Ejemplo n.º 1
0
static int msContourLayerReadRaster(layerObj *layer, rectObj rect)
{
  mapObj *map = layer->map;  
  char **bands;
  char pointer[64], memDSPointer[128];
  int band = 1;
  double adfGeoTransform[6], adfInvGeoTransform[6];
  double llx, lly, urx, ury;  
  rectObj copyRect, mapRect;
  int dst_xsize, dst_ysize;
  int virtual_grid_step_x, virtual_grid_step_y;
  int src_xoff, src_yoff, src_xsize, src_ysize;  
  double map_cellsize_x, map_cellsize_y, dst_cellsize_x, dst_cellsize_y;
  GDALRasterBandH hBand = NULL;
  CPLErr eErr;
  
  contourLayerInfo *clinfo = (contourLayerInfo *) layer->layerinfo;

  if (layer->debug)
    msDebug("Entering msContourLayerReadRaster().\n");

  if (clinfo == NULL || clinfo->hOrigDS == NULL) {
    msSetError(MS_MISCERR, "Assertion failed: Contour layer not opened!!!",
               "msContourLayerReadRaster()");
    return MS_FAILURE;    
  }

  bands = CSLTokenizeStringComplex(
               CSLFetchNameValue(layer->processing,"BANDS"), " ,", FALSE, FALSE );
  if (CSLCount(bands) > 0) {
    band = atoi(bands[0]);
    if (band < 1 || band > GDALGetRasterCount(clinfo->hOrigDS)) {
      msSetError( MS_IMGERR,
                  "BANDS PROCESSING directive includes illegal band '%d', should be from 1 to %d.",
                  "msContourLayerReadRaster()",
                  band, GDALGetRasterCount(clinfo->hOrigDS));
      CSLDestroy(bands);
      return MS_FAILURE;
    }
  }
  CSLDestroy(bands);

  hBand = GDALGetRasterBand(clinfo->hOrigDS, band);
  if (hBand == NULL)
  {
    msSetError(MS_IMGERR,
               "Band %d does not exist on dataset.",
               "msContourLayerReadRaster()", band);
    return MS_FAILURE;
  }

  if (layer->projection.numargs > 0 &&
      EQUAL(layer->projection.args[0], "auto")) {
    const char *wkt;
    wkt = GDALGetProjectionRef(clinfo->hOrigDS);
    if (wkt != NULL && strlen(wkt) > 0) {
      if (msOGCWKT2ProjectionObj(wkt, &(layer->projection),
                                 layer->debug) != MS_SUCCESS) {
        char  msg[MESSAGELENGTH*2];
        errorObj *ms_error = msGetErrorObj();

        snprintf( msg, sizeof(msg),
                  "%s\n"
                  "PROJECTION AUTO cannot be used for this "
                  "GDAL raster (`%s').",
                  ms_error->message, layer->data);
        msg[MESSAGELENGTH-1] = '\0';

        msSetError(MS_OGRERR, "%s","msDrawRasterLayer()",
                   msg);
        return MS_FAILURE;
      }
    }
  }
  
  /*
   * Compute the georeferenced window of overlap, and read the source data
   * downsampled to match output resolution, or at full resolution if
   * output resolution is lower than the source resolution.
   *
   * A large portion of this overlap calculation code was borrowed from 
   * msDrawRasterLayerGDAL(). 
   * Would be possible to move some of this to a reusable function?
   *
   * Note: This code works only if no reprojection is involved. It would
   * need rework to support cases where output projection differs from source
   * data file projection.
   */
  
  src_xsize = GDALGetRasterXSize(clinfo->hOrigDS);
  src_ysize = GDALGetRasterYSize(clinfo->hOrigDS);

  /* set the Dataset extent */
  msGetGDALGeoTransform(clinfo->hOrigDS, map, layer, adfGeoTransform);  
  clinfo->extent.minx = adfGeoTransform[0];
  clinfo->extent.maxy = adfGeoTransform[3];
  clinfo->extent.maxx = adfGeoTransform[0] + src_xsize * adfGeoTransform[1];
  clinfo->extent.miny = adfGeoTransform[3] + src_ysize * adfGeoTransform[5];
  
  if (layer->transform) {
    if (layer->debug)
      msDebug("msContourLayerReadRaster(): Entering transform.\n");

    InvGeoTransform(adfGeoTransform, adfInvGeoTransform);

    mapRect = rect;
    map_cellsize_x = map_cellsize_y = map->cellsize;      
#ifdef USE_PROJ
    /* if necessary, project the searchrect to source coords */
    if (msProjectionsDiffer( &(map->projection), &(layer->projection)))  {
      if ( msProjectRect(&map->projection, &layer->projection, &mapRect)
          != MS_SUCCESS ) {
        msDebug("msContourLayerReadRaster(%s): unable to reproject map request rectangle into layer projection, canceling.\n", layer->name);
        return MS_FAILURE;
      }

      map_cellsize_x = MS_CELLSIZE(mapRect.minx, mapRect.maxx, map->width);
      map_cellsize_y = MS_CELLSIZE(mapRect.miny, mapRect.maxy, map->height);

      /* if the projection failed to project the extent requested, we need to
         calculate the cellsize to preserve the initial map cellsize ratio */
      if ( (mapRect.minx < GEO_TRANS(adfGeoTransform,0,src_ysize)) ||
           (mapRect.maxx > GEO_TRANS(adfGeoTransform,src_xsize,0)) ||
           (mapRect.miny < GEO_TRANS(adfGeoTransform+3,0,src_ysize)) || 
           (mapRect.maxy > GEO_TRANS(adfGeoTransform+3,src_xsize,0)) ) {

        int src_unit, dst_unit;
        src_unit = GetMapserverUnitUsingProj(&map->projection);
        dst_unit = GetMapserverUnitUsingProj(&layer->projection);
        if (src_unit == -1 || dst_unit == -1) {
          msDebug("msContourLayerReadRaster(%s): unable to reproject map request rectangle into layer projection, canceling.\n", layer->name);
          return MS_FAILURE;
        }

        map_cellsize_x =  MS_CONVERT_UNIT(src_unit, dst_unit,
                                          MS_CELLSIZE(rect.minx, rect.maxx, map->width)); 
        map_cellsize_y = MS_CONVERT_UNIT(src_unit, dst_unit,
                                         MS_CELLSIZE(rect.miny, rect.maxy, map->height));
      }       
    }
#endif
    
    if (map_cellsize_x == 0 || map_cellsize_y == 0) {
      if (layer->debug)
        msDebug("msContourLayerReadRaster(): Cellsize can't be 0.\n");
      return MS_FAILURE;
    }
    
    /* Adjust MapServer pixel model to GDAL pixel model */
    mapRect.minx -= map_cellsize_x*0.5;
    mapRect.maxx += map_cellsize_x*0.5;
    mapRect.miny -= map_cellsize_y*0.5;
    mapRect.maxy += map_cellsize_y*0.5;


    /*
     * If raw data cellsize (from geotransform) is larger than output map_cellsize
     * then we want to extract only enough data to match the output map resolution
     * which means that GDAL will automatically sample the data on read.
     *
     * To prevent bad contour effects on tile edges, we adjust the target cellsize 
     * to align the extracted window with a virtual grid based on the origin of the 
     * raw data and a virtual grid step size corresponding to an integer sampling step.
     *
     * If source data has a greater cellsize (i.e. lower res) that requested ouptut map
     * then we use the raw data cellsize as target cellsize since there is no point in 
     * interpolating the data for contours in this case.
     */

    virtual_grid_step_x = (int)floor(map_cellsize_x / ABS(adfGeoTransform[1]));
    if (virtual_grid_step_x < 1)
      virtual_grid_step_x = 1; /* Do not interpolate data if grid sampling step < 1 */

    virtual_grid_step_y = (int)floor(map_cellsize_y / ABS(adfGeoTransform[5]));
    if (virtual_grid_step_y < 1)
      virtual_grid_step_y = 1; /* Do not interpolate data if grid sampling step < 1 */
    
    /* target cellsize is a multiple of raw data cellsize based on grid step*/
    dst_cellsize_x = ABS(adfGeoTransform[1]) * virtual_grid_step_x;
    dst_cellsize_y = ABS(adfGeoTransform[5]) * virtual_grid_step_y;

    /* Compute overlap between source and target views */

    copyRect = mapRect;

    if (copyRect.minx < GEO_TRANS(adfGeoTransform,0,src_ysize))
      copyRect.minx = GEO_TRANS(adfGeoTransform,0,src_ysize);
    if (copyRect.maxx > GEO_TRANS(adfGeoTransform,src_xsize,0))
      copyRect.maxx = GEO_TRANS(adfGeoTransform,src_xsize,0);
    if (copyRect.miny < GEO_TRANS(adfGeoTransform+3,0,src_ysize))
      copyRect.miny = GEO_TRANS(adfGeoTransform+3,0,src_ysize);
    if (copyRect.maxy > GEO_TRANS(adfGeoTransform+3,src_xsize,0))
      copyRect.maxy = GEO_TRANS(adfGeoTransform+3,src_xsize,0);
    
    if (copyRect.minx >= copyRect.maxx || copyRect.miny >= copyRect.maxy) {
      if (layer->debug)
        msDebug("msContourLayerReadRaster(): Error in overlap calculation.\n");
      return MS_FAILURE;
    }

    /*
     * Convert extraction window to raster coordinates
     */
    llx = GEO_TRANS(adfInvGeoTransform+0,copyRect.minx,copyRect.miny);
    lly = GEO_TRANS(adfInvGeoTransform+3,copyRect.minx,copyRect.miny);
    urx = GEO_TRANS(adfInvGeoTransform+0,copyRect.maxx,copyRect.maxy);
    ury = GEO_TRANS(adfInvGeoTransform+3,copyRect.maxx,copyRect.maxy);

    /* 
     * Align extraction window with virtual grid 
     * (keep in mind raster coordinates origin is at upper-left)
     * We also add an extra buffer to fix tile boundarie issues when zoomed
     */
    llx = floor(llx / virtual_grid_step_x) * virtual_grid_step_x - (virtual_grid_step_x*5);
    urx = ceil(urx / virtual_grid_step_x) * virtual_grid_step_x + (virtual_grid_step_x*5);
    ury = floor(ury / virtual_grid_step_y) * virtual_grid_step_y - (virtual_grid_step_x*5);
    lly = ceil(lly / virtual_grid_step_y) * virtual_grid_step_y + (virtual_grid_step_x*5);
    
    src_xoff = MAX(0,(int) floor(llx+0.5));
    src_yoff = MAX(0,(int) floor(ury+0.5));
    src_xsize = MIN(MAX(0,(int) (urx - llx + 0.5)),
                    GDALGetRasterXSize(clinfo->hOrigDS) - src_xoff);
    src_ysize = MIN(MAX(0,(int) (lly - ury + 0.5)),
                    GDALGetRasterYSize(clinfo->hOrigDS) - src_yoff);

    /* Update the geographic extent (buffer added) */
    /* TODO: a better way to go the geo_trans */
    copyRect.minx = GEO_TRANS(adfGeoTransform+0,src_xoff,0);
    copyRect.maxx = GEO_TRANS(adfGeoTransform+0,src_xoff+src_xsize,0);
    copyRect.miny = GEO_TRANS(adfGeoTransform+3,0,src_yoff+src_ysize);
    copyRect.maxy = GEO_TRANS(adfGeoTransform+3,0,src_yoff);
    
    /* 
     * If input window is to small then stop here
     */
    if (src_xsize < 2 || src_ysize < 2)
    {
      if (layer->debug)
        msDebug("msContourLayerReadRaster(): input window too small, or no apparent overlap between map view and this window(1).\n");
      return MS_FAILURE;
    }

    /* Target buffer size */
    dst_xsize = (int)ceil((copyRect.maxx - copyRect.minx) / dst_cellsize_x);
    dst_ysize = (int)ceil((copyRect.maxy - copyRect.miny) / dst_cellsize_y);

    if (dst_xsize == 0 || dst_ysize == 0) {
      if (layer->debug)
        msDebug("msContourLayerReadRaster(): no apparent overlap between map view and this window(2).\n");
      return MS_FAILURE;
    }

    if (layer->debug)
      msDebug( "msContourLayerReadRaster(): src=%d,%d,%d,%d, dst=%d,%d,%d,%d\n",
               src_xoff, src_yoff, src_xsize, src_ysize,
               0, 0, dst_xsize, dst_ysize );
  } else {
    src_xoff = 0;
    src_yoff = 0;
    dst_xsize = src_xsize = MIN(map->width,src_xsize);
    dst_ysize = src_ysize = MIN(map->height,src_ysize);
  }

  /* -------------------------------------------------------------------- */
  /*      Allocate buffer, and read data into it.                         */
  /* -------------------------------------------------------------------- */

  clinfo->buffer = (double *) malloc(sizeof(double) * dst_xsize * dst_ysize);
  if (clinfo->buffer == NULL) {
    msSetError(MS_MEMERR, "Malloc(): Out of memory.", "msContourLayerReadRaster()");
    return MS_FAILURE;
  }

  eErr = GDALRasterIO(hBand, GF_Read,
                      src_xoff, src_yoff, src_xsize, src_ysize,
                      clinfo->buffer, dst_xsize, dst_ysize, GDT_Float64,
                      0, 0);

  if (eErr != CE_None) {
    msSetError( MS_IOERR, "GDALRasterIO() failed: %s",
                "msContourLayerReadRaster()", CPLGetLastErrorMsg() );
    free(clinfo->buffer);
    return MS_FAILURE;
  }

  memset(pointer, 0, sizeof(pointer));
  CPLPrintPointer(pointer, clinfo->buffer, sizeof(pointer));
  sprintf(memDSPointer,"MEM:::DATAPOINTER=%s,PIXELS=%d,LINES=%d,BANDS=1,DATATYPE=Float64",
          pointer, dst_xsize, dst_ysize);
  clinfo->hDS = GDALOpen(memDSPointer,  GA_ReadOnly);
  if (clinfo->hDS == NULL) {
    msSetError(MS_IMGERR,
               "Unable to open GDAL Memory dataset.",
               "msContourLayerReadRaster()");
    free(clinfo->buffer);
    return MS_FAILURE;
  }

  adfGeoTransform[0] = copyRect.minx;
  adfGeoTransform[1] = dst_cellsize_x;
  adfGeoTransform[2] = 0;
  adfGeoTransform[3] = copyRect.maxy;
  adfGeoTransform[4] = 0;
  adfGeoTransform[5] = -dst_cellsize_y;

  clinfo->cellsize = MAX(dst_cellsize_x, dst_cellsize_y);
  {
    char buf[64];
    sprintf(buf, "%lf", clinfo->cellsize);
    msInsertHashTable(&layer->metadata, "__data_cellsize__", buf);
  }
      
  GDALSetGeoTransform(clinfo->hDS, adfGeoTransform);
  return MS_SUCCESS;
}
Ejemplo n.º 2
0
// Slot called when the menu item is triggered
// If you created more menu items / toolbar buttons in initiGui, you should
// create a separate handler for each action - this single run() method will
// not be enough
void Heatmap::run()
{
  HeatmapGui d( mQGisIface->mainWindow(), QgisGui::ModalDialogFlags, &mSessionSettings );

  //check that dialog found a suitable vector layer
  if ( !d.inputVectorLayer() )
  {
    mQGisIface->messageBar()->pushMessage( tr( "Layer not found" ), tr( "The heatmap plugin requires at least one point vector layer" ), QgsMessageBar::INFO, mQGisIface->messageTimeout() );
    return;
  }

  if ( d.exec() != QDialog::Accepted )
  {
    return;
  }

  QgsVectorLayer* inputLayer = d.inputVectorLayer();

  // Get the required data from the dialog
  QgsRectangle myBBox = d.bbox();
  int columns = d.columns();
  int rows = d.rows();
  double cellsize = d.cellSizeX(); // or d.cellSizeY();  both have the same value
  mDecay = d.decayRatio();
  KernelShape kernelShape = d.kernelShape();
  OutputValues valueType = d.outputValues();

  //is input layer multipoint?
  bool isMultiPoint = inputLayer->wkbType() == Qgis::WKBMultiPoint || inputLayer->wkbType() == Qgis::WKBMultiPoint25D;

  // Getting the rasterdataset in place
  GDALAllRegister();

  GDALDriverH myDriver = GDALGetDriverByName( d.outputFormat().toUtf8() );
  if ( !myDriver )
  {
    mQGisIface->messageBar()->pushMessage( tr( "GDAL driver error" ), tr( "Cannot open the driver for the specified format" ), QgsMessageBar::WARNING, mQGisIface->messageTimeout() );
    return;
  }

  double geoTransform[6] = { myBBox.xMinimum(), cellsize, 0, myBBox.yMinimum(), 0, cellsize };
  GDALDatasetH emptyDataset = GDALCreate( myDriver, d.outputFilename().toUtf8(), columns, rows, 1, GDT_Float32, nullptr );
  GDALSetGeoTransform( emptyDataset, geoTransform );
  // Set the projection on the raster destination to match the input layer
  GDALSetProjection( emptyDataset, inputLayer->crs().toWkt().toLocal8Bit().data() );

  GDALRasterBandH poBand = GDALGetRasterBand( emptyDataset, 1 );
  GDALSetRasterNoDataValue( poBand, NO_DATA );

  float* line = ( float * ) CPLMalloc( sizeof( float ) * columns );
  for ( int i = 0; i < columns ; i++ )
  {
    line[i] = NO_DATA;
  }
  // Write the empty raster
  for ( int i = 0; i < rows ; i++ )
  {
    if ( GDALRasterIO( poBand, GF_Write, 0, i, columns, 1, line, columns, 1, GDT_Float32, 0, 0 ) != CE_None )
    {
      QgsDebugMsg( "Raster IO Error" );
    }
  }

  CPLFree( line );
  //close the dataset
  GDALClose( emptyDataset );

  // open the raster in GA_Update mode
  GDALDatasetH heatmapDS = GDALOpen( TO8F( d.outputFilename() ), GA_Update );
  if ( !heatmapDS )
  {
    mQGisIface->messageBar()->pushMessage( tr( "Raster update error" ), tr( "Could not open the created raster for updating. The heatmap was not generated." ), QgsMessageBar::WARNING );
    return;
  }
  poBand = GDALGetRasterBand( heatmapDS, 1 );

  QgsAttributeList myAttrList;
  int rField = 0;
  int wField = 0;

  // Handle different radius options
  double radius;
  double radiusToMapUnits = 1;
  int myBuffer = 0;
  if ( d.variableRadius() )
  {
    rField = d.radiusField();
    myAttrList.append( rField );
    QgsDebugMsg( QString( "Radius Field index received: %1" ).arg( rField ) );

    // If not using map units, then calculate a conversion factor to convert the radii to map units
    if ( d.radiusUnit() == HeatmapGui::LayerUnits )
    {
      radiusToMapUnits = mapUnitsOf( 1, inputLayer->crs() );
    }
  }
  else
  {
    radius = d.radius(); // radius returned by d.radius() is already in map units
    myBuffer = bufferSize( radius, cellsize );
  }

  if ( d.weighted() )
  {
    wField = d.weightField();
    myAttrList.append( wField );
  }

  // This might have attributes or mightnot have attibutes at all
  // based on the variableRadius() and weighted()
  QgsFeatureIterator fit = inputLayer->getFeatures( QgsFeatureRequest().setSubsetOfAttributes( myAttrList ) );
  int totalFeatures = inputLayer->featureCount();
  int counter = 0;

  QProgressDialog p( tr( "Rendering heatmap..." ), tr( "Abort" ), 0, totalFeatures, mQGisIface->mainWindow() );
  p.setWindowTitle( tr( "QGIS" ) );
  p.setWindowModality( Qt::ApplicationModal );
  p.show();

  QgsFeature myFeature;

  while ( fit.nextFeature( myFeature ) )
  {
    counter++;
    p.setValue( counter );
    QApplication::processEvents();
    if ( p.wasCanceled() )
    {
      mQGisIface->messageBar()->pushMessage( tr( "Heatmap generation aborted" ), tr( "QGIS will now load the partially-computed raster" ), QgsMessageBar::INFO, mQGisIface->messageTimeout() );
      break;
    }

    const QgsGeometry* featureGeometry = myFeature.constGeometry();
    if ( !featureGeometry )
    {
      continue;
    }

    // convert the geometry to multipoint
    QgsMultiPoint multiPoints;
    if ( !isMultiPoint )
    {
      QgsPoint myPoint = featureGeometry->asPoint();
      // avoiding any empty points or out of extent points
      if (( myPoint.x() < myBBox.xMinimum() ) || ( myPoint.y() < myBBox.yMinimum() )
          || ( myPoint.x() > myBBox.xMaximum() ) || ( myPoint.y() > myBBox.yMaximum() ) )
      {
        continue;
      }
      multiPoints << myPoint;
    }
    else
    {
      multiPoints = featureGeometry->asMultiPoint();
    }

    // If radius is variable then fetch it and calculate new pixel buffer size
    if ( d.variableRadius() )
    {
      radius = myFeature.attribute( rField ).toDouble() * radiusToMapUnits;
      myBuffer = bufferSize( radius, cellsize );
    }

    int blockSize = 2 * myBuffer + 1; //Block SIDE would be more appropriate

    double weight = 1.0;
    if ( d.weighted() )
    {
      weight = myFeature.attribute( wField ).toDouble();
    }

    //loop through all points in multipoint
    for ( QgsMultiPoint::const_iterator pointIt = multiPoints.constBegin(); pointIt != multiPoints.constEnd(); ++pointIt )
    {
      // avoiding any empty points or out of extent points
      if ((( *pointIt ).x() < myBBox.xMinimum() ) || (( *pointIt ).y() < myBBox.yMinimum() )
          || (( *pointIt ).x() > myBBox.xMaximum() ) || (( *pointIt ).y() > myBBox.yMaximum() ) )
      {
        continue;
      }

      // calculate the pixel position
      unsigned int xPosition, yPosition;
      xPosition = ((( *pointIt ).x() - myBBox.xMinimum() ) / cellsize ) - myBuffer;
      yPosition = ((( *pointIt ).y() - myBBox.yMinimum() ) / cellsize ) - myBuffer;

      // get the data
      float *dataBuffer = ( float * ) CPLMalloc( sizeof( float ) * blockSize * blockSize );
      if ( GDALRasterIO( poBand, GF_Read, xPosition, yPosition, blockSize, blockSize,
                         dataBuffer, blockSize, blockSize, GDT_Float32, 0, 0 ) != CE_None )
      {
        QgsDebugMsg( "Raster IO Error" );
      }

      for ( int xp = 0; xp <= myBuffer; xp++ )
      {
        for ( int yp = 0; yp <= myBuffer; yp++ )
        {
          double distance = sqrt( pow( xp, 2.0 ) + pow( yp, 2.0 ) );

          // is pixel outside search bandwidth of feature?
          if ( distance > myBuffer )
          {
            continue;
          }

          double pixelValue = weight * calculateKernelValue( distance, myBuffer, kernelShape, valueType );

          // clearing anamolies along the axes
          if ( xp == 0 && yp == 0 )
          {
            pixelValue /= 4;
          }
          else if ( xp == 0 || yp == 0 )
          {
            pixelValue /= 2;
          }

          int pos[4];
          pos[0] = ( myBuffer + xp ) * blockSize + ( myBuffer + yp );
          pos[1] = ( myBuffer + xp ) * blockSize + ( myBuffer - yp );
          pos[2] = ( myBuffer - xp ) * blockSize + ( myBuffer + yp );
          pos[3] = ( myBuffer - xp ) * blockSize + ( myBuffer - yp );
          for ( int p = 0; p < 4; p++ )
          {
            if ( dataBuffer[ pos[p] ] == NO_DATA )
            {
              dataBuffer[ pos[p] ] = 0;
            }
            dataBuffer[ pos[p] ] += pixelValue;
          }
        }
      }
      if ( GDALRasterIO( poBand, GF_Write, xPosition, yPosition, blockSize, blockSize,
                         dataBuffer, blockSize, blockSize, GDT_Float32, 0, 0 ) != CE_None )
      {
        QgsDebugMsg( "Raster IO Error" );
      }
      CPLFree( dataBuffer );
    }
  }

  // Finally close the dataset
  GDALClose(( GDALDatasetH ) heatmapDS );

  // Open the file in QGIS window if requested
  if ( d.addToCanvas() )
  {
    mQGisIface->addRasterLayer( d.outputFilename(), QFileInfo( d.outputFilename() ).baseName() );
  }

}
Ejemplo n.º 3
0
CPLErr 
GDALWarpCutlineMasker( void *pMaskFuncArg, CPL_UNUSED int nBandCount, CPL_UNUSED GDALDataType eType,
                       int nXOff, int nYOff, int nXSize, int nYSize,
                       GByte ** /*ppImageData */,
                       int bMaskIsFloat, void *pValidityMask )

{
    GDALWarpOptions *psWO = (GDALWarpOptions *) pMaskFuncArg;
    float *pafMask = (float *) pValidityMask;
    CPLErr eErr;
    GDALDriverH hMemDriver;

    if( nXSize < 1 || nYSize < 1 )
        return CE_None;

/* -------------------------------------------------------------------- */
/*      Do some minimal checking.                                       */
/* -------------------------------------------------------------------- */
    if( !bMaskIsFloat )
    {
        CPLAssert( FALSE );
        return CE_Failure;
    }

    if( psWO == NULL || psWO->hCutline == NULL )
    {
        CPLAssert( FALSE );
        return CE_Failure;
    }

    hMemDriver = GDALGetDriverByName("MEM");
    if (hMemDriver == NULL)
    {
        CPLError(CE_Failure, CPLE_AppDefined, "GDALWarpCutlineMasker needs MEM driver");
        return CE_Failure;
    }

/* -------------------------------------------------------------------- */
/*      Check the polygon.                                              */
/* -------------------------------------------------------------------- */
    OGRGeometryH hPolygon = (OGRGeometryH) psWO->hCutline;
    OGREnvelope  sEnvelope;

    if( wkbFlatten(OGR_G_GetGeometryType(hPolygon)) != wkbPolygon
        && wkbFlatten(OGR_G_GetGeometryType(hPolygon)) != wkbMultiPolygon )
    {
        CPLAssert( FALSE );
        return CE_Failure;
    }

    OGR_G_GetEnvelope( hPolygon, &sEnvelope );

    if( sEnvelope.MaxX + psWO->dfCutlineBlendDist < nXOff
        || sEnvelope.MinX - psWO->dfCutlineBlendDist > nXOff + nXSize
        || sEnvelope.MaxY + psWO->dfCutlineBlendDist < nYOff
        || sEnvelope.MinY - psWO->dfCutlineBlendDist > nYOff + nYSize )
    {
        // We are far from the blend line - everything is masked to zero.
        // It would be nice to realize no work is required for this whole
        // chunk!
        memset( pafMask, 0, sizeof(float) * nXSize * nYSize );
        return CE_None;
    }

/* -------------------------------------------------------------------- */
/*      Create a byte buffer into which we can burn the                 */
/*      mask polygon and wrap it up as a memory dataset.                */
/* -------------------------------------------------------------------- */
    GByte *pabyPolyMask = (GByte *) CPLCalloc( nXSize, nYSize );
    GDALDatasetH hMemDS;
    double adfGeoTransform[6] = { 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 };

    char szDataPointer[100];
    char *apszOptions[] = { szDataPointer, NULL };

    memset( szDataPointer, 0, sizeof(szDataPointer) );
    sprintf( szDataPointer, "DATAPOINTER=" );
    CPLPrintPointer( szDataPointer+strlen(szDataPointer), 
                    pabyPolyMask, 
                     sizeof(szDataPointer) - strlen(szDataPointer) );

    hMemDS = GDALCreate( hMemDriver, "warp_temp", 
                         nXSize, nYSize, 0, GDT_Byte, NULL );
    GDALAddBand( hMemDS, GDT_Byte, apszOptions );
    GDALSetGeoTransform( hMemDS, adfGeoTransform );

/* -------------------------------------------------------------------- */
/*      Burn the polygon into the mask with 1.0 values.                 */
/* -------------------------------------------------------------------- */
    int nTargetBand = 1;
    double dfBurnValue = 255.0;
    int    anXYOff[2];
    char   **papszRasterizeOptions = NULL;
    

    if( CSLFetchBoolean( psWO->papszWarpOptions, "CUTLINE_ALL_TOUCHED", FALSE ))
        papszRasterizeOptions = 
            CSLSetNameValue( papszRasterizeOptions, "ALL_TOUCHED", "TRUE" );

    anXYOff[0] = nXOff;
    anXYOff[1] = nYOff;

    eErr = 
        GDALRasterizeGeometries( hMemDS, 1, &nTargetBand, 
                                 1, &hPolygon, 
                                 CutlineTransformer, anXYOff, 
                                 &dfBurnValue, papszRasterizeOptions, 
                                 NULL, NULL );

    CSLDestroy( papszRasterizeOptions );

    // Close and ensure data flushed to underlying array.
    GDALClose( hMemDS );

/* -------------------------------------------------------------------- */
/*      In the case with no blend distance, we just apply this as a     */
/*      mask, zeroing out everything outside the polygon.               */
/* -------------------------------------------------------------------- */
    if( psWO->dfCutlineBlendDist == 0.0 )
    {
        int i;

        for( i = nXSize * nYSize - 1; i >= 0; i-- )
        {
            if( pabyPolyMask[i] == 0 )
                ((float *) pValidityMask)[i] = 0.0;
        }
    }
    else
    {
        eErr = BlendMaskGenerator( nXOff, nYOff, nXSize, nYSize, 
                                   pabyPolyMask, (float *) pValidityMask,
                                   hPolygon, psWO->dfCutlineBlendDist );
    }

/* -------------------------------------------------------------------- */
/*      Clean up.                                                       */
/* -------------------------------------------------------------------- */
    CPLFree( pabyPolyMask );

    return eErr;
}
Ejemplo n.º 4
0
/* Matlab Gateway routine */
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
	int	nXYSize;
	double	adfGeoTransform[6] = {0,1,0,0,0,1}, adfDstGeoTransform[6];
	char	*pszSRS_WKT = NULL;
	char	**papszWarpOptions = NULL;
	GDALDatasetH	hSrcDS, hDstDS;
	GDALDriverH	hDriver;
	GDALRasterBandH hBand;
	GDALColorTableH	hColorTable = NULL;
	OGRSpatialReference oSrcSRS, oDstSRS; 
	GDALResampleAlg	interpMethod = GRA_NearestNeighbour;
	GDALTransformerFunc pfnTransformer = NULL;
	CPLErr		eErr;
	GDAL_GCP	*pasGCPs = NULL;
	static int runed_once = FALSE;	/* It will be set to true if reaches end of main */

	const int *dim_array;
	int	nx, ny, i, j, m, n, c, nBands, registration = 1;
	int	n_dims, typeCLASS, nBytes;
	char	*pszSrcSRS = NULL, *pszSrcWKT = NULL;
	char	*pszDstSRS = NULL, *pszDstWKT = NULL;
	void	*in_data;
	mxArray	*mx_ptr;

	unsigned char *tmpByte, *outByte;
	unsigned short int *tmpUI16, *outUI16;
	short int *tmpI16, *outI16;
	int	*tmpI32, *outI32;
	int	nPixels=0, nLines=0, nForceWidth=0, nForceHeight=0;
	int	nGCPCount = 0, nOrder = 0;
	unsigned int *tmpUI32, *outUI32;
	float	*tmpF32, *outF32;
	double	*tmpF64, *outF64, *ptr_d;
	double	dfMinX=0, dfMaxX=0, dfMinY=0, dfMaxY=0, dfResX=0, dfResY=0;
	double	adfExtent[4];
	double	dfXRes=0.0, dfYRes=0.0;
	double	dfWarpMemoryLimit = 0.0;
	double	*pdfDstNodata = NULL; 
	char	**papszMetadataOptions = NULL;
	char	*tmp, *txt;


	if (nrhs == 2 && mxIsStruct(prhs[1])) {
		mx_ptr = mxGetField(prhs[1], 0, "ULx");
		if (mx_ptr == NULL)
			mexErrMsgTxt("GDALWARP 'ULx' field not provided");
		ptr_d = mxGetPr(mx_ptr);
		adfGeoTransform[0] = *ptr_d;

		mx_ptr = mxGetField(prhs[1], 0, "Xinc");
		if (mx_ptr == NULL)
			mexErrMsgTxt("GDALWARP 'Xinc' field not provided");
		ptr_d = mxGetPr(mx_ptr);
		adfGeoTransform[1] = *ptr_d;

		mx_ptr = mxGetField(prhs[1], 0, "ULy");
		if (mx_ptr == NULL)
			mexErrMsgTxt("GDALWARP 'ULy' field not provided");
		ptr_d = mxGetPr(mx_ptr);
		adfGeoTransform[3] = *ptr_d;

		mx_ptr = mxGetField(prhs[1], 0, "Yinc");
		if (mx_ptr == NULL)
			mexErrMsgTxt("GDALWARP 'Yinc' field not provided");
		ptr_d = mxGetPr(mx_ptr);
		adfGeoTransform[5] = -*ptr_d;

		/* -------- See for resolution requests ------------ */
		mx_ptr = mxGetField(prhs[1], 0, "t_size");
		if (mx_ptr != NULL) {
			ptr_d = mxGetPr(mx_ptr);
			if (mxGetN(mx_ptr) == 2) {
				nForceWidth  = (int)ptr_d[0];
				nForceHeight = (int)ptr_d[1];
			}
			else if (mxGetN(mx_ptr) == 1) {	/* pick max(nrow,ncol) */
				if (mxGetM(prhs[0]) > getNK(prhs[0],1))
					nForceHeight = mxGetM(prhs[0]);
				else
					nForceWidth  = getNK(prhs[0], 1);
			}
			else {
				nForceHeight = mxGetM(prhs[0]);
				nForceWidth  = getNK(prhs[0], 1);
			}
		}

		mx_ptr = mxGetField(prhs[1], 0, "t_res");
		if (mx_ptr != NULL) {
			ptr_d = mxGetPr(mx_ptr);
			if (mxGetN(mx_ptr) == 2) {
				dfXRes = ptr_d[0];
				dfYRes = ptr_d[1];
			}
			else if (mxGetN(mx_ptr) == 1) {
				dfXRes = dfYRes = ptr_d[0];
			}
		}
		/* -------------------------------------------------- */

		/* -------- Change Warping cache size?  ------------ */
		mx_ptr = mxGetField(prhs[1], 0, "wm");
		if (mx_ptr != NULL) {
			ptr_d = mxGetPr(mx_ptr);
			dfWarpMemoryLimit = *ptr_d * 1024 * 1024;
		}
		/* -------------------------------------------------- */

		/* -------- Have a nodata value order? -------------- */
		mx_ptr = mxGetField(prhs[1], 0, "nodata");
		if (mx_ptr != NULL) {
			pdfDstNodata = mxGetPr(mx_ptr);
		}
		/* -------------------------------------------------- */

		/* -------- See for projection stuff ---------------- */
		mx_ptr = mxGetField(prhs[1], 0, "SrcProjSRS");
		if (mx_ptr != NULL)
			pszSrcSRS = (char *)mxArrayToString(mx_ptr);

		mx_ptr = mxGetField(prhs[1], 0, "SrcProjWKT");
		if (mx_ptr != NULL)
			pszSrcWKT = (char *)mxArrayToString(mx_ptr);

		mx_ptr = mxGetField(prhs[1], 0, "DstProjSRS");
		if (mx_ptr != NULL)
			pszDstSRS = (char *)mxArrayToString(mx_ptr);

		mx_ptr = mxGetField(prhs[1], 0, "DstProjWKT");
		if (mx_ptr != NULL)
			pszDstWKT = (char *)mxArrayToString(mx_ptr);
		/* -------------------------------------------------- */

		/* -------- Do we have GCPs? ----------------------- */
		mx_ptr = mxGetField(prhs[1], 0, "gcp");
		if (mx_ptr != NULL) {
			nGCPCount = mxGetM(mx_ptr);
			if (mxGetN(mx_ptr) != 4)
				mexErrMsgTxt("GDALWARP: GCPs must be a Mx4 array");
			ptr_d = mxGetPr(mx_ptr);
			pasGCPs = (GDAL_GCP *) mxCalloc( nGCPCount, sizeof(GDAL_GCP) );
			GDALInitGCPs( 1, pasGCPs + nGCPCount - 1 );
			for (i = 0; i < nGCPCount; i++) {
				pasGCPs[i].dfGCPPixel = ptr_d[i];
				pasGCPs[i].dfGCPLine = ptr_d[i+nGCPCount];
				pasGCPs[i].dfGCPX = ptr_d[i+2*nGCPCount];
				pasGCPs[i].dfGCPY = ptr_d[i+3*nGCPCount];
				pasGCPs[i].dfGCPZ = 0;
			}
		}
			/* ---- Have we an order request? --- */
		mx_ptr = mxGetField(prhs[1], 0, "order");
		if (mx_ptr != NULL) {
			ptr_d = mxGetPr(mx_ptr);
			nOrder = (int)*ptr_d;
			if (nOrder != -1 || nOrder != 0 || nOrder != 1 || nOrder != 2 || nOrder != 3)
				nOrder = 0;
		}
		/* -------------------------------------------------- */

		mx_ptr = mxGetField(prhs[1], 0, "ResampleAlg");
		if (mx_ptr != NULL) {
			txt = (char *)mxArrayToString(mx_ptr);
			if (!strcmp(txt,"nearest"))
				interpMethod = GRA_NearestNeighbour;
			else if (!strcmp(txt,"bilinear"))
				interpMethod = GRA_Bilinear;
			else if (!strcmp(txt,"cubic") || !strcmp(txt,"bicubic"))
				interpMethod = GRA_Cubic;
			else if (!strcmp(txt,"spline"))
				interpMethod = GRA_CubicSpline;
		}

		/* If grid limits were in grid registration, convert them to pixel reg */
		mx_ptr = mxGetField(prhs[1], 0, "Reg");
		if (mx_ptr != NULL) {
			ptr_d = mxGetPr(mx_ptr);
			registration = (int)ptr_d[0];
		}

		if (registration == 0) {
			adfGeoTransform[0] -= adfGeoTransform[1]/2.;
			adfGeoTransform[3] -= adfGeoTransform[5]/2.;
		}
	}
	else {
		mexPrintf("Usage: B = gdalwarp_mex(IMG,HDR_STRUCT)\n\n");
		mexPrintf("\tIMG -> is a Mx2 or Mx3 array with an grid/image data to reproject\n");
		mexPrintf("\tHDR_STRUCT -> is a structure with the following fields:\n");
		mexPrintf("\t\t'ULx' X coordinate of the uper left corner\n");
		mexPrintf("\t\t'ULy' Y coordinate of the uper left corner\n");
		mexPrintf("\t\t'Xinc' distance between columns in target grid/image coordinates\n");
		mexPrintf("\t\t'Yinc' distance between rows in target grid/image coordinates\n");
		mexPrintf("\t\t'SrcProjSRS', 'SrcProjWKT' -> Source projection string\n");
		mexPrintf("\t\t'DstProjSRS', 'DstProjWKT' -> Target projection string\n");
		mexPrintf("\t\t\tSRS stands for a string of the type used by proj4\n");
		mexPrintf("\t\t\tWKT stands for a string on the 'Well Known Text' format\n\n");
		mexPrintf("\t\t\tIf one of the Src or Dst fields is absent a GEOGRAPHIC WGS84 is assumed\n");
		mexPrintf("\nOPTIONS\n");
		mexPrintf("\t\t'gcp' a [Mx4] array with Ground Control Points\n");
		mexPrintf("\t\t't_size' a [width height] vector to set output file size in pixels\n");
		mexPrintf("\t\t't_res' a [xres yres] vector to set output file resolution (in target georeferenced units)\n");
		mexPrintf("\t\t'wm' amount of memory (in megabytes) that the warp API is allowed to use for caching\n");
		mexPrintf("\t\t'nodata' Set nodata values for output bands.\n");
		mexPrintf("\t\t'ResampleAlg' To set up the algorithm used during warp operation. Options are: \n");
		mexPrintf("\t\t\t'nearest' Use nearest neighbour resampling (default, fastest algorithm, worst interpolation quality).\n");
		mexPrintf("\t\t\t'bilinear' Use bilinear resampling.\n");
		mexPrintf("\t\t\t'cubic' Use cubic resampling.\n");
		mexPrintf("\t\t\t'spline' Use cubic spline resampling.\n\n");

		if (!runed_once)		/* Do next call only at first time this MEX is loaded */
			GDALAllRegister();

        	mexPrintf( "The following format drivers are configured and support Create() method:\n" );
        	for( i = 0; i < GDALGetDriverCount(); i++ ) {
			hDriver = GDALGetDriver(i);
			if( GDALGetMetadataItem( hDriver, GDAL_DCAP_CREATE, NULL ) != NULL)
				mexPrintf("%s: %s\n", GDALGetDriverShortName(hDriver), 
							GDALGetDriverLongName(hDriver));
		}
		return;
	}

	n_dims = mxGetNumberOfDimensions(prhs[0]);
	dim_array=mxGetDimensions(prhs[0]);
	ny = dim_array[0];
	nx = dim_array[1];
	nBands = dim_array[2];

	if (n_dims == 2)	/* Otherwise it would stay undefined */
		nBands = 1;

	/* Find out in which data type was given the input array */
	if (mxIsUint8(prhs[0])) {
		typeCLASS = GDT_Byte;		nBytes = 1;
		outByte = (unsigned char *)mxMalloc (nx*ny * sizeof(unsigned char));
	}
	else if (mxIsUint16(prhs[0])) {
		typeCLASS = GDT_UInt16;		nBytes = 2;
		outUI16 = (unsigned short int *)mxMalloc (nx*ny * sizeof(short int));
	}
	else if (mxIsInt16(prhs[0])) {
		typeCLASS = GDT_Int16;		nBytes = 2;
		outI16 = (short int *)mxMalloc (nx*ny * sizeof(short int));
	}
	else if (mxIsInt32(prhs[0])) {
		typeCLASS = GDT_Int32;		nBytes = 4;
		outI32 = (int *)mxMalloc (nx*ny * sizeof(int));
	}
	else if (mxIsUint32(prhs[0])) {
		typeCLASS = GDT_UInt32;		nBytes = 4;
		outUI32 = (unsigned int *)mxMalloc (nx*ny * sizeof(int));
	}
	else if (mxIsSingle(prhs[0])) {
		typeCLASS = GDT_Float32;	nBytes = 4;
		outF32 = (float *)mxMalloc (nx*ny * sizeof(float));
	}
	else if (mxIsDouble(prhs[0])) {
		typeCLASS = GDT_Float64;	nBytes = 8;
		outF64 = (double *)mxMalloc (nx*ny * sizeof(double));
	}
	else
		mexErrMsgTxt("GDALWARP Unknown input data class!");


	in_data = (void *)mxGetData(prhs[0]);

	if (!runed_once)		/* Do next call only at first time this MEX is loaded */
		GDALAllRegister();

	hDriver = GDALGetDriverByName( "MEM" ); 

	hSrcDS = GDALCreate( hDriver, "mem", nx, ny, nBands, (GDALDataType)typeCLASS, NULL );
	if (hSrcDS == NULL) {
		mexPrintf ("GDALOpen failed - %d\n%s\n", CPLGetLastErrorNo(), CPLGetLastErrorMsg());
		return;
	}
	GDALSetGeoTransform( hSrcDS, adfGeoTransform ); 

	/* ---------- Set the Source projection ---------------------------- */
	/* If it was not provided assume it is Geog WGS84 */
	if (pszSrcSRS == NULL && pszSrcWKT == NULL)
		oSrcSRS.SetWellKnownGeogCS( "WGS84" ); 
	else if (pszSrcWKT != NULL)
		oSrcSRS.importFromWkt( &pszSrcWKT );

	else {
		if( oSrcSRS.SetFromUserInput( pszSrcSRS ) != OGRERR_NONE )
			mexErrMsgTxt("GDAL_WARP_MEX: Translating source SRS failed.");
	}
	if (pszSrcWKT == NULL)
		oSrcSRS.exportToWkt( &pszSrcWKT );

	GDALSetProjection( hSrcDS, pszSrcWKT );	
	//pszSrcWKT = (char *)GDALGetProjectionRef( hSrcDS );
	CPLAssert( pszSrcWKT != NULL && strlen(pszSrcWKT) > 0 );
	/* ------------------------------------------------------------------ */


	/* -------------- Copy input data into the hSrcDS dataset ----------- */
	for (i = 1; i <= nBands; i++) {
		hBand = GDALGetRasterBand( hSrcDS, i ); 
		nXYSize = (i-1)*nx*ny;
		switch( typeCLASS ) {
			case GDT_Byte:
			 	tmpByte = (unsigned char *)in_data;	
				for (m = ny-1, c = 0; m >= 0; m--) for (n = 0; n < nx; n++)
					outByte[c++] = tmpByte[m + n*ny + nXYSize];
				GDALRasterIO( hBand, GF_Write, 0, 0, nx, ny,outByte, nx, ny, (GDALDataType)typeCLASS, 0, 0 );
				break;
			case GDT_UInt16:
			 	tmpUI16 = (unsigned short int *)in_data;	
				for (m = ny-1, c = 0; m >= 0; m--) for (n = 0; n < nx; n++)
					outUI16[c++] = tmpUI16[m + n*ny + nXYSize];
				GDALRasterIO( hBand, GF_Write, 0, 0, nx, ny,outUI16, nx, ny, (GDALDataType)typeCLASS, 0, 0 );
				break;
			case GDT_Int16:
			 	tmpI16 = (short int *)in_data;	
				for (m = ny-1, c = 0; m >= 0; m--) for (n = 0; n < nx; n++)
					outI16[c++] = tmpI16[m + n*ny + nXYSize];
				GDALRasterIO( hBand, GF_Write, 0, 0, nx, ny,outI16, nx, ny, (GDALDataType)typeCLASS, 0, 0 );
				break;
			case GDT_UInt32:
			 	tmpUI32 = (unsigned int *)in_data;	
				for (m = ny-1, c = 0; m >= 0; m--) for (n = 0; n < nx; n++)
					outUI32[c++] = tmpUI32[m + n*ny + nXYSize];
				GDALRasterIO( hBand, GF_Write, 0, 0, nx, ny,outUI32, nx, ny, (GDALDataType)typeCLASS, 0, 0 );
				break;
			case GDT_Int32:
			 	tmpI32 = (int *)in_data;	
				for (m = ny-1, c = 0; m >= 0; m--) for (n = 0; n < nx; n++)
					outI32[c++] = tmpI32[m + n*ny + nXYSize];
				GDALRasterIO( hBand, GF_Write, 0, 0, nx, ny,outI32, nx, ny, (GDALDataType)typeCLASS, 0, 0 );
				break;
			case GDT_Float32:
			 	tmpF32 = (float *)in_data;	
				for (m = ny-1, c = 0; m >= 0; m--) for (n = 0; n < nx; n++)
					outF32[c++] = tmpF32[m + n*ny + nXYSize];
				GDALRasterIO( hBand, GF_Write, 0, 0, nx, ny,outF32, nx, ny, (GDALDataType)typeCLASS, 0, 0 );
				break;
			case GDT_Float64:
			 	tmpF64 = (double *)in_data;	
				for (m = ny-1, c = 0; m >= 0; m--) for (n = 0; n < nx; n++)
					outF64[c++] = tmpF64[m + n*ny + nXYSize];
				GDALRasterIO( hBand, GF_Write, 0, 0, nx, ny,outF64, nx, ny, (GDALDataType)typeCLASS, 0, 0 );
				break;
		}
	}

	/* ---------- Set up the Target coordinate system ------------------- */
	/* If it was not provided assume it is Geog WGS84 */
	CPLErrorReset();
	if (pszDstSRS == NULL && pszDstWKT == NULL)
		oDstSRS.SetWellKnownGeogCS( "WGS84" ); 
	else if (pszDstWKT != NULL)
		oDstSRS.importFromWkt( &pszDstWKT );
	else {
		if( oDstSRS.SetFromUserInput( pszDstSRS ) != OGRERR_NONE )
			mexErrMsgTxt("GDAL_WARP_MEX: Translating target SRS failed.");
	}
	if (pszDstWKT == NULL)
		oDstSRS.exportToWkt( &pszDstWKT );
	/* ------------------------------------------------------------------ */

	if ( nGCPCount != 0 ) {
		if (GDALSetGCPs(hSrcDS, nGCPCount, pasGCPs, "") != CE_None)
			mexPrintf("GDALWARP WARNING: writing GCPs failed.\n");
	}

	/* Create a transformer that maps from source pixel/line coordinates
	   to destination georeferenced coordinates (not destination pixel line) 
	   We do that by omitting the destination dataset handle (setting it to NULL). */

	void *hTransformArg;

	hTransformArg = GDALCreateGenImgProjTransformer(hSrcDS, pszSrcWKT, NULL, pszDstWKT, 
											nGCPCount == 0 ? FALSE : TRUE, 0, nOrder);
	if( hTransformArg == NULL )
		mexErrMsgTxt("GDALTRANSFORM: Generating transformer failed.");

	GDALTransformerInfo *psInfo = (GDALTransformerInfo*)hTransformArg;

	/* -------------------------------------------------------------------------- */
	/*      Get approximate output georeferenced bounds and resolution for file
	/* -------------------------------------------------------------------------- */
	if (GDALSuggestedWarpOutput2(hSrcDS, GDALGenImgProjTransform, hTransformArg, 
	                             adfDstGeoTransform, &nPixels, &nLines, adfExtent,
	                             0) != CE_None ) {
	    GDALClose(hSrcDS);
		mexErrMsgTxt("GDALWARP: GDALSuggestedWarpOutput2 failed.");
	}

	if (CPLGetConfigOption( "CHECK_WITH_INVERT_PROJ", NULL ) == NULL) {
		double MinX = adfExtent[0];
		double MaxX = adfExtent[2];
		double MaxY = adfExtent[3];
		double MinY = adfExtent[1];
		int bSuccess = TRUE;
            
		/* Check that the the edges of the target image are in the validity area */
		/* of the target projection */
#define N_STEPS 20
		for (i = 0; i <= N_STEPS && bSuccess; i++) {
			for (j = 0; j <= N_STEPS && bSuccess; j++) {
				double dfRatioI = i * 1.0 / N_STEPS;
				double dfRatioJ = j * 1.0 / N_STEPS;
				double expected_x = (1 - dfRatioI) * MinX + dfRatioI * MaxX;
				double expected_y = (1 - dfRatioJ) * MinY + dfRatioJ * MaxY;
				double x = expected_x;
				double y = expected_y;
				double z = 0;
				/* Target SRS coordinates to source image pixel coordinates */
				if (!psInfo->pfnTransform(hTransformArg, TRUE, 1, &x, &y, &z, &bSuccess) || !bSuccess)
					bSuccess = FALSE;
				/* Source image pixel coordinates to target SRS coordinates */
				if (!psInfo->pfnTransform(hTransformArg, FALSE, 1, &x, &y, &z, &bSuccess) || !bSuccess)
					bSuccess = FALSE;
				if (fabs(x - expected_x) > (MaxX - MinX) / nPixels ||
					fabs(y - expected_y) > (MaxY - MinY) / nLines)
					bSuccess = FALSE;
			}
		}
            
		/* If not, retry with CHECK_WITH_INVERT_PROJ=TRUE that forces ogrct.cpp */
		/* to check the consistency of each requested projection result with the */
		/* invert projection */
		if (!bSuccess) {
			CPLSetConfigOption( "CHECK_WITH_INVERT_PROJ", "TRUE" );
			CPLDebug("WARP", "Recompute out extent with CHECK_WITH_INVERT_PROJ=TRUE");

			if (GDALSuggestedWarpOutput2(hSrcDS, GDALGenImgProjTransform, hTransformArg, 
			                             adfDstGeoTransform, &nPixels, &nLines, adfExtent,
			                              0) != CE_None ) {
			    GDALClose(hSrcDS);
				mexErrMsgTxt("GDALWARO: GDALSuggestedWarpOutput2 failed.");
			}
		}
	}

	/* -------------------------------------------------------------------- */
	/*      Expand the working bounds to include this region, ensure the    */
	/*      working resolution is no more than this resolution.             */
	/* -------------------------------------------------------------------- */
	if( dfMaxX == 0.0 && dfMinX == 0.0 ) {
		dfMinX = adfExtent[0];
		dfMaxX = adfExtent[2];
		dfMaxY = adfExtent[3];
		dfMinY = adfExtent[1];
		dfResX = adfDstGeoTransform[1];
		dfResY = ABS(adfDstGeoTransform[5]);
	}
	else {
		dfMinX = MIN(dfMinX,adfExtent[0]);
		dfMaxX = MAX(dfMaxX,adfExtent[2]);
		dfMaxY = MAX(dfMaxY,adfExtent[3]);
		dfMinY = MIN(dfMinY,adfExtent[1]);
		dfResX = MIN(dfResX,adfDstGeoTransform[1]);
		dfResY = MIN(dfResY,ABS(adfDstGeoTransform[5]));
	}

	GDALDestroyGenImgProjTransformer( hTransformArg );

	/* -------------------------------------------------------------------- */
	/*      Turn the suggested region into a geotransform and suggested     */
	/*      number of pixels and lines.                                     */
	/* -------------------------------------------------------------------- */

	adfDstGeoTransform[0] = dfMinX;
	adfDstGeoTransform[1] = dfResX;
	adfDstGeoTransform[2] = 0.0;
	adfDstGeoTransform[3] = dfMaxY;
	adfDstGeoTransform[4] = 0.0;
	adfDstGeoTransform[5] = -1 * dfResY;

	nPixels = (int) ((dfMaxX - dfMinX) / dfResX + 0.5);
	nLines  = (int) ((dfMaxY - dfMinY) / dfResY + 0.5);

	/* -------------------------------------------------------------------- */
	/*      Did the user override some parameters?                          */
	/* -------------------------------------------------------------------- */
	if( dfXRes != 0.0 && dfYRes != 0.0 ) {
		dfMinX = adfDstGeoTransform[0];
		dfMaxX = adfDstGeoTransform[0] + adfDstGeoTransform[1] * nPixels;
		dfMaxY = adfDstGeoTransform[3];
		dfMinY = adfDstGeoTransform[3] + adfDstGeoTransform[5] * nLines;

		nPixels = (int) ((dfMaxX - dfMinX + (dfXRes/2.0)) / dfXRes);
		nLines = (int) ((dfMaxY - dfMinY + (dfYRes/2.0)) / dfYRes);
		adfDstGeoTransform[0] = dfMinX;
		adfDstGeoTransform[3] = dfMaxY;
		adfDstGeoTransform[1] = dfXRes;
		adfDstGeoTransform[5] = -dfYRes;
	}
	else if( nForceWidth != 0 && nForceHeight != 0 ) {
		dfXRes = (dfMaxX - dfMinX) / nForceWidth;
		dfYRes = (dfMaxY - dfMinY) / nForceHeight;

		adfDstGeoTransform[0] = dfMinX;
		adfDstGeoTransform[3] = dfMaxY;
		adfDstGeoTransform[1] = dfXRes;
		adfDstGeoTransform[5] = -dfYRes;

		nPixels = nForceWidth;
		nLines = nForceHeight;
	}
	else if( nForceWidth != 0) {
		dfXRes = (dfMaxX - dfMinX) / nForceWidth;
		dfYRes = dfXRes;

		adfDstGeoTransform[0] = dfMinX;
		adfDstGeoTransform[3] = dfMaxY;
		adfDstGeoTransform[1] = dfXRes;
		adfDstGeoTransform[5] = -dfYRes;

		nPixels = nForceWidth;
		nLines = (int) ((dfMaxY - dfMinY + (dfYRes/2.0)) / dfYRes);
	}
	else if( nForceHeight != 0) {
		dfYRes = (dfMaxY - dfMinY) / nForceHeight;
		dfXRes = dfYRes;

		adfDstGeoTransform[0] = dfMinX;
		adfDstGeoTransform[3] = dfMaxY;
		adfDstGeoTransform[1] = dfXRes;
		adfDstGeoTransform[5] = -dfYRes;

		nPixels = (int) ((dfMaxX - dfMinX + (dfXRes/2.0)) / dfXRes);
		nLines = nForceHeight;
	}

	/* --------------------- Create the output --------------------------- */
	hDstDS = GDALCreate( hDriver, "mem", nPixels, nLines, 
			GDALGetRasterCount(hSrcDS), (GDALDataType)typeCLASS, NULL );
    
	CPLAssert( hDstDS != NULL );

	/* -------------- Write out the projection definition ---------------- */
	GDALSetProjection( hDstDS, pszDstWKT );
	GDALSetGeoTransform( hDstDS, adfDstGeoTransform );

	/* --------------------- Setup warp options -------------------------- */
	GDALWarpOptions *psWO = GDALCreateWarpOptions();

	psWO->hSrcDS = hSrcDS;
	psWO->hDstDS = hDstDS;

	psWO->nBandCount = nBands;
	psWO->panSrcBands = (int *) CPLMalloc(psWO->nBandCount * sizeof(int) );
	psWO->panDstBands = (int *) CPLMalloc(psWO->nBandCount * sizeof(int) );
	for( i = 0; i < nBands; i++ ) {
		psWO->panSrcBands[i] = i+1;
		psWO->panDstBands[i] = i+1;
	}

	if( dfWarpMemoryLimit != 0.0 )
		psWO->dfWarpMemoryLimit = dfWarpMemoryLimit;

	/* --------------------- Setup the Resampling Algo ------------------- */
	psWO->eResampleAlg = interpMethod;


	/* --------------------- Setup NODATA options ------------------------ */
	papszWarpOptions = CSLSetNameValue(papszWarpOptions, "INIT_DEST", "NO_DATA" );

	if ( pdfDstNodata == NULL && (typeCLASS == GDT_Float32 || typeCLASS == GDT_Float64) ) {
		pdfDstNodata = (double *) mxCalloc((size_t)1, sizeof(double));
		*pdfDstNodata = mxGetNaN();
	}
	else if (pdfDstNodata != NULL) {
#define CLAMP(val,type,minval,maxval) \
    do { if (val < minval) { val = minval; } \
    else if (val > maxval) { val = maxval; } \
    else if (val != (type)val) { val = (type)(val + 0.5); } } \
    while(0)
		switch( typeCLASS ) {
			case GDT_Byte:
				CLAMP(pdfDstNodata[0], GByte, 0.0, 255.0);
				break;
			case GDT_UInt16:
				CLAMP(pdfDstNodata[0], GInt16, -32768.0, 32767.0);
				break;
			case GDT_Int16:
				CLAMP(pdfDstNodata[0], GUInt16, 0.0, 65535.0);
				break;
			case GDT_UInt32:
				CLAMP(pdfDstNodata[0], GInt32, -2147483648.0, 2147483647.0);
				break;
			case GDT_Int32:
				CLAMP(pdfDstNodata[0], GUInt32, 0.0, 4294967295.0);
				break;
			default:
				break;
		}
	}

	psWO->papszWarpOptions = CSLDuplicate(papszWarpOptions);

	if (pdfDstNodata != NULL) {
		psWO->padfDstNoDataReal = (double *) CPLMalloc(psWO->nBandCount*sizeof(double));
		psWO->padfDstNoDataImag = (double *) CPLMalloc(psWO->nBandCount*sizeof(double));
		for (i = 0; i < nBands; i++) {
                        psWO->padfDstNoDataReal[i] = pdfDstNodata[0];
                        psWO->padfDstNoDataImag[i] = 0.0;
			GDALSetRasterNoDataValue( GDALGetRasterBand(hDstDS, i+1), pdfDstNodata[0]);
		}
	}

	/* ------------ Establish reprojection transformer ------------------- */
	psWO->pTransformerArg = GDALCreateGenImgProjTransformer( hSrcDS, GDALGetProjectionRef(hSrcDS), 
							hDstDS, GDALGetProjectionRef(hDstDS), 
							nGCPCount == 0 ? FALSE : TRUE, 0.0, nOrder );
	psWO->pfnTransformer = GDALGenImgProjTransform;

	/* ----------- Initialize and execute the warp operation ------------- */
	GDALWarpOperation oOperation;

	oOperation.Initialize( psWO );
	eErr = oOperation.ChunkAndWarpImage( 0, 0, GDALGetRasterXSize( hDstDS ),
						GDALGetRasterYSize( hDstDS ) );
	CPLAssert( eErr == CE_None );

	GDALDestroyGenImgProjTransformer( psWO->pTransformerArg );
	GDALDestroyWarpOptions( psWO );
	GDALClose( hSrcDS );

	/* ------------ Free memory used to fill the hSrcDS dataset ---------- */
	switch( typeCLASS ) {
		case GDT_Byte:		mxFree((void *)outByte);	break;
		case GDT_UInt16:	mxFree((void *)outUI16);	break; 
		case GDT_Int16:		mxFree((void *)outI16);		break; 
		case GDT_UInt32:	mxFree((void *)outUI32);	break; 
		case GDT_Int32:		mxFree((void *)outI32);		break; 
		case GDT_Float32:	mxFree((void *)outF32);		break; 
		case GDT_Float64:	mxFree((void *)outF64);		break; 
	}

	int out_dims[3];
	out_dims[0] = nLines;
	out_dims[1] = nPixels;
	out_dims[2] = nBands;
	plhs[0] = mxCreateNumericArray (n_dims,out_dims,mxGetClassID(prhs[0]), mxREAL);
	tmp = (char *)mxCalloc(nPixels * nLines, nBytes);

	/* ------ Allocate memory to be used in filling the hDstDS dataset ---- */
	switch( typeCLASS ) {
		case GDT_Byte:
			outByte = (unsigned char *)mxGetData(plhs[0]);		break;
		case GDT_UInt16:
			outUI16 = (unsigned short int *)mxGetData(plhs[0]);	break;
		case GDT_Int16:
			outI16 = (short int *)mxGetData(plhs[0]);		break;
		case GDT_UInt32:
			outUI32 = (unsigned int *)mxGetData(plhs[0]);		break;
		case GDT_Int32:
			outI32 = (int *)mxGetData(plhs[0]);			break;
		case GDT_Float32:
			outF32 = (float *)mxGetData(plhs[0]);			break;
		case GDT_Float64:
			outF64 = (double *)mxGetData(plhs[0]);			break;
	}

	/* ----------- Copy the output hSrcDS dataset data into plhs  ---------- */
	for (i = 1; i <= nBands; i++) {
		hBand = GDALGetRasterBand( hDstDS, i ); 
		GDALRasterIO( hBand, GF_Read, 0, 0, nPixels, nLines, tmp, nPixels, nLines,
				(GDALDataType)typeCLASS, 0, 0 );
		nXYSize = (i-1) * nPixels * nLines;
		switch( typeCLASS ) {
			case GDT_Byte:
				for (m = nLines-1, c = 0; m >= 0; m--) for (n = 0; n < nPixels; n++)
					outByte[m + n*nLines + nXYSize] = tmp[c++];
				break;
			case GDT_UInt16:
				tmpUI16 = (GUInt16 *) tmp;
				for (m = nLines-1, c = 0; m >= 0; m--) for (n = 0; n < nPixels; n++)
					outUI16[m + n*nLines + nXYSize] = tmpUI16[c++];
				break;
			case GDT_Int16:
				tmpI16 = (GInt16 *) tmp;
				for (m = nLines-1, c = 0; m >= 0; m--) for (n = 0; n < nPixels; n++)
					outI16[m + n*nLines + nXYSize] = tmpI16[c++];
				break;
			case GDT_UInt32:
				tmpUI32 = (GUInt32 *) tmp;
				for (m = nLines-1, c = 0; m >= 0; m--) for (n = 0; n < nPixels; n++)
					outUI32[m + n*nLines + nXYSize] = tmpUI32[c++];
				break;
			case GDT_Int32:
				tmpI32 = (GInt32 *) tmp;
				for (m = nLines-1, c = 0; m >= 0; m--) for (n = 0; n < nPixels; n++)
					outI32[m + n*nLines + nXYSize] = tmpI32[c++];
				break;
			case GDT_Float32:
				tmpF32 = (float *) tmp;
				for (m = nLines-1, c = 0; m >= 0; m--) for (n = 0; n < nPixels; n++)
					outF32[m + n*nLines + nXYSize] = tmpF32[c++];
				break;
			case GDT_Float64:
				tmpF64 = (double *) tmp;
				for (m = nLines-1, c = 0; m >= 0; m--) for (n = 0; n < nPixels; n++)
					outF64[m + n*nLines + nXYSize] = tmpF64[c++];
				break;
		}
	}

	mxFree(tmp);
	if (nGCPCount) {
		GDALDeinitGCPs( nGCPCount, pasGCPs );	/* makes this mex crash in the next call - Is it still true??? */
		mxFree((void *) pasGCPs );
	}

	if (nlhs == 2)
		plhs[1] = populate_metadata_struct (hDstDS, 1);

	runed_once = TRUE;	/* Signals that next call won't need to call GDALAllRegister() again */

	/*GDALDestroyDriverManager();
	OGRFree(pszDstWKT);*/
	GDALClose( hDstDS );
	CSLDestroy( papszWarpOptions );
	if (pszDstWKT && strlen(pszDstWKT) > 1 ) OGRFree(pszDstWKT);	
	if (pszSrcWKT && strlen(pszSrcWKT) > 1 ) OGRFree(pszSrcWKT);
}