Ejemplo n.º 1
0
int main(int argc, char *argv[])
{
    struct Option *vector_opt, *seed_opt, *flowlines_opt, *flowacc_opt, *sampled_opt,
	*scalar_opt, *unit_opt, *step_opt, *limit_opt, *skip_opt, *dir_opt,
	*error_opt;
    struct Flag *table_fl;
    struct GModule *module;
    RASTER3D_Region region;
    RASTER3D_Map *flowacc, *sampled;
    struct Integration integration;
    struct Seed seed;
    struct Gradient_info gradient_info;
    struct Map_info seed_Map;
    struct line_pnts *seed_points;
    struct line_cats *seed_cats;
    struct Map_info fl_map;
    struct line_cats *fl_cats;	/* for flowlines */
    struct line_pnts *fl_points;	/* for flowlines */
    struct field_info *finfo;
    dbDriver *driver;
    int cat;			/* cat of flowlines */
    int if_table;
    int i, r, c, d;
    char *desc;
    int n_seeds, seed_count, ltype;
    int skip[3];

    G_gisinit(argv[0]);
    module = G_define_module();
    G_add_keyword(_("raster3d"));
    G_add_keyword(_("hydrology"));
    G_add_keyword(_("voxel"));
    module->description =
	_("Computes 3D flow lines and 3D flow accumulation.");


    scalar_opt = G_define_standard_option(G_OPT_R3_INPUT);
    scalar_opt->required = NO;
    scalar_opt->guisection = _("Input");

    vector_opt = G_define_standard_option(G_OPT_R3_INPUTS);
    vector_opt->key = "vector_field";
    vector_opt->required = NO;
    vector_opt->description = _("Names of three 3D raster maps describing "
				"x, y, z components of vector field");
    vector_opt->guisection = _("Input");

    seed_opt = G_define_standard_option(G_OPT_V_INPUT);
    seed_opt->required = NO;
    seed_opt->key = "seed_points";
    seed_opt->description = _("If no map is provided, "
			      "flow lines are generated "
			      "from each cell of the input 3D raster");
    seed_opt->label = _("Name of vector map with points "
			"from which flow lines are generated");
    seed_opt->guisection = _("Input");

    flowlines_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    flowlines_opt->key = "flowline";
    flowlines_opt->required = NO;
    flowlines_opt->description = _("Name for vector map of flow lines");
    flowlines_opt->guisection = _("Output");

    flowacc_opt = G_define_standard_option(G_OPT_R3_OUTPUT);
    flowacc_opt->key = "flowaccumulation";
    flowacc_opt->required = NO;
    flowacc_opt->description =
	_("Name for output flowaccumulation 3D raster");
    flowacc_opt->guisection = _("Output");

    sampled_opt = G_define_standard_option(G_OPT_R3_INPUT);
    sampled_opt->key = "sampled";
    sampled_opt->required = NO;
    sampled_opt->label =
            _("Name for 3D raster sampled by flowlines");
    sampled_opt->description =
            _("Values of this 3D raster will be stored "
              "as attributes of flowlines segments");

    unit_opt = G_define_option();
    unit_opt->key = "unit";
    unit_opt->type = TYPE_STRING;
    unit_opt->required = NO;
    unit_opt->answer = "cell";
    unit_opt->options = "time,length,cell";
    desc = NULL;
    G_asprintf(&desc,
	       "time;%s;"
	       "length;%s;"
	       "cell;%s",
	       _("elapsed time"),
	       _("length in map units"), _("length in cells (voxels)"));
    unit_opt->descriptions = desc;
    unit_opt->label = _("Unit of integration step");
    unit_opt->description = _("Default unit is cell");
    unit_opt->guisection = _("Integration");

    step_opt = G_define_option();
    step_opt->key = "step";
    step_opt->type = TYPE_DOUBLE;
    step_opt->required = NO;
    step_opt->answer = "0.25";
    step_opt->label = _("Integration step in selected unit");
    step_opt->description = _("Default step is 0.25 cell");
    step_opt->guisection = _("Integration");

    limit_opt = G_define_option();
    limit_opt->key = "limit";
    limit_opt->type = TYPE_INTEGER;
    limit_opt->required = NO;
    limit_opt->answer = "2000";
    limit_opt->description = _("Maximum number of steps");
    limit_opt->guisection = _("Integration");

    error_opt = G_define_option();
    error_opt->key = "max_error";
    error_opt->type = TYPE_DOUBLE;
    error_opt->required = NO;
    error_opt->answer = "1e-5";
    error_opt->label = _("Maximum error of integration");
    error_opt->description = _("Influences step, increase maximum error "
			       "to allow bigger steps");
    error_opt->guisection = _("Integration");

    skip_opt = G_define_option();
    skip_opt->key = "skip";
    skip_opt->type = TYPE_INTEGER;
    skip_opt->required = NO;
    skip_opt->multiple = YES;
    skip_opt->description =
	_("Number of cells between flow lines in x, y and z direction");

    dir_opt = G_define_option();
    dir_opt->key = "direction";
    dir_opt->type = TYPE_STRING;
    dir_opt->required = NO;
    dir_opt->multiple = NO;
    dir_opt->options = "up,down,both";
    dir_opt->answer = "down";
    dir_opt->description = _("Compute flowlines upstream, "
			     "downstream or in both direction.");

    table_fl = G_define_flag();
    table_fl->key = 'a';
    table_fl->description = _("Create and fill attribute table");

    G_option_required(scalar_opt, vector_opt, NULL);
    G_option_exclusive(scalar_opt, vector_opt, NULL);
    G_option_required(flowlines_opt, flowacc_opt, NULL);
    G_option_requires(seed_opt, flowlines_opt, NULL);
    G_option_requires(table_fl, flowlines_opt, NULL);
    G_option_requires(sampled_opt, table_fl, NULL);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    driver = NULL;
    finfo = NULL;

    if_table = table_fl->answer ? TRUE : FALSE;

    check_vector_input_maps(vector_opt, seed_opt);

    Rast3d_init_defaults();
    Rast3d_get_window(&region);

    /* set up integration variables */
    if (step_opt->answer) {
	integration.step = atof(step_opt->answer);
	integration.unit = unit_opt->answer;
    }
    else {
	integration.unit = "cell";
	integration.step = 0.25;
    }
    integration.max_error = atof(error_opt->answer);
    integration.max_step = 5 * integration.step;
    integration.min_step = integration.step / 5;
    integration.limit = atof(limit_opt->answer);
    if (strcmp(dir_opt->answer, "up") == 0)
	integration.direction_type = FLOWDIR_UP;
    else if (strcmp(dir_opt->answer, "down") == 0)
	integration.direction_type = FLOWDIR_DOWN;
    else
	integration.direction_type = FLOWDIR_BOTH;


    /* cell size is the diagonal */
    integration.cell_size = sqrt(region.ns_res * region.ns_res +
				 region.ew_res * region.ew_res +
				 region.tb_res * region.tb_res);

    /* set default skip if needed */
    if (skip_opt->answers) {
	for (i = 0; i < 3; i++) {
	    if (skip_opt->answers[i] != NULL) {
		skip[i] = atoi(skip_opt->answers[i]);
	    }
	    else {
		G_fatal_error(_("Please provide 3 integer values for skip option."));
	    }
	}
    }
    else {
	skip[0] = fmax(1, region.cols / 10);
	skip[1] = fmax(1, region.rows / 10);
	skip[2] = fmax(1, region.depths / 10);

    }

    /* open raster 3D maps of velocity components */
    gradient_info.initialized = FALSE;
    load_input_raster3d_maps(scalar_opt, vector_opt, &gradient_info, &region);


    /* open new 3D raster map of flowacumulation */
    if (flowacc_opt->answer) {
	flowacc = Rast3d_open_new_opt_tile_size(flowacc_opt->answer,
						RASTER3D_USE_CACHE_DEFAULT,
						&region, FCELL_TYPE, 32);


	if (!flowacc)
	    Rast3d_fatal_error(_("Unable to open 3D raster map <%s>"),
			       flowacc_opt->answer);
	init_flowaccum(&region, flowacc);
    }

    /* open 3D raster map used for sampling */
    if (sampled_opt->answer) {
	sampled = Rast3d_open_cell_old(sampled_opt->answer,
				       G_find_raster3d(sampled_opt->answer, ""),
				       &region, RASTER3D_TILE_SAME_AS_FILE,
				       RASTER3D_USE_CACHE_DEFAULT);
	if (!sampled)
	    Rast3d_fatal_error(_("Unable to open 3D raster map <%s>"),
			       sampled_opt->answer);
    }
    else
	sampled = NULL;

    /* open new vector map of flowlines */
    if (flowlines_opt->answer) {
	fl_cats = Vect_new_cats_struct();
	fl_points = Vect_new_line_struct();
	if (Vect_open_new(&fl_map, flowlines_opt->answer, TRUE) < 0)
	    G_fatal_error(_("Unable to create vector map <%s>"),
			  flowlines_opt->answer);

	Vect_hist_command(&fl_map);

	if (if_table) {
	    create_table(&fl_map, &finfo, &driver,
			 gradient_info.compute_gradient, sampled ? 1 : 0);
	}
    }

    n_seeds = 0;
    /* open vector map of seeds */
    if (seed_opt->answer) {
	if (Vect_open_old2(&seed_Map, seed_opt->answer, "", "1") < 0)
	    G_fatal_error(_("Unable to open vector map <%s>"),
			  seed_opt->answer);
	if (!Vect_is_3d(&seed_Map))
	    G_fatal_error(_("Vector map <%s> is not 3D"), seed_opt->answer);

	n_seeds = Vect_get_num_primitives(&seed_Map, GV_POINT);
    }
    if (flowacc_opt->answer || (!seed_opt->answer && flowlines_opt->answer)) {
	if (flowacc_opt->answer)
	    n_seeds += region.cols * region.rows * region.depths;
	else {
	    n_seeds += ceil(region.cols / (double)skip[0]) *
		ceil(region.rows / (double)skip[1]) *
		ceil(region.depths / (double)skip[2]);
	}
    }
    G_debug(1, "Number of seeds is %d", n_seeds);

    seed_count = 0;
    cat = 1;
    if (seed_opt->answer) {

	seed_points = Vect_new_line_struct();
	seed_cats = Vect_new_cats_struct();

	/* compute flowlines from vector seed map */
	while (TRUE) {
	    ltype = Vect_read_next_line(&seed_Map, seed_points, seed_cats);
	    if (ltype == -1) {
		Vect_close(&seed_Map);
		G_fatal_error(_("Error during reading seed vector map"));
	    }
	    else if (ltype == -2) {
		break;
	    }
	    else if (ltype == GV_POINT) {
		seed.x = seed_points->x[0];
		seed.y = seed_points->y[0];
		seed.z = seed_points->z[0];
		seed.flowline = TRUE;
		seed.flowaccum = FALSE;
	    }
	    G_percent(seed_count, n_seeds, 1);
	    if (integration.direction_type == FLOWDIR_UP ||
		integration.direction_type == FLOWDIR_BOTH) {
		integration.actual_direction = FLOWDIR_UP;
		compute_flowline(&region, &seed, &gradient_info, flowacc, sampled,
				 &integration, &fl_map, fl_cats, fl_points,
				 &cat, if_table, finfo, driver);
	    }
	    if (integration.direction_type == FLOWDIR_DOWN ||
		integration.direction_type == FLOWDIR_BOTH) {
		integration.actual_direction = FLOWDIR_DOWN;
		compute_flowline(&region, &seed, &gradient_info, flowacc, sampled,
				 &integration, &fl_map, fl_cats, fl_points,
				 &cat, if_table, finfo, driver);
	    }
	    seed_count++;
	}

	Vect_destroy_line_struct(seed_points);
	Vect_destroy_cats_struct(seed_cats);
	Vect_close(&seed_Map);
    }
    if (flowacc_opt->answer || (!seed_opt->answer && flowlines_opt->answer)) {
	/* compute flowlines from points on grid */
	for (r = region.rows; r > 0; r--) {
	    for (c = 0; c < region.cols; c++) {
		for (d = 0; d < region.depths; d++) {
		    seed.x =
			region.west + c * region.ew_res + region.ew_res / 2;
		    seed.y =
			region.south + r * region.ns_res - region.ns_res / 2;
		    seed.z =
			region.bottom + d * region.tb_res + region.tb_res / 2;
		    seed.flowline = FALSE;
		    seed.flowaccum = FALSE;
		    if (flowacc_opt->answer)
			seed.flowaccum = TRUE;

		    if (flowlines_opt->answer && !seed_opt->answer &&
		       (c % skip[0] == 0) && (r % skip[1] == 0) && (d % skip[2] == 0))
			seed.flowline = TRUE;

		    if (seed.flowaccum || seed.flowline) {
			G_percent(seed_count, n_seeds, 1);

			if (integration.direction_type == FLOWDIR_UP ||
			    integration.direction_type == FLOWDIR_BOTH) {
			    integration.actual_direction = FLOWDIR_UP;
			    compute_flowline(&region, &seed, &gradient_info,
					     flowacc, sampled, &integration, &fl_map,
					     fl_cats, fl_points, &cat,
					     if_table, finfo, driver);
			}
			if (integration.direction_type == FLOWDIR_DOWN ||
			    integration.direction_type == FLOWDIR_BOTH) {
			    integration.actual_direction = FLOWDIR_DOWN;
			    compute_flowline(&region, &seed, &gradient_info,
					     flowacc, sampled, &integration, &fl_map,
					     fl_cats, fl_points, &cat,
					     if_table, finfo, driver);
			}
			seed_count++;
		    }
		}
	    }
	}
    }
    G_percent(1, 1, 1);
    if (flowlines_opt->answer) {
	if (if_table) {
	    db_commit_transaction(driver);
	    db_close_database_shutdown_driver(driver);
	}
	Vect_destroy_line_struct(fl_points);
	Vect_destroy_cats_struct(fl_cats);
	Vect_build(&fl_map);
	Vect_close(&fl_map);
    }

    if (flowacc_opt->answer)
	Rast3d_close(flowacc);


    return EXIT_SUCCESS;
}
Ejemplo n.º 2
0
int main(int argc, char *argv[])
{
    int out_fd, base_raster;
    char *infile, *outmap;
    int percent;
    double zrange_min, zrange_max, d_tmp;
    double irange_min, irange_max;
    unsigned long estimated_lines;

    RASTER_MAP_TYPE rtype, base_raster_data_type;
    struct History history;
    char title[64];
    SEGMENT base_segment;
    struct PointBinning point_binning;
    void *base_array;
    void *raster_row;
    struct Cell_head region;
    struct Cell_head input_region;
    int rows, last_rows, row0, cols;		/* scan box size */
    int row;		/* counters */

    int pass, npasses;
    unsigned long line, line_total;
    unsigned int counter;
    unsigned long n_invalid;
    char buff[BUFFSIZE];
    double x, y, z;
    double intensity;
    int arr_row, arr_col;
    unsigned long count, count_total;
    int point_class;

    double zscale = 1.0;
    double iscale = 1.0;
    double res = 0.0;

    struct BinIndex bin_index_nodes;
    bin_index_nodes.num_nodes = 0;
    bin_index_nodes.max_nodes = 0;
    bin_index_nodes.nodes = 0;

    struct GModule *module;
    struct Option *input_opt, *output_opt, *percent_opt, *type_opt, *filter_opt, *class_opt;
    struct Option *method_opt, *base_raster_opt;
    struct Option *zrange_opt, *zscale_opt;
    struct Option *irange_opt, *iscale_opt;
    struct Option *trim_opt, *pth_opt, *res_opt;
    struct Option *file_list_opt;
    struct Flag *print_flag, *scan_flag, *shell_style, *over_flag, *extents_flag;
    struct Flag *intens_flag, *intens_import_flag;
    struct Flag *set_region_flag;
    struct Flag *base_rast_res_flag;
    struct Flag *only_valid_flag;

    /* LAS */
    LASReaderH LAS_reader;
    LASHeaderH LAS_header;
    LASSRSH LAS_srs;
    LASPointH LAS_point;
    int return_filter;

    const char *projstr;
    struct Cell_head cellhd, loc_wind;

    unsigned int n_filtered;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("import"));
    G_add_keyword(_("LIDAR"));
    G_add_keyword(_("statistics"));
    G_add_keyword(_("conversion"));
    G_add_keyword(_("aggregation"));
    G_add_keyword(_("binning"));
    module->description =
	_("Creates a raster map from LAS LiDAR points using univariate statistics.");

    input_opt = G_define_standard_option(G_OPT_F_BIN_INPUT);
    input_opt->required = NO;
    input_opt->label = _("LAS input file");
    input_opt->description = _("LiDAR input files in LAS format (*.las or *.laz)");
    input_opt->guisection = _("Input");

    output_opt = G_define_standard_option(G_OPT_R_OUTPUT);
    output_opt->required = NO;
    output_opt->guisection = _("Output");

    file_list_opt = G_define_standard_option(G_OPT_F_INPUT);
    file_list_opt->key = "file";
    file_list_opt->label = _("File containing names of LAS input files");
    file_list_opt->description = _("LiDAR input files in LAS format (*.las or *.laz)");
    file_list_opt->required = NO;
    file_list_opt->guisection = _("Input");

    method_opt = G_define_option();
    method_opt->key = "method";
    method_opt->type = TYPE_STRING;
    method_opt->required = NO;
    method_opt->description = _("Statistic to use for raster values");
    method_opt->options =
	"n,min,max,range,sum,mean,stddev,variance,coeff_var,median,percentile,skewness,trimmean";
    method_opt->answer = "mean";
    method_opt->guisection = _("Statistic");
    G_asprintf((char **)&(method_opt->descriptions),
               "n;%s;"
               "min;%s;"
               "max;%s;"
               "range;%s;"
               "sum;%s;"
               "mean;%s;"
               "stddev;%s;"
               "variance;%s;"
               "coeff_var;%s;"
               "median;%s;"
               "percentile;%s;"
               "skewness;%s;"
               "trimmean;%s",
               _("Number of points in cell"),
               _("Minimum value of point values in cell"),
               _("Maximum value of point values in cell"),
               _("Range of point values in cell"),
               _("Sum of point values in cell"),
               _("Mean (average) value of point values in cell"),
               _("Standard deviation of point values in cell"),
               _("Variance of point values in cell"),
               _("Coefficient of variance of point values in cell"),
               _("Median value of point values in cell"),
               _("pth (nth) percentile of point values in cell"),
               _("Skewness of point values in cell"),
               _("Trimmed mean of point values in cell"));

    type_opt = G_define_standard_option(G_OPT_R_TYPE);
    type_opt->required = NO;
    type_opt->answer = "FCELL";

    base_raster_opt = G_define_standard_option(G_OPT_R_INPUT);
    base_raster_opt->key = "base_raster";
    base_raster_opt->required = NO;
    base_raster_opt->label =
        _("Subtract raster values from the Z coordinates");
    base_raster_opt->description =
        _("The scale for Z is applied beforehand, the range filter for"
          " Z afterwards");
    base_raster_opt->guisection = _("Transform");

    zrange_opt = G_define_option();
    zrange_opt->key = "zrange";
    zrange_opt->type = TYPE_DOUBLE;
    zrange_opt->required = NO;
    zrange_opt->key_desc = "min,max";
    zrange_opt->description = _("Filter range for Z data (min,max)");
    zrange_opt->guisection = _("Selection");

    zscale_opt = G_define_option();
    zscale_opt->key = "zscale";
    zscale_opt->type = TYPE_DOUBLE;
    zscale_opt->required = NO;
    zscale_opt->answer = "1.0";
    zscale_opt->description = _("Scale to apply to Z data");
    zscale_opt->guisection = _("Transform");

    irange_opt = G_define_option();
    irange_opt->key = "intensity_range";
    irange_opt->type = TYPE_DOUBLE;
    irange_opt->required = NO;
    irange_opt->key_desc = "min,max";
    irange_opt->description = _("Filter range for intensity values (min,max)");
    irange_opt->guisection = _("Selection");

    iscale_opt = G_define_option();
    iscale_opt->key = "intensity_scale";
    iscale_opt->type = TYPE_DOUBLE;
    iscale_opt->required = NO;
    iscale_opt->answer = "1.0";
    iscale_opt->description = _("Scale to apply to intensity values");
    iscale_opt->guisection = _("Transform");

    percent_opt = G_define_option();
    percent_opt->key = "percent";
    percent_opt->type = TYPE_INTEGER;
    percent_opt->required = NO;
    percent_opt->answer = "100";
    percent_opt->options = "1-100";
    percent_opt->description = _("Percent of map to keep in memory");

    /* I would prefer to call the following "percentile", but that has too
     * much namespace overlap with the "percent" option above */
    pth_opt = G_define_option();
    pth_opt->key = "pth";
    pth_opt->type = TYPE_INTEGER;
    pth_opt->required = NO;
    pth_opt->options = "1-100";
    pth_opt->description = _("pth percentile of the values");
    pth_opt->guisection = _("Statistic");

    trim_opt = G_define_option();
    trim_opt->key = "trim";
    trim_opt->type = TYPE_DOUBLE;
    trim_opt->required = NO;
    trim_opt->options = "0-50";
    trim_opt->label = _("Discard given percentage of the smallest and largest values");
    trim_opt->description =
	_("Discard <trim> percent of the smallest and <trim> percent of the largest observations");
    trim_opt->guisection = _("Statistic");

    res_opt = G_define_option();
    res_opt->key = "resolution";
    res_opt->type = TYPE_DOUBLE;
    res_opt->required = NO;
    res_opt->description =
	_("Output raster resolution");
    res_opt->guisection = _("Output");

    filter_opt = G_define_option();
    filter_opt->key = "return_filter";
    filter_opt->type = TYPE_STRING;
    filter_opt->required = NO;
    filter_opt->label = _("Only import points of selected return type");
    filter_opt->description = _("If not specified, all points are imported");
    filter_opt->options = "first,last,mid";
    filter_opt->guisection = _("Selection");

    class_opt = G_define_option();
    class_opt->key = "class_filter";
    class_opt->type = TYPE_INTEGER;
    class_opt->multiple = YES;
    class_opt->required = NO;
    class_opt->label = _("Only import points of selected class(es)");
    class_opt->description = _("Input is comma separated integers. "
                               "If not specified, all points are imported.");
    class_opt->guisection = _("Selection");

    print_flag = G_define_flag();
    print_flag->key = 'p';
    print_flag->description =
	_("Print LAS file info and exit");

    extents_flag = G_define_flag();
    extents_flag->key = 'e';
    extents_flag->label =
        _("Use the extent of the input for the raster extent");
    extents_flag->description =
        _("Set internally computational region extents based on the"
          " point cloud");
    extents_flag->guisection = _("Output");

    set_region_flag = G_define_flag();
    set_region_flag->key = 'n';
    set_region_flag->label =
        _("Set computation region to match the new raster map");
    set_region_flag->description =
        _("Set computation region to match the 2D extent and resolution"
          " of the newly created new raster map");
    set_region_flag->guisection = _("Output");

    over_flag = G_define_flag();
    over_flag->key = 'o';
    over_flag->label =
	_("Override projection check (use current location's projection)");
    over_flag->description =
	_("Assume that the dataset has same projection as the current location");

    scan_flag = G_define_flag();
    scan_flag->key = 's';
    scan_flag->description = _("Scan data file for extent then exit");

    shell_style = G_define_flag();
    shell_style->key = 'g';
    shell_style->description =
	_("In scan mode, print using shell script style");

    intens_flag = G_define_flag();
    intens_flag->key = 'i';
    intens_flag->label =
        _("Use intensity values rather than Z values");
    intens_flag->description =
        _("Uses intensity values everywhere as if they would be Z"
          " coordinates");

    intens_import_flag = G_define_flag();
    intens_import_flag->key = 'j';
    intens_import_flag->description =
        _("Use Z values for filtering, but intensity values for statistics");

    base_rast_res_flag = G_define_flag();
    base_rast_res_flag->key = 'd';
    base_rast_res_flag->label =
        _("Use base raster resolution instead of computational region");
    base_rast_res_flag->description =
        _("For getting values from base raster, use its actual"
          " resolution instead of computational region resolution");

    only_valid_flag = G_define_flag();
    only_valid_flag->key = 'v';
    only_valid_flag->label = _("Use only valid points");
    only_valid_flag->description =
        _("Points invalid according to APSRS LAS specification will be"
          " filtered out");
    only_valid_flag->guisection = _("Selection");

    G_option_required(input_opt, file_list_opt, NULL);
    G_option_exclusive(input_opt, file_list_opt, NULL);
    G_option_required(output_opt, print_flag, scan_flag, shell_style, NULL);
    G_option_exclusive(intens_flag, intens_import_flag, NULL);
    G_option_requires(base_rast_res_flag, base_raster_opt, NULL);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    int only_valid = FALSE;
    n_invalid = 0;
    if (only_valid_flag->answer)
        only_valid = TRUE;

    /* we could use rules but this gives more info and allows continuing */
    if (set_region_flag->answer && !(extents_flag->answer || res_opt->answer)) {
        G_warning(_("Flag %c makes sense only with %s option or -%c flag"),
                  set_region_flag->key, res_opt->key, extents_flag->key);
        /* avoid the call later on */
        set_region_flag->answer = '\0';
    }

    struct StringList infiles;

    if (file_list_opt->answer) {
        if (access(file_list_opt->answer, F_OK) != 0)
            G_fatal_error(_("File <%s> does not exist"), file_list_opt->answer);
        string_list_from_file(&infiles, file_list_opt->answer);
    }
    else {
        string_list_from_one_item(&infiles, input_opt->answer);
    }

    /* parse input values */
    outmap = output_opt->answer;

    if (shell_style->answer && !scan_flag->answer) {
	scan_flag->answer = 1; /* pointer not int, so set = shell_style->answer ? */
    }

    /* check zrange and extent relation */
    if (scan_flag->answer || extents_flag->answer) {
        if (zrange_opt->answer)
            G_warning(_("zrange will not be taken into account during scan"));
    }

    Rast_get_window(&region);
    /* G_get_window seems to be unreliable if the location has been changed */
    G_get_set_window(&loc_wind);        /* TODO: v.in.lidar uses G_get_default_window() */

    estimated_lines = 0;
    int i;
    for (i = 0; i < infiles.num_items; i++) {
        infile = infiles.items[i];
        /* don't if file not found */
        if (access(infile, F_OK) != 0)
            G_fatal_error(_("Input file <%s> does not exist"), infile);
        /* Open LAS file*/
        LAS_reader = LASReader_Create(infile);
        if (LAS_reader == NULL)
            G_fatal_error(_("Unable to open file <%s> as a LiDAR point cloud"),
                          infile);
        LAS_header = LASReader_GetHeader(LAS_reader);
        if  (LAS_header == NULL) {
            G_fatal_error(_("Unable to read LAS header of <%s>"), infile);
        }

        LAS_srs = LASHeader_GetSRS(LAS_header);

        /* print info or check projection if we are actually importing */
        if (print_flag->answer) {
            /* print filename when there is more than one file */
            if (infiles.num_items > 1)
                fprintf(stdout, "File: %s\n", infile);
            /* Print LAS header */
            print_lasinfo(LAS_header, LAS_srs);
        }
        else {
            /* report that we are checking more files */
            if (i == 1)
                G_message(_("First file's projection checked,"
                            " checking projection of the other files..."));
            /* Fetch input map projection in GRASS form. */
            projstr = LASSRS_GetWKT_CompoundOK(LAS_srs);
            /* we are printing the non-warning messages only for first file */
            projection_check_wkt(cellhd, loc_wind, projstr, over_flag->answer,
                                 shell_style->answer || i);
            /* if there is a problem in some other file, first OK message
             * is printed but than a warning, this is not ideal but hopefully
             * not so confusing when importing multiple files */
        }
        if (scan_flag->answer || extents_flag->answer) {
            /* we assign to the first one (i==0) but update for the rest */
            scan_bounds(LAS_reader, shell_style->answer, extents_flag->answer, i,
                        zscale, &region);
        }
        /* number of estimated point across all files */
        /* TODO: this should be ull which won't work with percent report */
        estimated_lines += LASHeader_GetPointRecordsCount(LAS_header);
        /* We are closing all again and we will be opening them later,
         * so we don't have to worry about limit for open files. */
        LASSRS_Destroy(LAS_srs);
        LASHeader_Destroy(LAS_header);
        LASReader_Destroy(LAS_reader);
    }
    /* if we are not importing, end */
    if (print_flag->answer || scan_flag->answer)
        exit(EXIT_SUCCESS);

    return_filter = LAS_ALL;
    if (filter_opt->answer) {
	if (strcmp(filter_opt->answer, "first") == 0)
	    return_filter = LAS_FIRST;
	else if (strcmp(filter_opt->answer, "last") == 0)
	    return_filter = LAS_LAST;
	else if (strcmp(filter_opt->answer, "mid") == 0)
	    return_filter = LAS_MID;
	else
	    G_fatal_error(_("Unknown filter option <%s>"), filter_opt->answer);
    }
    struct ReturnFilter return_filter_struct;
    return_filter_struct.filter = return_filter;
    struct ClassFilter class_filter;
    class_filter_create_from_strings(&class_filter, class_opt->answers);

    percent = atoi(percent_opt->answer);
    /* TODO: we already used zscale */
    /* TODO: we don't report intensity range */
    if (zscale_opt->answer)
        zscale = atof(zscale_opt->answer);
    if (iscale_opt->answer)
        iscale = atof(iscale_opt->answer);

    /* parse zrange */
    if (zrange_opt->answer != NULL) {
	if (zrange_opt->answers[0] == NULL)
	    G_fatal_error(_("Invalid zrange"));

	sscanf(zrange_opt->answers[0], "%lf", &zrange_min);
	sscanf(zrange_opt->answers[1], "%lf", &zrange_max);

	if (zrange_min > zrange_max) {
	    d_tmp = zrange_max;
	    zrange_max = zrange_min;
	    zrange_min = d_tmp;
	}
    }
    /* parse irange */
    if (irange_opt->answer != NULL) {
        if (irange_opt->answers[0] == NULL)
            G_fatal_error(_("Invalid %s"), irange_opt->key);

        sscanf(irange_opt->answers[0], "%lf", &irange_min);
        sscanf(irange_opt->answers[1], "%lf", &irange_max);

        if (irange_min > irange_max) {
            d_tmp = irange_max;
            irange_max = irange_min;
            irange_min = d_tmp;
        }
    }

    point_binning_set(&point_binning, method_opt->answer, pth_opt->answer,
                      trim_opt->answer, FALSE);

    base_array = NULL;

    if (strcmp("CELL", type_opt->answer) == 0)
	rtype = CELL_TYPE;
    else if (strcmp("DCELL", type_opt->answer) == 0)
	rtype = DCELL_TYPE;
    else
	rtype = FCELL_TYPE;

    if (point_binning.method == METHOD_N)
	rtype = CELL_TYPE;

    if (res_opt->answer) {
	/* align to resolution */
	res = atof(res_opt->answer);

	if (!G_scan_resolution(res_opt->answer, &res, region.proj))
	    G_fatal_error(_("Invalid input <%s=%s>"), res_opt->key, res_opt->answer);

	if (res <= 0)
	    G_fatal_error(_("Option '%s' must be > 0.0"), res_opt->key);
	
	region.ns_res = region.ew_res = res;

	region.north = ceil(region.north / res) * res;
	region.south = floor(region.south / res) * res;
	region.east = ceil(region.east / res) * res;
	region.west = floor(region.west / res) * res;

	G_adjust_Cell_head(&region, 0, 0);
    }
    else if (extents_flag->answer) {
	/* align to current region */
	Rast_align_window(&region, &loc_wind);
    }
    Rast_set_output_window(&region);

    rows = last_rows = region.rows;
    npasses = 1;
    if (percent < 100) {
	rows = (int)(region.rows * (percent / 100.0));
	npasses = region.rows / rows;
	last_rows = region.rows - npasses * rows;
	if (last_rows)
	    npasses++;
	else
	    last_rows = rows;

    }
    cols = region.cols;

    G_debug(2, "region.n=%f  region.s=%f  region.ns_res=%f", region.north,
	    region.south, region.ns_res);
    G_debug(2, "region.rows=%d  [box_rows=%d]  region.cols=%d", region.rows,
	    rows, region.cols);

    /* using row-based chunks (used for output) when input and output
     * region matches and using segment library when they don't */
    int use_segment = 0;
    int use_base_raster_res = 0;
    /* TODO: see if the input region extent is smaller than the raster
     * if yes, the we need to load the whole base raster if the -e
     * flag was defined (alternatively clip the regions) */
    if (base_rast_res_flag->answer)
        use_base_raster_res = 1;
    if (base_raster_opt->answer && (res_opt->answer || use_base_raster_res
                                    || extents_flag->answer))
        use_segment = 1;
    if (base_raster_opt->answer && !use_segment) {
        /* TODO: do we need to test existence first? mapset? */
        base_raster = Rast_open_old(base_raster_opt->answer, "");
        base_raster_data_type = Rast_get_map_type(base_raster);
        base_array = G_calloc((size_t)rows * (cols + 1), Rast_cell_size(base_raster_data_type));
    }
    if (base_raster_opt->answer && use_segment) {
        if (use_base_raster_res) {
            /* read raster actual extent and resolution */
            Rast_get_cellhd(base_raster_opt->answer, "", &input_region);
            /* TODO: make it only as small as the output is or points are */
            Rast_set_input_window(&input_region);  /* we have split window */
        } else {
            Rast_get_input_window(&input_region);
        }
        rast_segment_open(&base_segment, base_raster_opt->answer, &base_raster_data_type);
    }

    if (!scan_flag->answer) {
        if (!check_rows_cols_fit_to_size_t(rows, cols))
		G_fatal_error(_("Unable to process the hole map at once. "
                        "Please set the '%s' option to some value lower than 100."),
				percent_opt->key);
        point_binning_memory_test(&point_binning, rows, cols, rtype);
	}

    /* open output map */
    out_fd = Rast_open_new(outmap, rtype);

    /* allocate memory for a single row of output data */
    raster_row = Rast_allocate_output_buf(rtype);

    G_message(_("Reading data ..."));

    count_total = line_total = 0;

    /* main binning loop(s) */
    for (pass = 1; pass <= npasses; pass++) {

	if (npasses > 1)
	    G_message(_("Pass #%d (of %d) ..."), pass, npasses);

	/* figure out segmentation */
	row0 = (pass - 1) * rows;
	if (pass == npasses) {
	    rows = last_rows;
	}

        if (base_array) {
            G_debug(2, "filling base raster array");
            for (row = 0; row < rows; row++) {
                Rast_get_row(base_raster, base_array + ((size_t) row * cols * Rast_cell_size(base_raster_data_type)), row, base_raster_data_type);
            }
        }

	G_debug(2, "pass=%d/%d  rows=%d", pass, npasses, rows);

    point_binning_allocate(&point_binning, rows, cols, rtype);

	line = 0;
	count = 0;
	counter = 0;
	G_percent_reset();

        /* loop of input files */
        for (i = 0; i < infiles.num_items; i++) {
            infile = infiles.items[i];
            /* we already know file is there, so just do basic checks */
            LAS_reader = LASReader_Create(infile);
            if (LAS_reader == NULL)
                G_fatal_error(_("Unable to open file <%s>"), infile);

            while ((LAS_point = LASReader_GetNextPoint(LAS_reader)) != NULL) {
                line++;
                counter++;

                if (counter == 100000) {        /* speed */
                    if (line < estimated_lines)
                        G_percent(line, estimated_lines, 3);
                    counter = 0;
                }

                /* We always count them and report because behavior
                 * changed in between 7.0 and 7.2 from undefined (but skipping
                 * invalid points) to filtering them out only when requested. */
                if (!LASPoint_IsValid(LAS_point)) {
                    n_invalid++;
                    if (only_valid)
                        continue;
                }

                x = LASPoint_GetX(LAS_point);
                y = LASPoint_GetY(LAS_point);
                if (intens_flag->answer)
                    /* use intensity as z here to allow all filters (and
                     * modifications) below to be applied for intensity */
                    z = LASPoint_GetIntensity(LAS_point);
                else
                    z = LASPoint_GetZ(LAS_point);

                int return_n = LASPoint_GetReturnNumber(LAS_point);
                int n_returns = LASPoint_GetNumberOfReturns(LAS_point);
                if (return_filter_is_out(&return_filter_struct, return_n, n_returns)) {
                    n_filtered++;
                    continue;
                }
                point_class = (int) LASPoint_GetClassification(LAS_point);
                if (class_filter_is_out(&class_filter, point_class))
                    continue;

                if (y <= region.south || y > region.north) {
                    continue;
                }
                if (x < region.west || x >= region.east) {
                    continue;
                }

                /* find the bin in the current array box */
		arr_row = (int)((region.north - y) / region.ns_res) - row0;
		if (arr_row < 0 || arr_row >= rows)
		    continue;
                arr_col = (int)((x - region.west) / region.ew_res);

                z = z * zscale;

                if (base_array) {
                    double base_z;
                    if (row_array_get_value_row_col(base_array, arr_row, arr_col,
                                                    cols, base_raster_data_type,
                                                    &base_z))
                        z -= base_z;
                    else
                        continue;
                }
                else if (use_segment) {
                    double base_z;
                    if (rast_segment_get_value_xy(&base_segment, &input_region,
                                                  base_raster_data_type, x, y,
                                                  &base_z))
                        z -= base_z;
                    else
                        continue;
                }

                if (zrange_opt->answer) {
                    if (z < zrange_min || z > zrange_max) {
                        continue;
                    }
                }

                if (intens_import_flag->answer || irange_opt->answer) {
                    intensity = LASPoint_GetIntensity(LAS_point);
                    intensity *= iscale;
                    if (irange_opt->answer) {
                        if (intensity < irange_min || intensity > irange_max) {
                            continue;
                        }
                    }
                    /* use intensity for statistics */
                    if (intens_import_flag->answer)
                        z = intensity;
                }

                count++;
                /*          G_debug(5, "x: %f, y: %f, z: %f", x, y, z); */

                update_value(&point_binning, &bin_index_nodes, cols,
                             arr_row, arr_col, rtype, x, y, z);
            }                        /* while !EOF of one input file */
            /* close input LAS file */
            LASReader_Destroy(LAS_reader);
        }           /* end of loop for all input files files */

	G_percent(1, 1, 1);	/* flush */
	G_debug(2, "pass %d finished, %lu coordinates in box", pass, count);
	count_total += count;
	line_total += line;

	/* calc stats and output */
	G_message(_("Writing to map ..."));
	for (row = 0; row < rows; row++) {
        /* potentially vector writing can be independent on the binning */
        write_values(&point_binning, &bin_index_nodes, raster_row, row,
            cols, rtype, NULL);
	    /* write out line of raster data */
        Rast_put_row(out_fd, raster_row, rtype);
	}

	/* free memory */
	point_binning_free(&point_binning, &bin_index_nodes);
    }				/* passes loop */
    if (base_array)
        Rast_close(base_raster);
    if (use_segment)
        Segment_close(&base_segment);

    G_percent(1, 1, 1);		/* flush */
    G_free(raster_row);

    /* close raster file & write history */
    Rast_close(out_fd);

    sprintf(title, "Raw X,Y,Z data binned into a raster grid by cell %s",
            method_opt->answer);
    Rast_put_cell_title(outmap, title);

    Rast_short_history(outmap, "raster", &history);
    Rast_command_history(&history);
    Rast_set_history(&history, HIST_DATSRC_1, infile);
    Rast_write_history(outmap, &history);

    /* set computation region to the new raster map */
    /* TODO: should be in the done message */
    if (set_region_flag->answer)
        G_put_window(&region);

    if (n_invalid && only_valid)
        G_message(_("%lu input points were invalid and filtered out"),
                  n_invalid);
    if (n_invalid && !only_valid)
        G_message(_("%lu input points were invalid, use -%c flag to filter"
                    " them out"), n_invalid, only_valid_flag->key);
    if (infiles.num_items > 1) {
        sprintf(buff, _("Raster map <%s> created."
                        " %lu points from %d files found in region."),
                outmap, count_total, infiles.num_items);
    }
    else {
        sprintf(buff, _("Raster map <%s> created."
                        " %lu points found in region."),
                outmap, count_total);
    }

    G_done_msg("%s", buff);
    G_debug(1, "Processed %lu points.", line_total);

    string_list_free(&infiles);

    exit(EXIT_SUCCESS);

}
Ejemplo n.º 3
0
/*--------------------------------------------------------------------*/
int main(int argc, char *argv[])
{
    /* Variables declarations */
    int nsplx_adj, nsply_adj;
    int nsubregion_col, nsubregion_row;
    int subregion = 0, nsubregions = 0;
    double N_extension, E_extension, edgeE, edgeN;
    int dim_vect, nparameters, BW, npoints;
    double mean, lambda;
    const char *dvr, *db, *mapset;
    char table_name[GNAME_MAX];
    char xname[GNAME_MAX], xmapset[GMAPSET_MAX];

    int last_row, last_column, flag_auxiliar = FALSE;
    int filter_mode;

    int *lineVect;
    double *TN, *Q, *parVect;	/* Interpolating and least-square vectors */
    double **N, **obsVect;	/* Interpolation and least-square matrix */

    /* Structs declarations */
    struct Map_info In, Out, Outlier, Qgis;
    struct Option *in_opt, *out_opt, *outlier_opt, *qgis_opt, *stepE_opt,
	*stepN_opt, *lambda_f_opt, *Thres_O_opt, *filter_opt;
    struct Flag *spline_step_flag;
    struct GModule *module;

    struct Reg_dimens dims;
    struct Cell_head elaboration_reg, original_reg;
    struct bound_box general_box, overlap_box;

    struct Point *observ;

    dbDriver *driver;

    /*----------------------------------------------------------------*/
    /* Options declaration */
    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("statistics"));
    G_add_keyword(_("extract"));
    G_add_keyword(_("select"));
    G_add_keyword(_("filter"));
    G_add_keyword(_("LIDAR"));
    module->description = _("Removes outliers from vector point data.");

    spline_step_flag = G_define_flag();
    spline_step_flag->key = 'e';
    spline_step_flag->label = _("Estimate point density and distance");
    spline_step_flag->description =
	_("Estimate point density and distance for the input vector points within the current region extends and quit");
    spline_step_flag->suppress_required = YES;

    in_opt = G_define_standard_option(G_OPT_V_INPUT);

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);

    outlier_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    outlier_opt->key = "outlier";
    outlier_opt->description = _("Name for output outlier vector map");

    qgis_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    qgis_opt->key = "qgis";
    qgis_opt->required = NO;
    qgis_opt->description = _("Name for vector map for visualization in QGIS");

    stepE_opt = G_define_option();
    stepE_opt->key = "ew_step";
    stepE_opt->type = TYPE_DOUBLE;
    stepE_opt->required = NO;
    stepE_opt->answer = "10";
    stepE_opt->description =
	_("Length of each spline step in the east-west direction");
    stepE_opt->guisection = _("Settings");

    stepN_opt = G_define_option();
    stepN_opt->key = "ns_step";
    stepN_opt->type = TYPE_DOUBLE;
    stepN_opt->required = NO;
    stepN_opt->answer = "10";
    stepN_opt->description =
	_("Length of each spline step in the north-south direction");
    stepN_opt->guisection = _("Settings");

    lambda_f_opt = G_define_option();
    lambda_f_opt->key = "lambda";
    lambda_f_opt->type = TYPE_DOUBLE;
    lambda_f_opt->required = NO;
    lambda_f_opt->description = _("Tykhonov regularization weight");
    lambda_f_opt->answer = "0.1";
    lambda_f_opt->guisection = _("Settings");

    Thres_O_opt = G_define_option();
    Thres_O_opt->key = "threshold";
    Thres_O_opt->type = TYPE_DOUBLE;
    Thres_O_opt->required = NO;
    Thres_O_opt->description = _("Threshold for the outliers");
    Thres_O_opt->answer = "50";

    filter_opt = G_define_option();
    filter_opt->key = "filter";
    filter_opt->type = TYPE_STRING;
    filter_opt->required = NO;
    filter_opt->description = _("Filtering option");
    filter_opt->options = "both,positive,negative";
    filter_opt->answer = "both";

    G_gisinit(argv[0]);
    G_option_requires(spline_step_flag, in_opt, NULL);

    /* Parsing */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    if (!(db = G_getenv_nofatal2("DB_DATABASE", G_VAR_MAPSET)))
	G_fatal_error(_("Unable to read name of database"));

    if (!(dvr = G_getenv_nofatal2("DB_DRIVER", G_VAR_MAPSET)))
	G_fatal_error(_("Unable to read name of driver"));

    stepN = atof(stepN_opt->answer);
    stepE = atof(stepE_opt->answer);
    lambda = atof(lambda_f_opt->answer);
    Thres_Outlier = atof(Thres_O_opt->answer);

    filter_mode = 0;
    if (strcmp(filter_opt->answer, "positive") == 0)
	filter_mode = 1;
    else if (strcmp(filter_opt->answer, "negative") == 0)
	filter_mode = -1;
    P_set_outlier_fn(filter_mode);

    flag_auxiliar = FALSE;

    /* Checking vector names */
    if (out_opt->answer) 
        Vect_check_input_output_name(in_opt->answer, out_opt->answer,
                                     G_FATAL_EXIT);

    if ((mapset = G_find_vector2(in_opt->answer, "")) == NULL) {
	G_fatal_error(_("Vector map <%s> not found"), in_opt->answer);
    }

    /* Setting auxiliary table's name */
    if (out_opt->answer) {
        if (G_name_is_fully_qualified(out_opt->answer, xname, xmapset)) {
            sprintf(table_name, "%s_aux", xname);
        }
        else
            sprintf(table_name, "%s_aux", out_opt->answer);
    }

    /* Something went wrong in a previous v.outlier execution */
    if (db_table_exists(dvr, db, table_name)) {
	/* Start driver and open db */
	driver = db_start_driver_open_database(dvr, db);
	if (driver == NULL)
	    G_fatal_error(_("No database connection for driver <%s> is defined. Run db.connect."),
			  dvr);
        db_set_error_handler_driver(driver);

	if (P_Drop_Aux_Table(driver, table_name) != DB_OK)
	    G_fatal_error(_("Old auxiliary table could not be dropped"));
	db_close_database_shutdown_driver(driver);
    }

    /* Open input vector */
    Vect_set_open_level(1);	/* WITHOUT TOPOLOGY */
    if (1 > Vect_open_old(&In, in_opt->answer, mapset))
	G_fatal_error(_("Unable to open vector map <%s> at the topological level"),
		      in_opt->answer);

    /* Input vector must be 3D */
    if (!Vect_is_3d(&In))
	G_fatal_error(_("Input vector map <%s> is not 3D!"), in_opt->answer);

    /* Estimate point density and mean distance for current region */
    if (spline_step_flag->answer) {
	double dens, dist;
	if (P_estimate_splinestep(&In, &dens, &dist) == 0) {
	    G_message("Estimated point density: %.4g", dens);
	    G_message("Estimated mean distance between points: %.4g", dist);
	}
	else
	    G_warning(_("No points in current region!"));
	
	Vect_close(&In);
	exit(EXIT_SUCCESS);
    }

    /* Open output vector */
    if (qgis_opt->answer)
	if (0 > Vect_open_new(&Qgis, qgis_opt->answer, WITHOUT_Z))
	    G_fatal_error(_("Unable to create vector map <%s>"),
			  qgis_opt->answer);

    if (0 > Vect_open_new(&Out, out_opt->answer, WITH_Z)) {
	Vect_close(&Qgis);
	G_fatal_error(_("Unable to create vector map <%s>"), out_opt->answer);
    }

    if (0 > Vect_open_new(&Outlier, outlier_opt->answer, WITH_Z)) {
	Vect_close(&Out);
	Vect_close(&Qgis);
	G_fatal_error(_("Unable to create vector map <%s>"), out_opt->answer);
    }

    /* Copy vector Head File */
    Vect_copy_head_data(&In, &Out);
    Vect_hist_copy(&In, &Out);
    Vect_hist_command(&Out);

    Vect_copy_head_data(&In, &Outlier);
    Vect_hist_copy(&In, &Outlier);
    Vect_hist_command(&Outlier);

    if (qgis_opt->answer) {
	Vect_copy_head_data(&In, &Qgis);
	Vect_hist_copy(&In, &Qgis);
	Vect_hist_command(&Qgis);
    }

    /* Open driver and database */
    driver = db_start_driver_open_database(dvr, db);
    if (driver == NULL)
	G_fatal_error(_("No database connection for driver <%s> is defined. Run db.connect."),
		      dvr);
    db_set_error_handler_driver(driver);

    /* Create auxiliary table */
    if ((flag_auxiliar =
	 P_Create_Aux2_Table(driver, table_name)) == FALSE)
	G_fatal_error(_("It was impossible to create <%s> table."), table_name);

    db_create_index2(driver, table_name, "ID");
    /* sqlite likes that ??? */
    db_close_database_shutdown_driver(driver);
    driver = db_start_driver_open_database(dvr, db);

    /* Setting regions and boxes */
    G_get_set_window(&original_reg);
    G_get_set_window(&elaboration_reg);
    Vect_region_box(&elaboration_reg, &overlap_box);
    Vect_region_box(&elaboration_reg, &general_box);

    /*------------------------------------------------------------------
      | Subdividing and working with tiles: 									
      | Each original region will be divided into several subregions. 
      | Each one will be overlapped by its neighbouring subregions. 
      | The overlapping is calculated as a fixed OVERLAP_SIZE times
      | the largest spline step plus 2 * edge
      ----------------------------------------------------------------*/

    /* Fixing parameters of the elaboration region */
    P_zero_dim(&dims);		/* Set dim struct to zero */

    nsplx_adj = NSPLX_MAX;
    nsply_adj = NSPLY_MAX;
    if (stepN > stepE)
	dims.overlap = OVERLAP_SIZE * stepN;
    else
	dims.overlap = OVERLAP_SIZE * stepE;
    P_get_edge(P_BILINEAR, &dims, stepE, stepN);
    P_set_dim(&dims, stepE, stepN, &nsplx_adj, &nsply_adj);

    G_verbose_message(_("Adjusted EW splines %d"), nsplx_adj);
    G_verbose_message(_("Adjusted NS splines %d"), nsply_adj);

    /* calculate number of subregions */
    edgeE = dims.ew_size - dims.overlap - 2 * dims.edge_v;
    edgeN = dims.sn_size - dims.overlap - 2 * dims.edge_h;

    N_extension = original_reg.north - original_reg.south;
    E_extension = original_reg.east - original_reg.west;

    nsubregion_col = ceil(E_extension / edgeE) + 0.5;
    nsubregion_row = ceil(N_extension / edgeN) + 0.5;

    if (nsubregion_col < 0)
	nsubregion_col = 0;
    if (nsubregion_row < 0)
	nsubregion_row = 0;

    nsubregions = nsubregion_row * nsubregion_col;

    elaboration_reg.south = original_reg.north;
    last_row = FALSE;

    while (last_row == FALSE) {	/* For each row */

	P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
		      GENERAL_ROW);

	if (elaboration_reg.north > original_reg.north) {	/* First row */

	    P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
			  FIRST_ROW);
	}

	if (elaboration_reg.south <= original_reg.south) {	/* Last row */

	    P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
			  LAST_ROW);
	    last_row = TRUE;
	}

	nsply =
	    ceil((elaboration_reg.north -
		  elaboration_reg.south) / stepN) + 0.5;
	/*
	if (nsply > NSPLY_MAX)
	    nsply = NSPLY_MAX;
	*/
	G_debug(1, "nsply = %d", nsply);

	elaboration_reg.east = original_reg.west;
	last_column = FALSE;

	while (last_column == FALSE) {	/* For each column */

	    subregion++;
	    if (nsubregions > 1)
		G_message(_("Processing subregion %d of %d..."), subregion, nsubregions);
	    else /* v.outlier -e will report mean point distance: */
		G_warning(_("No subregions found! Check values for 'ew_step' and 'ns_step' parameters"));

	    P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
			  GENERAL_COLUMN);

	    if (elaboration_reg.west < original_reg.west) {	/* First column */

		P_set_regions(&elaboration_reg, &general_box, &overlap_box,
			      dims, FIRST_COLUMN);
	    }

	    if (elaboration_reg.east >= original_reg.east) {	/* Last column */

		P_set_regions(&elaboration_reg, &general_box, &overlap_box,
			      dims, LAST_COLUMN);
		last_column = TRUE;
	    }
	    nsplx =
		ceil((elaboration_reg.east -
		      elaboration_reg.west) / stepE) + 0.5;
	    /*
	    if (nsplx > NSPLX_MAX)
		nsplx = NSPLX_MAX;
	    */
	    G_debug(1, "nsplx = %d", nsplx);

	    /*Setting the active region */
	    dim_vect = nsplx * nsply;
	    observ =
		P_Read_Vector_Region_Map(&In, &elaboration_reg, &npoints,
					 dim_vect, 1);

	    if (npoints > 0) {	/* If there is any point falling into elaboration_reg... */
		int i;

		nparameters = nsplx * nsply;

		/* Mean calculation */
		mean = P_Mean_Calc(&elaboration_reg, observ, npoints);

		/* Least Squares system */
		G_debug(1, "Allocation memory for bilinear interpolation");
		BW = P_get_BandWidth(P_BILINEAR, nsply);	/* Bilinear interpolation */
		N = G_alloc_matrix(nparameters, BW);	/* Normal matrix */
		TN = G_alloc_vector(nparameters);	/* vector */
		parVect = G_alloc_vector(nparameters);	/* Bicubic parameters vector */
		obsVect = G_alloc_matrix(npoints, 3);	/* Observation vector */
		Q = G_alloc_vector(npoints);	/* "a priori" var-cov matrix */
		lineVect = G_alloc_ivector(npoints);

		/* Setting obsVect vector & Q matrix */
		for (i = 0; i < npoints; i++) {
		    obsVect[i][0] = observ[i].coordX;
		    obsVect[i][1] = observ[i].coordY;
		    obsVect[i][2] = observ[i].coordZ - mean;
		    lineVect[i] = observ[i].lineID;
		    Q[i] = 1;	/* Q=I */
		}

		G_free(observ);

		G_verbose_message(_("Bilinear interpolation"));
		normalDefBilin(N, TN, Q, obsVect, stepE, stepN, nsplx,
			       nsply, elaboration_reg.west,
			       elaboration_reg.south, npoints, nparameters,
			       BW);
		nCorrectGrad(N, lambda, nsplx, nsply, stepE, stepN);
		G_math_solver_cholesky_sband(N, parVect, TN, nparameters, BW);

		G_free_matrix(N);
		G_free_vector(TN);
		G_free_vector(Q);

		G_verbose_message(_("Outlier detection"));
		if (qgis_opt->answer)
		    P_Outlier(&Out, &Outlier, &Qgis, elaboration_reg,
			      general_box, overlap_box, obsVect, parVect,
			      mean, dims.overlap, lineVect, npoints,
			      driver, table_name);
		else
		    P_Outlier(&Out, &Outlier, NULL, elaboration_reg,
			      general_box, overlap_box, obsVect, parVect,
			      mean, dims.overlap, lineVect, npoints,
			      driver, table_name);


		G_free_vector(parVect);
		G_free_matrix(obsVect);
		G_free_ivector(lineVect);

	    }			/*! END IF; npoints > 0 */
	    else {
		G_free(observ);
		G_warning(_("No data within this subregion. "
			    "Consider increasing spline step values."));
	    }
	}			/*! END WHILE; last_column = TRUE */
    }				/*! END WHILE; last_row = TRUE */

    /* Drop auxiliary table */
    if (npoints > 0) {
	G_debug(1, "%s: Dropping <%s>", argv[0], table_name);
	if (P_Drop_Aux_Table(driver, table_name) != DB_OK)
	    G_fatal_error(_("Auxiliary table could not be dropped"));
    }

    db_close_database_shutdown_driver(driver);

    Vect_close(&In);
    Vect_close(&Out);
    Vect_close(&Outlier);
    if (qgis_opt->answer) {
	Vect_build(&Qgis);
	Vect_close(&Qgis);
    }

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}				/*END MAIN */
Ejemplo n.º 4
0
int main(int argc, char **argv)
{
    struct GModule *module;
    struct Option *voutput_opt, *routput_opt, *color_output_opt, *ply_opt, *zrange_opt, *trim_opt, *rotate_Z_opt,
            *smooth_radius_opt, *region_opt, *raster_opt, *zexag_opt, *resolution_opt,
            *method_opt, *calib_matrix_opt, *numscan_opt, *trim_tolerance_opt,
            *contours_map, *contours_step_opt, *draw_opt, *draw_vector_opt, *draw_threshold_opt;
    struct Flag *loop_flag, *calib_flag, *equalize_flag;
    struct Map_info Map;
    struct line_pnts *Points;
    struct line_cats *Cats;
    int cat = 1;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("scan"));
    G_add_keyword(_("points"));
    module->label = _("Imports a point cloud from Kinect v2");
    module->description = _("Imports a point cloud from Kinect v2");

    routput_opt = G_define_standard_option(G_OPT_R_OUTPUT);
    routput_opt->guisection = _("Output");
    routput_opt->required = NO;

    resolution_opt = G_define_option();
    resolution_opt->key = "resolution";
    resolution_opt->type = TYPE_DOUBLE;
    resolution_opt->required = NO;
    resolution_opt->answer = "0.002";
    resolution_opt->label = _("Raster resolution");
    resolution_opt->description = _("Recommended values between 0.001-0.003");
    resolution_opt->guisection = _("Output");

    color_output_opt = G_define_standard_option(G_OPT_R_BASENAME_OUTPUT);
    color_output_opt->key = "color_output";
    color_output_opt->description = _("Basename for color output");
    color_output_opt->guisection = _("Output");
    color_output_opt->required = NO;

    voutput_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    voutput_opt->required = NO;
    voutput_opt->key = "vector";
    voutput_opt->guisection = _("Output");

    ply_opt = G_define_standard_option(G_OPT_F_OUTPUT);
    ply_opt->required = NO;
    ply_opt->key = "ply";
    ply_opt->description = _("Name of output binary PLY file");
    ply_opt->guisection = _("Output");

    zrange_opt = G_define_option();
    zrange_opt->key = "zrange";
    zrange_opt->type = TYPE_DOUBLE;
    zrange_opt->required = NO;
    zrange_opt->key_desc = "min,max";
    zrange_opt->label = _("Filter range for z data (min,max)");
    zrange_opt->description = _("Z is distance from scanner in cm");
    zrange_opt->guisection = _("Filter");

    trim_opt = G_define_option();
    trim_opt->key = "trim";
    trim_opt->type = TYPE_DOUBLE;
    trim_opt->required = NO;
    trim_opt->key_desc = "N,S,E,W";
    trim_opt->description = _("Clip box from center in cm");
    trim_opt->guisection = _("Filter");

    trim_tolerance_opt = G_define_option();
    trim_tolerance_opt->key = "trim_tolerance";
    trim_tolerance_opt->type = TYPE_DOUBLE;
    trim_tolerance_opt->required = NO;
    trim_tolerance_opt->description = _("Influences how much are model sides trimmed automatically, "
        " should be higher for rectangular models");
    trim_tolerance_opt->label = _("Trim tolerance between 0 and 1");
    trim_tolerance_opt->options = "0-1";
    trim_tolerance_opt->guisection = _("Filter");

    rotate_Z_opt = G_define_option();
    rotate_Z_opt->key = "rotate";
    rotate_Z_opt->type = TYPE_DOUBLE;
    rotate_Z_opt->required = NO;
    rotate_Z_opt->answer = "0";
    rotate_Z_opt->description = _("Rotate along Z axis");
    rotate_Z_opt->guisection = _("Georeferencing");

    smooth_radius_opt = G_define_option();
    smooth_radius_opt->key = "smooth_radius";
    smooth_radius_opt->type = TYPE_DOUBLE;
    smooth_radius_opt->required = NO;
    smooth_radius_opt->label = _("Smooth radius");
    smooth_radius_opt->description = _("Recommended values between 0.006-0.009");

    region_opt = G_define_option();
    region_opt->key = "region";
    region_opt->key_desc = "name";
    region_opt->required = NO;
    region_opt->multiple = NO;
    region_opt->type = TYPE_STRING;
    region_opt->description = _("Region of the resulting raster");
    region_opt->gisprompt = "old,windows,region";
    region_opt->guisection = _("Georeferencing");

    raster_opt = G_define_standard_option(G_OPT_R_MAP);
    raster_opt->key = "raster";
    raster_opt->required = NO;
    raster_opt->multiple = NO;
    raster_opt->description = _("Match resulting raster to this raster map");
    raster_opt->guisection = _("Georeferencing");

    zexag_opt = G_define_option();
    zexag_opt->key = "zexag";
    zexag_opt->type = TYPE_DOUBLE;
    zexag_opt->required = NO;
    zexag_opt->required = NO;
    zexag_opt->answer = "1";
    zexag_opt->description = _("Vertical exaggeration");
    zexag_opt->guisection = _("Georeferencing");

    method_opt = G_define_option();
    method_opt->key = "method";
    method_opt->multiple = NO;
    method_opt->required = NO;
    method_opt->type = TYPE_STRING;
    method_opt->options = "interpolation,mean,min,max";
    method_opt->answer = "mean";
    method_opt->description = _("Surface reconstruction method");

    calib_matrix_opt = G_define_option();
    calib_matrix_opt->key = "calib_matrix";
    calib_matrix_opt->multiple = YES;
    calib_matrix_opt->type = TYPE_DOUBLE;
    calib_matrix_opt->required = NO;
    calib_matrix_opt->description = _("Calibration matrix");
    calib_matrix_opt->guisection = _("Calibration");

    numscan_opt = G_define_option();
    numscan_opt->answer = "1";
    numscan_opt->key = "numscan";
    numscan_opt->type = TYPE_INTEGER;
    numscan_opt->description = _("Number of scans to intergrate");
    numscan_opt->required = NO;

    contours_map = G_define_standard_option(G_OPT_V_MAP);
    contours_map->key = "contours";
    contours_map->required = NO;
    contours_map->description = _("Name of contour vector map");

    contours_step_opt = G_define_option();
    contours_step_opt->key = "contours_step";
    contours_step_opt->description = _("Increment between contour levels");
    contours_step_opt->type = TYPE_DOUBLE;
    contours_step_opt->required = NO;

    equalize_flag = G_define_flag();
    equalize_flag->key = 'e';
    equalize_flag->description = _("Histogram equalized color table");

    loop_flag = G_define_flag();
    loop_flag->key = 'l';
    loop_flag->description = _("Keep scanning in a loop");

    calib_flag = G_define_flag();
    calib_flag->key = 'c';
    calib_flag->description = _("Calibrate");
    calib_flag->guisection = _("Calibration");

    draw_opt = G_define_option();
    draw_opt->key = "draw";
    draw_opt->description = _("Draw with laser pointer");
    draw_opt->type = TYPE_STRING;
    draw_opt->required = NO;
    draw_opt->options = "point,line,area";
    draw_opt->answer = "point";
    draw_opt->guisection = _("Drawing");

    draw_threshold_opt = G_define_option();
    draw_threshold_opt->key = "draw_threshold";
    draw_threshold_opt->description = _("Brightness threshold for detecting laser pointer");
    draw_threshold_opt->type = TYPE_INTEGER;
    draw_threshold_opt->required = YES;
    draw_threshold_opt->answer = "760";
    draw_threshold_opt->guisection = _("Drawing");

    draw_vector_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    draw_vector_opt->key = "draw_output";
    draw_vector_opt->guisection = _("Drawing");
    draw_vector_opt->required = NO;

    G_option_required(calib_flag, routput_opt, voutput_opt, ply_opt, draw_vector_opt, NULL);
    G_option_requires(routput_opt, resolution_opt, NULL);
    G_option_requires(color_output_opt, resolution_opt, NULL);
    G_option_requires(contours_map, contours_step_opt, routput_opt, NULL);
    G_option_requires(equalize_flag, routput_opt, NULL);

    if (G_parser(argc, argv))
        exit(EXIT_FAILURE);

    // initailization of variables
    double resolution = 0.002;
    if (resolution_opt->answer)
        resolution = atof(resolution_opt->answer);
    double smooth_radius = 0.008;
    if (smooth_radius_opt->answer)
        smooth_radius = atof(smooth_radius_opt->answer);
    char* routput = NULL;
    if (routput_opt->answer)
        routput = routput_opt->answer;

    /* parse zrange */
    double zrange_min, zrange_max;
    if (zrange_opt->answer != NULL) {
        zrange_min = atof(zrange_opt->answers[0])/100;
        zrange_max = atof(zrange_opt->answers[1])/100;
    }

    /* parse trim */
    double clip_N, clip_S, clip_E, clip_W;
    if (trim_opt->answer != NULL) {
        clip_N = atof(trim_opt->answers[0])/100;
        clip_S = atof(trim_opt->answers[1])/100;
        clip_E = atof(trim_opt->answers[2])/100;
        clip_W = atof(trim_opt->answers[3])/100;
    }
    double trim_tolerance;
    if (trim_tolerance_opt->answer)
        trim_tolerance = atof(trim_tolerance_opt->answer);

    double angle = pcl::deg2rad(atof(rotate_Z_opt->answer) + 180);
    double zexag = atof(zexag_opt->answer);
    Eigen::Matrix4f transform_matrix;
    if (calib_matrix_opt->answer) {
        transform_matrix = read_matrix(calib_matrix_opt);
    }
    char *method = method_opt->answer;
    int numscan = atoi(numscan_opt->answer);
    char *color_output = color_output_opt->answer;
    char *voutput = voutput_opt->answer;
    char *ply = ply_opt->answer;
    char *contours_output = contours_map->answer;
    double contours_step;
    if (contours_output)
        contours_step = atof(contours_step_opt->answer);
    bool use_equalized = false;
    if (equalize_flag->answer)
        use_equalized = true;

    // drawing
    int vect_type;
    get_draw_type(draw_opt->answer, vect_type);
    int draw_threshold = atoi(draw_threshold_opt->answer);
    char* draw_output = NULL;
    if (draw_vector_opt->answer)
        draw_output = draw_vector_opt->answer;

    std::vector<double> draw_x;
    std::vector<double> draw_y;
    std::vector<double> draw_z;
    bool drawing = false;
    unsigned int last_detected_loop_count = 1e6;

    struct Map_info Map_draw;
    struct line_pnts *Points_draw;
    struct line_cats *Cats_draw;
    Points_draw = Vect_new_line_struct();
    Cats_draw = Vect_new_cats_struct();

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZRGB>(512, 424));
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_filtered_pass (new pcl::PointCloud<pcl::PointXYZRGB>(512, 424));

    struct bound_box bbox;
    struct Cell_head cellhd, window;
    double offset, scale;
    bool region3D = false;

    bool paused = false;

    update_input_region(raster_opt->answer, region_opt->answer, window, offset, region3D);


    K2G k2g(OPENGL);
    k2g.getCloud();
    cloud->sensor_orientation_.w() = 0.0;
    cloud->sensor_orientation_.x() = 1.0;
    cloud->sensor_orientation_.y() = 0.0;
    cloud->sensor_orientation_.z() = 0.0;
    int j = 0;
    // get terminating signals
    signal(SIGTERM, terminate);
    signal(SIGINT, terminate);
    signal(SIGUSR1, signal_read_new_input);
    while (j < 1) {
        if (signaled == 1) {
            break;
        }
        if (signal_new_input == 1) {
            signal_new_input = 0;
            read_new_input(routput, zrange_min, zrange_max, clip_N, clip_S, clip_E, clip_W,
                           trim_tolerance, angle, zexag, method, numscan, smooth_radius, resolution, use_equalized,
                           window, offset, region3D,
                           color_output, voutput, ply,
                           contours_output, contours_step,
                           vect_type, draw_threshold, draw_output, paused);
        }

        cloud = k2g.getCloud();
        if (paused) {
            continue;
        }
        if (!drawing) {
            for (int s = 0; s < numscan - 1; s++)
                *(cloud) += *(k2g.getCloud());
        }

        // remove invalid points
        std::vector<int> index_nans;

        pcl::removeNaNFromPointCloud(*cloud, *cloud, index_nans);

        // calibration
        if(calib_flag->answer) {
            calibrate(cloud);
            j++;
            continue;
        }
        // rotation of the point cloud based on calibration
        if (calib_matrix_opt->answer) {
            rotate_with_matrix(cloud, transform_matrix);
        }

        // trim Z
        if (zrange_opt->answer != NULL) {
            trim_Z(cloud, zrange_min, zrange_max);
        }

        // rotation Z
        rotate_Z(cloud, angle);

        // specify bounding box from center
        if (trim_opt->answer != NULL) {
            clipNSEW(cloud, clip_N, clip_S, clip_E, clip_W);
        }
        // drawing
        if (draw_output) {
            int maxbright = 0;
            int maxbright_idx = 0;
            for (int i=0; i < cloud->points.size(); i++) {
                Eigen::Vector3i rgbv = cloud->points[i].getRGBVector3i();
                int sum = rgbv[0] + rgbv[1] + rgbv[2];
                if (sum > maxbright) {
                    maxbright = sum;
                    maxbright_idx = i;
                }
            }
            if (maxbright >= draw_threshold) {
                drawing = true;
                draw_x.push_back(cloud->points[maxbright_idx].x);
                draw_y.push_back(cloud->points[maxbright_idx].y);
                draw_z.push_back(cloud->points[maxbright_idx].z);
                last_detected_loop_count = 0;
                continue;
            }
            else {
              last_detected_loop_count++;
              if (last_detected_loop_count <= 2) {
                  continue;
                }
            }
        }

        pcl::StatisticalOutlierRemoval<pcl::PointXYZRGB> sor;
        sor.setInputCloud(cloud);
        sor.setMeanK(20);
        sor.setStddevMulThresh(0.5);
        sor.filter(*cloud_filtered_pass);
        cloud_filtered_pass.swap (cloud);

        if (trim_tolerance_opt->answer != NULL) {
            double autoclip_N, autoclip_S, autoclip_E, autoclip_W;
            autotrim(cloud, autoclip_N, autoclip_S, autoclip_E, autoclip_W, trim_tolerance);
            if (autoclip_E > 0 || autoclip_N > 0 || autoclip_S > 0 || autoclip_W > 0)
                trimNSEW(cloud, autoclip_N, autoclip_S, autoclip_E, autoclip_W);
        }

        if (drawing) {
            // get Z scaling
            getMinMax(*cloud, bbox);
            if ((vect_type == GV_AREA && draw_x.size() > 2) ||
                (vect_type == GV_LINE && draw_x.size() > 1) ||
                (vect_type == GV_POINT && draw_x.size() > 0)) {
                save_vector(draw_output, Map_draw, Points_draw, Cats_draw,
                            bbox, window, draw_x, draw_y, draw_z, vect_type, offset, zexag);
            }
            else
                G_warning(_("Tolopogically incorrect vector feature"));
            drawing = false;
            draw_x.clear();
            draw_y.clear();
            draw_z.clear();
            last_detected_loop_count = 1e6;
        }
        if (voutput|| routput || ply || color_output) {
            if (smooth_radius_opt->answer)
                smooth(cloud, smooth_radius);

            // get Z scaling
            getMinMax(*cloud, bbox);
            scale = ((window.north - window.south) / (bbox.N - bbox.S) +
                     (window.east - window.west) / (bbox.E - bbox.W)) / 2;
        }
        // write to vector
        if (voutput|| (routput && strcmp(method, "interpolation") == 0)) {
            double z;
            if (voutput) {
                if (Vect_open_new(&Map, voutput, WITH_Z) < 0)
                    G_fatal_error(_("Unable to create temporary vector map <%s>"), voutput);
            }
            else {
                if (Vect_open_tmp_new(&Map, routput, WITH_Z) < 0)
                    G_fatal_error(_("Unable to create temporary vector map <%s>"), routput);
            }
            for (int i=0; i < cloud->points.size(); i++) {
                Vect_reset_line(Points);
                Vect_reset_cats(Cats);
                if (region3D)
                    z = (cloud->points[i].z + zrange_max) * scale / zexag + offset;
                else
                    z = (cloud->points[i].z - bbox.B) * scale / zexag + offset;
                Vect_append_point(Points, cloud->points[i].x,
                                  cloud->points[i].y,
                                  z);
                Vect_cat_set(Cats, 1, cat);
                Vect_write_line(&Map, GV_POINT, Points, Cats);
            }
            if (strcmp(method, "interpolation") == 0) {
                // interpolate
                Vect_rewind(&Map);
                interpolate(&Map, routput, 20, 2, 50, 40, -1,
                            &bbox, resolution);
            }
            Vect_close(&Map);
        }

        if (routput || color_output) {
            if (routput) {
                if (strcmp(method, "interpolation") != 0) {
                    binning(cloud, routput, &bbox, resolution,
                            scale, zexag, region3D ? -zrange_max : bbox.B, offset, method);
                }
                Rast_get_cellhd(routput, "", &cellhd);
            }
            if (color_output) {
                binning_color(cloud, color_output, &bbox, resolution);
                Rast_get_cellhd(get_color_name(color_output, "r"), "", &cellhd);
            }

            // georeference horizontally
            window.rows = cellhd.rows;
            window.cols = cellhd.cols;
            G_adjust_Cell_head(&window, 1, 1);
            cellhd.north = window.north;
            cellhd.south = window.south;
            cellhd.east = window.east;
            cellhd.west = window.west;
            if (routput)
                Rast_put_cellhd(routput, &cellhd);
            if (color_output) {
                char* output_r = get_color_name(color_output, "r");
                char* output_g = get_color_name(color_output, "g");
                char* output_b = get_color_name(color_output, "b");
                Rast_put_cellhd(output_r, &cellhd);
                Rast_put_cellhd(output_g, &cellhd);
                Rast_put_cellhd(output_b, &cellhd);
            }
            set_default_color(routput);
            if (contours_output) {
                contours(routput, contours_output, atof(contours_step_opt->answer));
            }
            if (use_equalized) {
                equalized(routput);
            }
        }
        // write to PLY
        if (ply) {
            pcl::PLYWriter writer;
            for (int i=0; i < cloud->points.size(); i++) {
                if (region3D)
                    cloud->points[i].z = (cloud->points[i].z + zrange_max) * scale / zexag + offset;
                else
                    cloud->points[i].z = (cloud->points[i].z - bbox.B) * scale / zexag + offset;
                cloud->points[i].x = (cloud->points[i].x - bbox.W) * scale + window.west;
                cloud->points[i].y = (cloud->points[i].y - bbox.S) * scale + window.south;

            }
            writer.write<pcl::PointXYZRGB>(ply, *cloud, true, true);
        }

        if (!loop_flag->answer)
            j++;
    }

    k2g.shutDown();

    return EXIT_SUCCESS;
}