> &wGrid )
{
    int bandNum = -1;

    GDALDataset *srcDS;
    srcDS = (GDALDataset*)GDALOpenShared( input.forecastFilename.c_str(), GA_ReadOnly );

    if( srcDS == NULL ) {
        CPLDebug( "ncepHRRRSurfaceInitialization::identify()",
                "Bad forecast file" );
    }

    GDALRasterBand *poBand;
    const char *gc;

    //get time list
    std::vector<boost::local_time::local_date_time> timeList( getTimeList( input.ninjaTimeZone ) );

    //Search time list for our time to identify our band number for cloud/speed/dir
    //Right now, just one time step per file
    std::vector<int> bandList;
    for(unsigned int i = 0; i < timeList.size(); i++)
    {
        if(input.ninjaTime == timeList[i])
        {
            for(unsigned int j = 1; j < srcDS->GetRasterCount(); j++)
            { 
                poBand = srcDS->GetRasterBand( j );
                gc = poBand->GetMetadataItem( "GRIB_COMMENT" );
                std::string bandName( gc );

                if( bandName.find( "Temperature [K]" ) != bandName.npos ){
                    gc = poBand->GetMetadataItem( "GRIB_SHORT_NAME" );
                    std::string bandName( gc );
                    if( bandName.find( "2-HTGL" ) != bandName.npos ){
                        bandList.push_back( j );  // 2t 
                        break;
                    }
                }
            }
            for(unsigned int j = 1; j < srcDS->GetRasterCount(); j++)
            { 
                poBand = srcDS->GetRasterBand( j );
                gc = poBand->GetMetadataItem( "GRIB_COMMENT" );
                std::string bandName( gc );

                if( bandName.find( "v-component of wind [m/s]" ) != bandName.npos ){
                    gc = poBand->GetMetadataItem( "GRIB_SHORT_NAME" );
                    std::string bandName( gc );
                    if( bandName.find( "10-HTGL" ) != bandName.npos ){
                        bandList.push_back( j );  // 10v
                        break;
                    }
                }
            }
            for(unsigned int j = 1; j < srcDS->GetRasterCount(); j++)
            { 
                poBand = srcDS->GetRasterBand( j );
                gc = poBand->GetMetadataItem( "GRIB_COMMENT" );
                std::string bandName( gc );

                if( bandName.find( "u-component of wind [m/s]" ) != bandName.npos ){
                    gc = poBand->GetMetadataItem( "GRIB_SHORT_NAME" );
                    std::string bandName( gc );
                    if( bandName.find( "10-HTGL" ) != bandName.npos ){
                        bandList.push_back( j );  // 10u
                        break;
                    }
                }
            }
            for(unsigned int j = 1; j < srcDS->GetRasterCount(); j++)
            { 
                poBand = srcDS->GetRasterBand( j );
                gc = poBand->GetMetadataItem( "GRIB_COMMENT" );
                std::string bandName( gc );

                if( bandName.find( "Total cloud cover [%]" ) != bandName.npos ){
                    gc = poBand->GetMetadataItem( "GRIB_SHORT_NAME" );
                    std::string bandName( gc );
                    if( bandName.find( "0-RESERVED" ) != bandName.npos ){
                        bandList.push_back( j );  // Total cloud cover in % 
                        break;
                    }
                }
            }
        }
    }

    CPLDebug("HRRR", "2t: bandList[0] = %d", bandList[0]);
    CPLDebug("HRRR", "10v: bandList[1] = %d", bandList[1]);
    CPLDebug("HRRR", "10u: bandList[2] = %d", bandList[2]);
    CPLDebug("HRRR", "tcc: bandList[3] = %d", bandList[3]);

    if(bandList.size() < 4)
        throw std::runtime_error("Could not match ninjaTime with a band number in the forecast file.");

    std::string dstWkt;
    dstWkt = input.dem.prjString;

    GDALDataset *wrpDS;
    std::string temp;
    std::string srcWkt;

    GDALWarpOptions* psWarpOptions;

    srcWkt = srcDS->GetProjectionRef();

    poBand = srcDS->GetRasterBand( 9 );
    int pbSuccess;
    double dfNoData = poBand->GetNoDataValue( &pbSuccess );

    psWarpOptions = GDALCreateWarpOptions();

    int nBandCount = bandList.size();

    psWarpOptions->nBandCount = nBandCount;
    psWarpOptions->panSrcBands =
        (int*) CPLMalloc( sizeof( int ) * nBandCount );
    psWarpOptions->panDstBands =
        (int*) CPLMalloc( sizeof( int ) * nBandCount );
    psWarpOptions->padfDstNoDataReal =
        (double*) CPLMalloc( sizeof( double ) * nBandCount );
    psWarpOptions->padfDstNoDataImag =
        (double*) CPLMalloc( sizeof( double ) * nBandCount );


    psWarpOptions->padfDstNoDataReal =
        (double*) CPLMalloc( sizeof( double ) * nBandCount );
    psWarpOptions->padfDstNoDataImag =
        (double*) CPLMalloc( sizeof( double ) * nBandCount );

    if( pbSuccess == false )
        dfNoData = -9999.0;

    psWarpOptions->panSrcBands =
        (int *) CPLMalloc(sizeof(int) * psWarpOptions->nBandCount );
    psWarpOptions->panSrcBands[0] = bandList[0];
    psWarpOptions->panSrcBands[1] = bandList[1];
    psWarpOptions->panSrcBands[2] = bandList[2];
    psWarpOptions->panSrcBands[3] = bandList[3];

    psWarpOptions->panDstBands =
        (int *) CPLMalloc(sizeof(int) * psWarpOptions->nBandCount );
    psWarpOptions->panDstBands[0] = 1;
    psWarpOptions->panDstBands[1] = 2;
    psWarpOptions->panDstBands[2] = 3;
    psWarpOptions->panDstBands[3] = 4;

    wrpDS = (GDALDataset*) GDALAutoCreateWarpedVRT( srcDS, srcWkt.c_str(),
                                                    dstWkt.c_str(),
                                                    GRA_NearestNeighbour,
                                                    1.0, psWarpOptions );
    std::vector<std::string> varList = getVariableList();

    for( unsigned int i = 0; i < varList.size(); i++ ) {
        if( varList[i] == "2t" ) {
            GDAL2AsciiGrid( wrpDS, i+1, airGrid );
            if( CPLIsNan( dfNoData ) ) {
                airGrid.set_noDataValue( -9999.0 );
                airGrid.replaceNan( -9999.0 );
            }
        }
        else if( varList[i] == "10v" ) {
            GDAL2AsciiGrid( wrpDS, i+1, vGrid );
            if( CPLIsNan( dfNoData ) ) {
                vGrid.set_noDataValue( -9999.0 );
                vGrid.replaceNan( -9999.0 );
            }
        }
        else if( varList[i] == "10u" ) {
            GDAL2AsciiGrid( wrpDS, i+1, uGrid );
            if( CPLIsNan( dfNoData ) ) {
                uGrid.set_noDataValue( -9999.0 );
                uGrid.replaceNan( -9999.0 );
            }
        }
        else if( varList[i] == "tcc" ) {
            GDAL2AsciiGrid( wrpDS, i+1, cloudGrid );
            if( CPLIsNan( dfNoData ) ) {
                cloudGrid.set_noDataValue( -9999.0 );
                cloudGrid.replaceNan( -9999.0 );
            }
        }
    }
    //if there are any clouds set cloud fraction to 1, otherwise set to 0.
    for(int i = 0; i < cloudGrid.get_nRows(); i++){
        for(int j = 0; j < cloudGrid.get_nCols(); j++){
            if(cloudGrid(i,j) < 0.0){
                cloudGrid(i,j) = 0.0;
            }
            else{
                cloudGrid(i,j) = 1.0;
            }
        }
    }
    wGrid.set_headerData( uGrid );
    wGrid = 0.0;
    airGrid += 273.15;

    GDALDestroyWarpOptions( psWarpOptions );
    GDALClose((GDALDatasetH) srcDS );
    GDALClose((GDALDatasetH) wrpDS );
}
Ejemplo n.º 4
0
// build out_ds
static ERL_NIF_TERM gdal_nif_create_warped_vrtimg(ErlNifEnv* env, int argc,
                                          const ERL_NIF_TERM argv[])
{
    ErlNifBinary filenameBin;
    if (!enif_inspect_iolist_as_binary(env, argv[0], &filenameBin) || 
        (filenameBin.size >= FILENAME_LEN)) {
        return make_error_msg(env, "filename error, maybe too long");
    }

    char imgfilename[FILENAME_LEN] = "";
    size_t name_sz = filenameBin.size;
    memcpy(imgfilename, filenameBin.data, filenameBin.size);
    DEBUG("img filename: %s\r\n", imgfilename);

    int epsg_code;
    if (!enif_get_int(env, argv[1], &epsg_code)) {
        return enif_make_badarg(env);
    }

    GDALDatasetH in_ds = GDALOpenShared(imgfilename, GA_ReadOnly);
    if (in_ds == NULL) {
        const char* msg = "It is not possible to open the input file '%s'.";
        char errstr[name_sz + strlen(msg) + 1];
        sprintf(errstr, msg, imgfilename);
        return make_error_msg(env, errstr);
    }

    gdal_img_handle* handle = enif_alloc_resource(
                                            gdal_img_RESOURCE, 
                                            sizeof(gdal_img_handle));
    memset(handle, '\0', sizeof(*handle));
    handle->in_ds = in_ds;
    handle->options_resampling = "average";
    handle->querysize = 256 * 4;
    handle->tilesize = 256;

    int rasterCount = GDALGetRasterCount(in_ds);
    if (rasterCount == 0) {
        const char* msg = "Input file '%s' has no raster band";
        char errstr[name_sz + strlen(msg) + 1];
        sprintf(errstr, msg, imgfilename);

        destroy_img_handle(handle);
        return make_error_msg(env, errstr);
    }

    GDALRasterBandH hBand = GDALGetRasterBand(in_ds, 1);
    if (GDALGetRasterColorTable(hBand) != NULL) {
        const char* msg = 
            "Please convert this file to RGB/RGBA and run gdal2tiles on the result.\n" 
            "From paletted file you can create RGBA file (temp.vrt) by:\n"
            "gdal_translate -of vrt -expand rgba %s temp.vrt\n"
            "then run this program: gdal2tiles temp.vrt";
        char errstr[name_sz + strlen(msg) + 1];
        sprintf(errstr, msg, imgfilename);

        destroy_img_handle(handle);
        return make_error_msg(env, errstr);
    }

    double padfTransform[6];
    double errTransform[6] = {0.0, 1.0, 0.0, 0.0, 0.0, 1.0};
    GDALGetGeoTransform(in_ds, padfTransform);
    if (0 == memcmp(padfTransform, errTransform, sizeof(errTransform))
             && GDALGetGCPCount(in_ds) == 0) {
        destroy_img_handle(handle);
        return make_error_msg(env, 
                              "There is no georeference - "
                              "neither affine transformation (worldfile) nor GCPs");
    }

    const char* in_srs_wkt = GDALGetProjectionRef(in_ds);
    if (in_srs_wkt == NULL && GDALGetGCPCount(in_ds) != 0) {
        in_srs_wkt = GDALGetGCPProjection(in_ds);
    }
    char* out_srs_wkt = get_wkt_of(epsg_code);
    GDALDatasetH out_ds = GDALAutoCreateWarpedVRT(in_ds, 
                                                  in_srs_wkt, 
                                                  out_srs_wkt, 
                                                  GRA_NearestNeighbour, 
                                                  0.0, 
                                                  NULL);
    handle->out_ds = out_ds;
    OGRFree(out_srs_wkt);


    handle->alphaBand = GDALGetMaskBand(GDALGetRasterBand(handle->out_ds, 1));
    rasterCount = GDALGetRasterCount(handle->out_ds);
    unsigned int dataBandsCount;
    if (GDALGetMaskFlags(handle->alphaBand) & GMF_ALPHA || 
            rasterCount == 4 || rasterCount == 2) {
        dataBandsCount = rasterCount - 1;
    }
    else {
        dataBandsCount = rasterCount;
    }
    handle->dataBandsCount = dataBandsCount;
    handle->tilebands = dataBandsCount + 1;


    ERL_NIF_TERM imginfo = get_imginfo(env, out_ds);
    if (enif_compare(ATOM_ERROR, imginfo) == 0) {
        destroy_img_handle(handle);
        return make_error_msg(env,
                              "Georeference of the raster contains rotation or skew. "
                              "Such raster is not supported. "
                              "Please use gdalwarp first");
    }

    ERL_NIF_TERM imgref = enif_make_resource(env, handle);
    enif_release_resource(handle);

    return enif_make_tuple3(env, ATOM_OK, imgref, imginfo);
}
/**
* Sets the surface grids based on a ncep HRRR (surface only!) forecast.
* @param input The WindNinjaInputs for misc. info.
* @param airGrid The air temperature grid to be filled.
* @param cloudGrid The cloud cover grid to be filled.
* @param uGrid The u velocity grid to be filled.
* @param vGrid The v velocity grid to be filled.
* @param wGrid The w velocity grid to be filled (filled with zeros here?).
*/
void ncepHrrrSurfInitialization::setSurfaceGrids( WindNinjaInputs &input,
        AsciiGrid<double> &airGrid,
        AsciiGrid<double> &cloudGrid,
        AsciiGrid<double> &uGrid,
        AsciiGrid<double> &vGrid,
        AsciiGrid<double> &wGrid )
{
    int bandNum = -1;

    GDALDataset *srcDS;
    srcDS = (GDALDataset*)GDALOpenShared( input.forecastFilename.c_str(), GA_ReadOnly );

    if( srcDS == NULL ) {
        CPLDebug( "ncepHRRRSurfaceInitialization::identify()",
                "Bad forecast file" );
    }

    GDALRasterBand *poBand = srcDS->GetRasterBand( 49 );
    const char *gc;
    gc = poBand->GetMetadataItem( "GRIB_COMMENT" );
    std::string bandName( gc );

    //get time list
    std::vector<boost::local_time::local_date_time> timeList( getTimeList( input.ninjaTimeZone ) );

    //Search time list for our time to identify our band number for cloud/speed/dir
    //Right now, just one time step per file
    std::vector<int> bandList;
    for(unsigned int i = 0; i < timeList.size(); i++)
    {
        if(input.ninjaTime == timeList[i])
        {
            //check which HRRR format we have
            if( bandName.find( "u-component of wind [m/s]" ) == bandName.npos ){ //if band 49 isn't u10, it's either 2010 or 2012 format
                GDALRasterBand *poBand = srcDS->GetRasterBand( 50 );
                const char *gc;
                gc = poBand->GetMetadataItem( "GRIB_COMMENT" );
                std::string bandName( gc );
                if( bandName.find( "u-component of wind [m/s]" ) == bandName.npos ){ //if band 50 isn't u10, it's the 2010 format
                    bandList.push_back( 29 ); // 2t
                    bandList.push_back( 34 ); // 10v
                    bandList.push_back( 33 );  // 10u
                    bandList.push_back( 52 ); // geopotential height at cloud top
                }
                else{
                    bandList.push_back( 45 ); // 2t
                    bandList.push_back( 51 ); // 10v
                    bandList.push_back( 50 );  // 10u
                    bandList.push_back( 78 ); // geopotential height at cloud top
                }
            }
            else{ //otherwise, should be 2011 format, but check for u10 band to be sure
                poBand = srcDS->GetRasterBand( 44 );
                gc = poBand->GetMetadataItem( "GRIB_COMMENT" );
                bandName = gc;
                if( bandName.find( "u-component of wind [m/s]" ) == bandName.npos ){
                    CPLDebug( "ncepHRRRSurfaceInitialization::identify()",
                              "Can't find the u-10 band in the forecast file." );
                }
                bandList.push_back( 44 ); // 2t
                bandList.push_back( 50 ); // 10v
                bandList.push_back( 49 );  // 10u
                bandList.push_back( 73 ); // geopotential height at cloud top
            }
            break;
        }
    }

    if(bandList.size() < 4)
        throw std::runtime_error("Could not match ninjaTime with a band number in the forecast file.");

    std::string dstWkt;
    dstWkt = input.dem.prjString;

    GDALDataset *wrpDS;
    std::string temp;
    std::string srcWkt;

    GDALWarpOptions* psWarpOptions;

    srcWkt = srcDS->GetProjectionRef();

    poBand = srcDS->GetRasterBand( 9 );
    int pbSuccess;
    double dfNoData = poBand->GetNoDataValue( &pbSuccess );

    psWarpOptions = GDALCreateWarpOptions();

    int nBandCount = bandList.size();

    psWarpOptions->nBandCount = nBandCount;
    psWarpOptions->panSrcBands =
        (int*) CPLMalloc( sizeof( int ) * nBandCount );
    psWarpOptions->panDstBands =
        (int*) CPLMalloc( sizeof( int ) * nBandCount );
    psWarpOptions->padfDstNoDataReal =
        (double*) CPLMalloc( sizeof( double ) * nBandCount );
    psWarpOptions->padfDstNoDataImag =
        (double*) CPLMalloc( sizeof( double ) * nBandCount );


    psWarpOptions->padfDstNoDataReal =
        (double*) CPLMalloc( sizeof( double ) * nBandCount );
    psWarpOptions->padfDstNoDataImag =
        (double*) CPLMalloc( sizeof( double ) * nBandCount );

    if( pbSuccess == false )
        dfNoData = -9999.0;

    psWarpOptions->panSrcBands =
        (int *) CPLMalloc(sizeof(int) * psWarpOptions->nBandCount );
    psWarpOptions->panSrcBands[0] = bandList[0];
    psWarpOptions->panSrcBands[1] = bandList[1];
    psWarpOptions->panSrcBands[2] = bandList[2];
    psWarpOptions->panSrcBands[3] = bandList[3];

    psWarpOptions->panDstBands =
        (int *) CPLMalloc(sizeof(int) * psWarpOptions->nBandCount );
    psWarpOptions->panDstBands[0] = 1;
    psWarpOptions->panDstBands[1] = 2;
    psWarpOptions->panDstBands[2] = 3;
    psWarpOptions->panDstBands[3] = 4;

    wrpDS = (GDALDataset*) GDALAutoCreateWarpedVRT( srcDS, srcWkt.c_str(),
                                                    dstWkt.c_str(),
                                                    GRA_NearestNeighbour,
                                                    1.0, psWarpOptions );
    std::vector<std::string> varList = getVariableList();

    for( unsigned int i = 0; i < varList.size(); i++ ) {
        if( varList[i] == "2t" ) {
            GDAL2AsciiGrid( wrpDS, i+1, airGrid );
            if( CPLIsNan( dfNoData ) ) {
                airGrid.set_noDataValue( -9999.0 );
                airGrid.replaceNan( -9999.0 );
            }
        }
        else if( varList[i] == "10v" ) {
            GDAL2AsciiGrid( wrpDS, i+1, vGrid );
            if( CPLIsNan( dfNoData ) ) {
                vGrid.set_noDataValue( -9999.0 );
                vGrid.replaceNan( -9999.0 );
            }
        }
        else if( varList[i] == "10u" ) {
            GDAL2AsciiGrid( wrpDS, i+1, uGrid );
            if( CPLIsNan( dfNoData ) ) {
                uGrid.set_noDataValue( -9999.0 );
                uGrid.replaceNan( -9999.0 );
            }
        }
        else if( varList[i] == "gh" ) {
            GDAL2AsciiGrid( wrpDS, i+1, cloudGrid );
            if( CPLIsNan( dfNoData ) ) {
                cloudGrid.set_noDataValue( -9999.0 );
                cloudGrid.replaceNan( -9999.0 );
            }
        }
    }
    //if there are any clouds set cloud fraction to 1, otherwise set to 0.
    for(int i = 0; i < cloudGrid.get_nRows(); i++){
        for(int j = 0; j < cloudGrid.get_nCols(); j++){
            if(cloudGrid(i,j) < 0.0){
                cloudGrid(i,j) = 0.0;
            }
            else{
                cloudGrid(i,j) = 1.0;
            }
        }
    }
    wGrid.set_headerData( uGrid );
    wGrid = 0.0;
    airGrid += 273.15;

    GDALDestroyWarpOptions( psWarpOptions );
    GDALClose((GDALDatasetH) srcDS );
    GDALClose((GDALDatasetH) wrpDS );
}