Ejemplo n.º 1
0
int
process(char *name, char *mapset, int change_null, RASTER_MAP_TYPE map_type)
{
    struct Colors colr;
    struct History hist;
    struct Categories cats;
    struct Quant quant;
    int colr_ok;
    int hist_ok;
    int cats_ok;
    int quant_ok;

    G_suppress_warnings(1);
    colr_ok = G_read_colors(name, mapset, &colr) > 0;
    hist_ok = G_read_history(name, mapset, &hist) >= 0;
    cats_ok = G_read_raster_cats(name, mapset, &cats) >= 0;

    if (map_type != CELL_TYPE) {
	G_quant_init(&quant);
	quant_ok = G_read_quant(name, mapset, &quant);
	G_suppress_warnings(0);
    }

    if (doit(name, mapset, change_null, map_type))
	return 1;

    if (colr_ok) {
	G_write_colors(name, mapset, &colr);
	G_free_colors(&colr);
    }
    if (hist_ok)
	G_write_history(name, &hist);
    if (cats_ok) {
	cats.num = G_number_of_cats(name, mapset);
	G_write_raster_cats(name, &cats);
	G_free_cats(&cats);
    }
    if (map_type != CELL_TYPE && quant_ok)
	G_write_quant(name, mapset, &quant);

    return 0;
}
Ejemplo n.º 2
0
int main(int argc, char *argv[])
{
    char *terrainmap, *seedmap, *lakemap, *mapset;
    int rows, cols, in_terran_fd, out_fd, lake_fd, row, col, pases, pass;
    int lastcount, curcount, start_col = 0, start_row = 0;
    double east, north, area = 0, volume = 0;
    FCELL **in_terran, **out_water, water_level, max_depth = 0, min_depth = 0;
    FCELL water_window[3][3];
    struct Option *tmap_opt, *smap_opt, *wlvl_opt, *lake_opt, *sdxy_opt;
    struct Flag *negative_flag, *overwrite_flag;
    struct GModule *module;
    struct Colors colr;
    struct Cell_head window;
    struct History history;

    G_gisinit(argv[0]);
    
    module = G_define_module();
    module->keywords = _("raster, hydrology");
    module->description = _("Fills lake at given point to given level.");

    tmap_opt = G_define_option();
    tmap_opt->key = "dem";
    tmap_opt->key_desc = "name";
    tmap_opt->description = _("Name of terrain raster map (DEM)");
    tmap_opt->type = TYPE_STRING;
    tmap_opt->gisprompt = "old,cell,raster";
    tmap_opt->required = YES;

    wlvl_opt = G_define_option();
    wlvl_opt->key = "wl";
    wlvl_opt->description = _("Water level");
    wlvl_opt->type = TYPE_DOUBLE;
    wlvl_opt->required = YES;

    lake_opt = G_define_option();
    lake_opt->key = "lake";
    lake_opt->key_desc = "name";
    lake_opt->description = _("Name for output raster map with lake");
    lake_opt->type = TYPE_STRING;
    lake_opt->gisprompt = "new,cell,raster";
    lake_opt->required = NO;

    sdxy_opt = G_define_option();
    sdxy_opt->key = "xy";
    sdxy_opt->description = _("Seed point coordinates");
    sdxy_opt->type = TYPE_DOUBLE;
    sdxy_opt->key_desc = "east,north";
    sdxy_opt->required = NO;
    sdxy_opt->multiple = NO;

    smap_opt = G_define_option();
    smap_opt->key = "seed";
    smap_opt->key_desc = "name";
    smap_opt->description =
	_("Name of raster map with given starting point(s) (at least 1 cell > 0)");
    smap_opt->type = TYPE_STRING;
    smap_opt->gisprompt = "old,cell,raster";
    smap_opt->required = NO;

    negative_flag = G_define_flag();
    negative_flag->key = 'n';
    negative_flag->description =
	_("Use negative depth values for lake raster map");

    overwrite_flag = G_define_flag();
    overwrite_flag->key = 'o';
    overwrite_flag->description =
	_("Overwrite seed map with result (lake) map");

    if (G_parser(argc, argv))	/* Returns 0 if successful, non-zero otherwise */
	exit(EXIT_FAILURE);

    if (smap_opt->answer && sdxy_opt->answer)
	G_fatal_error(_("Both seed map and coordinates cannot be specified"));

    if (!smap_opt->answer && !sdxy_opt->answer)
	G_fatal_error(_("Seed map or seed coordinates must be set!"));

    if (sdxy_opt->answer && !lake_opt->answer)
	G_fatal_error(_("Seed coordinates and output map lake= must be set!"));

    if (lake_opt->answer && overwrite_flag->answer)
	G_fatal_error(_("Both lake and overwrite cannot be specified"));

    if (!lake_opt->answer && !overwrite_flag->answer)
	G_fatal_error(_("Output lake map or overwrite flag must be set!"));

    terrainmap = tmap_opt->answer;
    seedmap = smap_opt->answer;
    sscanf(wlvl_opt->answer, "%f", &water_level);
    lakemap = lake_opt->answer;

    /* If lakemap is set, write to it, else is set overwrite flag and we should write to seedmap. */
    if (lakemap) {
	lake_fd = G_open_raster_new(lakemap, 1);
	if (lake_fd < 0)
	    G_fatal_error(_("Unable to create raster map <%s>"), lakemap);
    }

    rows = G_window_rows();
    cols = G_window_cols();

    /* If we use x,y as seed... */
    if (sdxy_opt->answer) {
	G_get_window(&window);
	east = window.east;
	north = window.north;

	G_scan_easting(sdxy_opt->answers[0], &east, G_projection());
	G_scan_northing(sdxy_opt->answers[1], &north, G_projection());
	start_col = (int)G_easting_to_col(east, &window);
	start_row = (int)G_northing_to_row(north, &window);

	if (start_row < 0 || start_row > rows ||
	    start_col < 0 || start_col > cols)
	    G_fatal_error(_("Seed point outside the current region"));
    }

    /* Open terran map */
    mapset = G_find_cell2(terrainmap, "");
    if (mapset == NULL)
	G_fatal_error(_("Raster map <%s> not found"), terrainmap);

    in_terran_fd = G_open_cell_old(terrainmap, mapset);
    if (in_terran_fd < 0)
	G_fatal_error(_("Unable to open raster map <%s>"),
		      G_fully_qualified_name(terrainmap, mapset));

    /* Open seed map */
    if (smap_opt->answer) {
	mapset = G_find_cell2(seedmap, "");
	if (mapset == NULL)
	    G_fatal_error(_("Raster map <%s> not found"), seedmap);

	out_fd = G_open_cell_old(seedmap, mapset);
	if (out_fd < 0)
	    G_fatal_error(_("Unable to open raster map <%s>"),
			  G_fully_qualified_name(seedmap, mapset));
    }

    /* Pointers to rows. Row = ptr to 'col' size array. */
    in_terran = (FCELL **) G_malloc(rows * sizeof(FCELL *));
    out_water = (FCELL **) G_malloc(rows * sizeof(FCELL *));
    if (in_terran == NULL || out_water == NULL)
	G_fatal_error(_("G_malloc: out of memory"));


    G_debug(1, "Loading maps...");
    /* foo_rows[row] == array with data (2d array). */
    for (row = 0; row < rows; row++) {
	in_terran[row] = (FCELL *) G_malloc(cols * sizeof(FCELL));
	out_water[row] = (FCELL *) G_calloc(cols, sizeof(FCELL));

	/* In newly created space load data from file. */
	if (G_get_f_raster_row(in_terran_fd, in_terran[row], row) != 1)
	    G_fatal_error(_("Unable to read raster map <%s> row %d"),
			  terrainmap, row);

	if (smap_opt->answer)
	    if (G_get_f_raster_row(out_fd, out_water[row], row) != 1)
		G_fatal_error(_("Unable to read raster map <%s> row %d"),
			      seedmap, row);

	G_percent(row + 1, rows, 5);
    }

    /* Set seed point */
    if (sdxy_opt->answer)
	/* Check is water level higher than seed point */
	if (in_terran[start_row][start_col] >= water_level)
	    G_fatal_error(_("Given water level at seed point is below earth surface. "
			   "Increase water level or move seed point."));
    out_water[start_row][start_col] = 1;

    /* Close seed map for reading. */
    if (smap_opt->answer)
	G_close_cell(out_fd);

    /* Open output map for writing. */
    if (lakemap) {
	out_fd = lake_fd;
    }
    else {
	out_fd = G_open_raster_new(seedmap, 1);
	if (out_fd < 0)
	    G_fatal_error(_("Unable to create raster map <%s>"), seedmap);
    }

    /* More pases are renudant. Real pases count is controled by altered cell count. */
    pases = (int)(rows * cols) / 2;

    G_debug(1,
	    "Starting lake filling at level of %8.4f in %d passes. Percent done:",
	    water_level, pases);

    lastcount = 0;

    for (pass = 0; pass < pases; pass++) {
	G_debug(3, "Pass: %d", pass);
	curcount = 0;
	/* Move from left upper corner to right lower corner. */
	for (row = 0; row < rows; row++) {
	    for (col = 0; col < cols; col++) {
		/* Loading water data into window. */
		load_window_values(out_water, water_window, rows, cols, row,
				   col);

		/* Cheking presence of water. */
		if (is_near_water(water_window) == 1) {
		    if (in_terran[row][col] < water_level) {
			out_water[row][col] =
			    water_level - in_terran[row][col];
			curcount++;
		    }
		    else {
			out_water[row][col] = 0;	/* Cell is higher than water level -> NULL. */
		    }
		}
	    }
	}
	if (curcount == lastcount)
	    break;		/* We done. */
	lastcount = curcount;
	curcount = 0;
	/* Move backwards - from lower right corner to upper left corner. */
	for (row = rows - 1; row >= 0; row--) {
	    for (col = cols - 1; col >= 0; col--) {
		load_window_values(out_water, water_window, rows, cols, row,
				   col);

		if (is_near_water(water_window) == 1) {
		    if (in_terran[row][col] < water_level) {
			out_water[row][col] =
			    water_level - in_terran[row][col];
			curcount++;
		    }
		    else {
			out_water[row][col] = 0;
		    }
		}
	    }
	}
	G_percent(pass + 1, pases, 10);
	if (curcount == lastcount)
	    break;		/* We done. */
	lastcount = curcount;
    }				/*pases */

    G_percent(pases, pases, 10);	/* Show 100%. */

    save_map(out_water, out_fd, rows, cols, negative_flag->answer, &min_depth,
	     &max_depth, &area, &volume);

    G_message(_("Lake depth from %f to %f"), min_depth, max_depth);
    G_message(_("Lake area %f square meters"), area);
    G_message(_("Lake volume %f cubic meters"), volume);
    G_warning(_("Volume is correct only if lake depth (terrain raster map) is in meters"));

    /* Close all files. Lake map gets written only now. */
    G_close_cell(in_terran_fd);
    G_close_cell(out_fd);

    /* Add blue color gradient from light bank to dark depth */
    G_init_colors(&colr);
    if (negative_flag->answer == 1) {
	G_add_f_raster_color_rule(&max_depth, 0, 240, 255,
				  &min_depth, 0, 50, 170, &colr);
    }
    else {
	G_add_f_raster_color_rule(&min_depth, 0, 240, 255,
				  &max_depth, 0, 50, 170, &colr);
    }

    if (G_write_colors(lakemap, G_mapset(), &colr) != 1)
	G_fatal_error(_("Unable to read color file of raster map <%s>"),
		      lakemap);

    G_short_history(lakemap, "raster", &history);
    G_command_history(&history);
    G_write_history(lakemap, &history);

    return EXIT_SUCCESS;
}
Ejemplo n.º 3
0
int main(int argc, char **argv)
{
    int overwrite;
    int interactive;
    int remove;
    int have_colors;
    struct Colors colors, colors_tmp;
    struct Cell_stats statf;
    int have_stats = 0;
    struct FPRange range;
    DCELL min, max;
    char *name, *mapset;
    char *style, *cmap, *cmapset;
    char *rules;
    int fp;
    struct GModule *module;
    struct
    {
	struct Flag *r, *w, *l, *g, *a, *e, *i, *q, *n;
    } flag;
    struct
    {
	struct Option *map, *colr, *rast, *rules;
    } opt;


    G_gisinit(argv[0]);

    module = G_define_module();
    module->keywords = _("raster, color table");
    module->description =
	_("Creates/modifies the color table associated with a raster map layer.");

    opt.map = G_define_standard_option(G_OPT_R_MAP);
    opt.map->required = NO;
    opt.map->guisection = _("Required");

    scan_rules();

    opt.colr = G_define_option();
    opt.colr->key = "color";
    opt.colr->key_desc = "style";
    opt.colr->type = TYPE_STRING;
    opt.colr->required = NO;
    opt.colr->options = rules_list();
    opt.colr->description = _("Type of color table");
    opt.colr->descriptions = rules_descriptions();
    opt.colr->guisection = _("Colors");

    opt.rast = G_define_option();
    opt.rast->key = "raster";
    opt.rast->type = TYPE_STRING;
    opt.rast->required = NO;
    opt.rast->gisprompt = "old,cell,raster";
    opt.rast->description =
	_("Raster map name from which to copy color table");

    opt.rules = G_define_standard_option(G_OPT_F_INPUT);
    opt.rules->key = "rules";
    opt.rules->required = NO;
    opt.rules->description = _("Path to rules file (\"-\" to read rules from stdin)");
    opt.rules->guisection = _("Colors");

    flag.r = G_define_flag();
    flag.r->key = 'r';
    flag.r->description = _("Remove existing color table");

    flag.w = G_define_flag();
    flag.w->key = 'w';
    flag.w->description =
	_("Only write new color table if one doesn't already exist");

    flag.l = G_define_flag();
    flag.l->key = 'l';
    flag.l->description = _("List available rules then exit");

    flag.n = G_define_flag();
    flag.n->key = 'n';
    flag.n->description = _("Invert colors");
    flag.n->guisection = _("Colors");

    flag.g = G_define_flag();
    flag.g->key = 'g';
    flag.g->description = _("Logarithmic scaling");
    flag.g->guisection = _("Colors");

    flag.a = G_define_flag();
    flag.a->key = 'a';
    flag.a->description = _("Logarithmic-absolute scaling");
    flag.a->guisection = _("Colors");

    flag.e = G_define_flag();
    flag.e->key = 'e';
    flag.e->description = _("Histogram equalization");
    flag.e->guisection = _("Colors");

    flag.i = G_define_flag();
    flag.i->key = 'i';
    flag.i->description = _("Enter rules interactively");

    /* please, remove before GRASS 7 released */
    flag.q = G_define_flag();
    flag.q->key = 'q';
    flag.q->description = _("Run quietly");


    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    /* please, remove before GRASS 7 released */
    if (flag.q->answer) {
	G_putenv("GRASS_VERBOSE", "0");
	G_warning(_("The '-q' flag is superseded and will be removed "
		    "in future. Please use '--quiet' instead."));
    }

    if (flag.l->answer) {
	list_rules();
	return EXIT_SUCCESS;
    }

    overwrite = !flag.w->answer;
    interactive = flag.i->answer;
    remove = flag.r->answer;

    name = opt.map->answer;

    style = opt.colr->answer;
    cmap = opt.rast->answer;
    rules = opt.rules->answer;

    if (!name)
	G_fatal_error(_("No raster map specified"));

    if (!cmap && !style && !rules && !interactive && !remove)
	G_fatal_error(_("One of \"-i\" or \"-r\" or options \"color\", \"rast\" or \"rules\" must be specified!"));

    if (interactive && (style || rules || cmap))
	G_fatal_error(_("Interactive mode is incompatible with \"color\", \"rules\", and \"raster\" options"));

    if ((style && (cmap || rules)) || (cmap && rules)) {
	if ((style && rules && !cmap) && strcmp(style, "rules") == 0)
	    style = NULL;
	else
	    G_fatal_error(
		_("\"color\", \"rules\", and \"raster\" options are mutually exclusive"));
    }

    /* handle rules="-" (from stdin) by translating that to colors=rules */
    /* this method should not be ported to GRASS 7 verbatim, as color=rules DNE */
    if (rules && strcmp(rules, "-") == 0) {
	style = G_store("rules");
	rules = NULL;
    }

    if (flag.g->answer && flag.a->answer)
	G_fatal_error(_("-g and -a flags are mutually exclusive"));

    mapset = G_find_cell2(name, "");
    if (mapset == NULL)
	G_fatal_error(_("Raster map <%s> not found"), name);

    if (remove) {
	int stat = G_remove_colors(name, mapset);

	if (stat < 0)
	    G_fatal_error(_("Unable to remove color table of raster map <%s>"), name);
	if (stat == 0)
	    G_warning(_("Color table of raster map <%s> not found"), name);
	return EXIT_SUCCESS;
    }

    G_suppress_warnings(1);
    have_colors = G_read_colors(name, mapset, &colors);
    /*if (have_colors >= 0)
       G_free_colors(&colors); */

    if (have_colors > 0 && !overwrite) {
	G_warning(_("Color table exists. Exiting."));
	exit(EXIT_FAILURE);
    }

    G_suppress_warnings(0);

    fp = G_raster_map_is_fp(name, mapset);
    G_read_fp_range(name, mapset, &range);
    G_get_fp_range_min_max(&range, &min, &max);

    if (interactive) {
	if (!read_color_rules(stdin, &colors, min, max, fp))
	    exit(EXIT_FAILURE);
    }
    else if (style) {
	/* 
	 * here the predefined color-table color-styles are created by GRASS library calls. 
	 */
	if (strcmp(style, "random") == 0) {
	    if (fp)
		G_fatal_error(_("Color table 'random' is not supported for floating point raster map"));
	    G_make_random_colors(&colors, (CELL) min, (CELL) max);
	}
	else if (strcmp(style, "grey.eq") == 0) {
	    if (fp)
		G_fatal_error(_("Color table 'grey.eq' is not supported for floating point raster map"));
	    if (!have_stats)
		have_stats = get_stats(name, mapset, &statf);
	    G_make_histogram_eq_colors(&colors, &statf);
	}
	else if (strcmp(style, "grey.log") == 0) {
	    if (fp)
		G_fatal_error(_("Color table 'grey.log' is not supported for floating point raster map"));
	    if (!have_stats)
		have_stats = get_stats(name, mapset, &statf);
	    G_make_histogram_log_colors(&colors, &statf, (CELL) min,
					(CELL) max);
	}
	else if (strcmp(style, "rules") == 0) {
	    if (!read_color_rules(stdin, &colors, min, max, fp))
		exit(EXIT_FAILURE);
	}
	else if (find_rule(style))
	    G_make_fp_colors(&colors, style, min, max);
	else
	    G_fatal_error(_("Unknown color request '%s'"), style);
    }
    else if (rules) {
	if (!G_load_fp_colors(&colors, rules, min, max)) {
	    /* for backwards compatibility try as std name; remove for GRASS 7 */
	    char path[GPATH_MAX];

	    /* don't bother with native dirsep as not needed for backwards compatibility */
	    sprintf(path, "%s/etc/colors/%s", G_gisbase(), rules);

	    if (!G_load_fp_colors(&colors, path, min, max))
		G_fatal_error(_("Unable to load rules file <%s>"), rules);
	}
    }
    else {
	/* use color from another map (cmap) */
	cmapset = G_find_cell2(cmap, "");
	if (cmapset == NULL)
	    G_fatal_error(_("Raster map <%s> not found"), cmap);

	if (G_read_colors(cmap, cmapset, &colors) < 0)
	    G_fatal_error(_("Unable to read color table for raster map <%s>"), cmap);
    }

    if (fp)
	G_mark_colors_as_fp(&colors);

    if (flag.n->answer)
	G_invert_colors(&colors);

    if (flag.e->answer) {
	if (fp) {
	    struct FP_stats fpstats;
	    get_fp_stats(name, mapset, &fpstats, min, max, flag.g->answer, flag.a->answer);
	    G_histogram_eq_colors_fp(&colors_tmp, &colors, &fpstats);
	}
	else {
	    if (!have_stats) 
		have_stats = get_stats(name, mapset, &statf);
	    G_histogram_eq_colors(&colors_tmp, &colors, &statf);
	}
	colors = colors_tmp;
    }

    if (flag.g->answer) {
	G_log_colors(&colors_tmp, &colors, 100);
	colors = colors_tmp;
    }

    if (flag.a->answer) {
	G_abs_log_colors(&colors_tmp, &colors, 100);
	colors = colors_tmp;
    }

    if (fp)
	G_mark_colors_as_fp(&colors);

    if (G_write_colors(name, mapset, &colors) >= 0)
	G_message(_("Color table for raster map <%s> set to '%s'"), name,
		  interactive ? "rules" : style ? style : rules ? rules :
		  cmap);

    exit(EXIT_SUCCESS);
}
Ejemplo n.º 4
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    struct Option *rastin, *rastout, *method;
    struct History history;
    char title[64];
    char buf_nsres[100], buf_ewres[100];
    struct Colors colors;
    char *inmap;
    int infile, outfile;
    DCELL *outbuf;
    int row, col;
    struct Cell_head dst_w, src_w;

    G_gisinit(argv[0]);

    module = G_define_module();
    module->keywords = _("raster, resample");
    module->description =
	_("Resamples raster map layers to a finer grid using interpolation.");

    rastin = G_define_standard_option(G_OPT_R_INPUT);
    rastout = G_define_standard_option(G_OPT_R_OUTPUT);

    method = G_define_option();
    method->key = "method";
    method->type = TYPE_STRING;
    method->required = NO;
    method->description = _("Interpolation method");
    method->options = "nearest,bilinear,bicubic";
    method->answer = "bilinear";

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    if (G_strcasecmp(method->answer, "nearest") == 0)
	neighbors = 1;
    else if (G_strcasecmp(method->answer, "bilinear") == 0)
	neighbors = 2;
    else if (G_strcasecmp(method->answer, "bicubic") == 0)
	neighbors = 4;
    else
	G_fatal_error(_("Invalid method: %s"), method->answer);

    G_get_set_window(&dst_w);

    inmap = G_find_cell2(rastin->answer, "");
    if (!inmap)
	G_fatal_error(_("Raster map <%s> not found"), rastin->answer);

    /* set window to old map */
    G_get_cellhd(rastin->answer, inmap, &src_w);

    /* enlarge source window */
    {
	double north = G_row_to_northing(0.5, &dst_w);
	double south = G_row_to_northing(dst_w.rows - 0.5, &dst_w);
	int r0 = (int)floor(G_northing_to_row(north, &src_w) - 0.5) - 1;
	int r1 = (int)floor(G_northing_to_row(south, &src_w) - 0.5) + 3;
	double west = G_col_to_easting(0.5, &dst_w);
	double east = G_col_to_easting(dst_w.cols - 0.5, &dst_w);
	int c0 = (int)floor(G_easting_to_col(west, &src_w) - 0.5) - 1;
	int c1 = (int)floor(G_easting_to_col(east, &src_w) - 0.5) + 3;

	src_w.south -= src_w.ns_res * (r1 - src_w.rows);
	src_w.north += src_w.ns_res * (-r0);
	src_w.west -= src_w.ew_res * (-c0);
	src_w.east += src_w.ew_res * (c1 - src_w.cols);
	src_w.rows = r1 - r0;
	src_w.cols = c1 - c0;
    }

    G_set_window(&src_w);

    /* allocate buffers for input rows */
    for (row = 0; row < neighbors; row++)
	bufs[row] = G_allocate_d_raster_buf();

    cur_row = -100;

    /* open old map */
    infile = G_open_cell_old(rastin->answer, inmap);
    if (infile < 0)
	G_fatal_error(_("Unable to open raster map <%s>"), rastin->answer);

    /* reset window to current region */
    G_set_window(&dst_w);

    outbuf = G_allocate_d_raster_buf();

    /* open new map */
    outfile = G_open_raster_new(rastout->answer, DCELL_TYPE);
    if (outfile < 0)
	G_fatal_error(_("Unable to create raster map <%s>"), rastout->answer);

    G_suppress_warnings(1);
    /* otherwise get complaints about window changes */

    switch (neighbors) {
    case 1:			/* nearest */
	for (row = 0; row < dst_w.rows; row++) {
	    double north = G_row_to_northing(row + 0.5, &dst_w);
	    double maprow_f = G_northing_to_row(north, &src_w) - 0.5;
	    int maprow0 = (int)floor(maprow_f + 0.5);

	    G_percent(row, dst_w.rows, 2);

	    G_set_window(&src_w);
	    read_rows(infile, maprow0);

	    for (col = 0; col < dst_w.cols; col++) {
		double east = G_col_to_easting(col + 0.5, &dst_w);
		double mapcol_f = G_easting_to_col(east, &src_w) - 0.5;
		int mapcol0 = (int)floor(mapcol_f + 0.5);

		double c = bufs[0][mapcol0];

		if (G_is_d_null_value(&c)) {
		    G_set_d_null_value(&outbuf[col], 1);
		}
		else {
		    outbuf[col] = c;
		}
	    }

	    G_set_window(&dst_w);
	    G_put_d_raster_row(outfile, outbuf);
	}
	break;

    case 2:			/* bilinear */
	for (row = 0; row < dst_w.rows; row++) {
	    double north = G_row_to_northing(row + 0.5, &dst_w);
	    double maprow_f = G_northing_to_row(north, &src_w) - 0.5;
	    int maprow0 = (int)floor(maprow_f);
	    double v = maprow_f - maprow0;

	    G_percent(row, dst_w.rows, 2);

	    G_set_window(&src_w);
	    read_rows(infile, maprow0);

	    for (col = 0; col < dst_w.cols; col++) {
		double east = G_col_to_easting(col + 0.5, &dst_w);
		double mapcol_f = G_easting_to_col(east, &src_w) - 0.5;
		int mapcol0 = (int)floor(mapcol_f);
		int mapcol1 = mapcol0 + 1;
		double u = mapcol_f - mapcol0;

		double c00 = bufs[0][mapcol0];
		double c01 = bufs[0][mapcol1];
		double c10 = bufs[1][mapcol0];
		double c11 = bufs[1][mapcol1];

		if (G_is_d_null_value(&c00) ||
		    G_is_d_null_value(&c01) ||
		    G_is_d_null_value(&c10) || G_is_d_null_value(&c11)) {
		    G_set_d_null_value(&outbuf[col], 1);
		}
		else {
		    outbuf[col] = G_interp_bilinear(u, v, c00, c01, c10, c11);
		}
	    }

	    G_set_window(&dst_w);
	    G_put_d_raster_row(outfile, outbuf);
	}
	break;

    case 4:			/* bicubic */
	for (row = 0; row < dst_w.rows; row++) {
	    double north = G_row_to_northing(row + 0.5, &dst_w);
	    double maprow_f = G_northing_to_row(north, &src_w) - 0.5;
	    int maprow1 = (int)floor(maprow_f);
	    int maprow0 = maprow1 - 1;
	    double v = maprow_f - maprow1;

	    G_percent(row, dst_w.rows, 2);

	    G_set_window(&src_w);
	    read_rows(infile, maprow0);

	    for (col = 0; col < dst_w.cols; col++) {
		double east = G_col_to_easting(col + 0.5, &dst_w);
		double mapcol_f = G_easting_to_col(east, &src_w) - 0.5;
		int mapcol1 = (int)floor(mapcol_f);
		int mapcol0 = mapcol1 - 1;
		int mapcol2 = mapcol1 + 1;
		int mapcol3 = mapcol1 + 2;
		double u = mapcol_f - mapcol1;

		double c00 = bufs[0][mapcol0];
		double c01 = bufs[0][mapcol1];
		double c02 = bufs[0][mapcol2];
		double c03 = bufs[0][mapcol3];

		double c10 = bufs[1][mapcol0];
		double c11 = bufs[1][mapcol1];
		double c12 = bufs[1][mapcol2];
		double c13 = bufs[1][mapcol3];

		double c20 = bufs[2][mapcol0];
		double c21 = bufs[2][mapcol1];
		double c22 = bufs[2][mapcol2];
		double c23 = bufs[2][mapcol3];

		double c30 = bufs[3][mapcol0];
		double c31 = bufs[3][mapcol1];
		double c32 = bufs[3][mapcol2];
		double c33 = bufs[3][mapcol3];

		if (G_is_d_null_value(&c00) ||
		    G_is_d_null_value(&c01) ||
		    G_is_d_null_value(&c02) ||
		    G_is_d_null_value(&c03) ||
		    G_is_d_null_value(&c10) ||
		    G_is_d_null_value(&c11) ||
		    G_is_d_null_value(&c12) ||
		    G_is_d_null_value(&c13) ||
		    G_is_d_null_value(&c20) ||
		    G_is_d_null_value(&c21) ||
		    G_is_d_null_value(&c22) ||
		    G_is_d_null_value(&c23) ||
		    G_is_d_null_value(&c30) ||
		    G_is_d_null_value(&c31) ||
		    G_is_d_null_value(&c32) || G_is_d_null_value(&c33)) {
		    G_set_d_null_value(&outbuf[col], 1);
		}
		else {
		    outbuf[col] = G_interp_bicubic(u, v,
						   c00, c01, c02, c03,
						   c10, c11, c12, c13,
						   c20, c21, c22, c23,
						   c30, c31, c32, c33);
		}
	    }

	    G_set_window(&dst_w);
	    G_put_d_raster_row(outfile, outbuf);
	}
	break;
    }

    G_percent(dst_w.rows, dst_w.rows, 2);

    G_close_cell(infile);
    G_close_cell(outfile);


    /* record map metadata/history info */
    sprintf(title, "Resample by %s interpolation", method->answer);
    G_put_cell_title(rastout->answer, title);

    G_short_history(rastout->answer, "raster", &history);
    strncpy(history.datsrc_1, rastin->answer, RECORD_LEN);
    history.datsrc_1[RECORD_LEN - 1] = '\0';	/* strncpy() doesn't null terminate if maxfill */
    G_format_resolution(src_w.ns_res, buf_nsres, src_w.proj);
    G_format_resolution(src_w.ew_res, buf_ewres, src_w.proj);
    sprintf(history.datsrc_2, "Source map NS res: %s   EW res: %s", buf_nsres,
	    buf_ewres);
    G_command_history(&history);
    G_write_history(rastout->answer, &history);

    /* copy color table from source map */
    if (G_read_colors(rastin->answer, inmap, &colors) < 0)
	G_fatal_error(_("Unable to read color table for %s"), rastin->answer);
    G_mark_colors_as_fp(&colors);
    if (G_write_colors(rastout->answer, G_mapset(), &colors) < 0)
	G_fatal_error(_("Unable to write color table for %s"),
		      rastout->answer);

    return (EXIT_SUCCESS);
}
Ejemplo n.º 5
0
int make_new_cell_layer(void)
{
    struct History hist;
    void *rast;
    int cellfd;

    int tmpfd;
    int row;

    /* open the new raster map to contain the edited version of
       the original cell layer. open our temporary file for read
       and copy its contents to the layer */

    G_set_window(&real_window);

    cellfd = G_open_raster_new(new_name, map_type);
    tmpfd = open(tempfile, 0);
    lseek(tmpfd, 0L, 0);

    rast = G_allocate_raster_buf(map_type);

    fprintf(stderr, "\n     +-------------------------------------------+\n");
    fprintf(stderr, "     |         Saving new cell layer             |\n");
    fprintf(stderr, "     +---------------------------------------");


    for (row = 0; row < real_nrows; row++) {
	if (read(tmpfd, rast, real_ncols * cellsize) !=
	    (real_ncols * cellsize))
	    error(1, "error writing raster map during copy");
	G_put_raster_row(cellfd, rast, map_type);
	G_percent(row, real_nrows, 5);
    }
    G_percent(100, 100, 5);
    fprintf(stderr, "\n");

    close(tmpfd);
    G_close_cell(cellfd);
    unlink(tempfile);

    /* create and write cat, colr, quant, and hist support files
       for the newly created layer */

    if (colr_ok) {
	G_write_colors(new_name, user_mapset, &colr);
	G_free_colors(&colr);
	colr_ok = 0;
    }
    if (cats_ok) {
	cats.num = G_number_of_cats(new_name, user_mapset);
	G_write_cats(new_name, &cats);
	G_free_cats(&cats);
	cats_ok = 0;
    }
    if (quant_ok) {
	G_write_quant(new_name, G_mapset(), &quant);
	G_quant_free(&quant);
	cats_ok = 0;
    }

    /* construct some history information */
    sprintf(hist.mapid, "%s", G_date());
    sprintf(hist.title, "%s", new_name);
    sprintf(hist.mapset, "%s", user_mapset);
    sprintf(hist.creator, "%s", G_whoami());
    sprintf(hist.maptype, "cell");
    sprintf(hist.edhist[0],
	    "Generated by d.rast.edit from original raster map");
    sprintf(hist.edhist[1], "  %s in mapset %s ", orig_name, orig_mapset);
    hist.edlinecnt = 2;

    /* write history */
    if (G_write_history(new_name, &hist) == -1)
	error(0, "could not write history");

    return 0;
}
Ejemplo n.º 6
0
void do_calculations_rast (Shypothesis **samples, char **groups, int norm,
						  char* basename, char **outvals, char *hypspec, int quiet_flag,
						  char *logfile, xmlDocPtr doc, Sfp_struct* file_pointers) {
	
	long y,x;
	int i, j, k, l, m;
	long ymax,xmax;
	double woc;
	struct Categories cats, icats;
	DCELL cmin, cmax;
	Sresult_struct *result_row; /* one result_struct for each DST value */
	BOOL **garbage;
	int no_hyps;
	char* val_names[NUMVALS]={"bel","pl","doubt","common","bint","woc","maxbpa","minbpa",
				  "maxsrc","minsrc"};
	int error;
	char **outhyps;
	int no_sets;
	
	/* for keeping min and max statistics */
	Uint nsets;
	double *min_backup, *max_backup;
	int *minev_backup, *maxev_backup;
	
	woc = 0;

	/* check for output options */
	if ( G_legal_filename(basename) != 1 ) {
		G_fatal_error ("Please provide a legal filename as basename for output maps(s).\n");
	}
	
	if ( hypspec != NULL ) { 
		/* user specified hyps, let's see if they're valid */		
		/* create an outhyps array that has as each of its elements the name
			of one of the hypotheses specified on the command line */
		outhyps = parse_hyps (hypspec, &no_hyps);
		check_hyps ( outhyps, no_hyps, doc );				
	} else {
		/* just process all hypotheses */
		outhyps = get_hyp_names_XML ( &no_hyps, doc );
	}

	if ( logfile != NULL ) {	
		fprintf (lp,"Writing output RASTER maps for: \n");
	}
	
	/* create raster rows to store results */
	result_row = G_malloc ( NUMVALS * sizeof (Sresult_struct) );	
	for (i=0; i<NUMVALS; i++) {
		result_row[i].use = NO;
		strcpy (result_row[i].valname,val_names[i]);
		/* individual raster rows will be alloc'd later */
		result_row[i].row = (DCELL **) G_malloc ( no_hyps * sizeof (DCELL*) ); 
		result_row[i].crow = (CELL **) G_malloc ( no_hyps * sizeof (CELL*) );
		result_row[i].filename = NULL;
	}	
	
	j = 0;
	while ( outvals[j] != NULL ) {
	
		if ( !strcmp (outvals[j],"bel") ) {
			if ( logfile != NULL ) 
				fprintf (lp,"\t'bel' (Believe) values\n");
			make_result_row ( BEL, basename, outhyps, no_hyps, &result_row[BEL], doc );			
		}
		if ( !strcmp (outvals[j],"pl") ) {
			if ( logfile != NULL ) 
				fprintf (lp,"\t'pl' (Plausibility) values\n");
			make_result_row ( PL, basename, outhyps, no_hyps, &result_row[PL], doc );
		}
		if ( !strcmp (outvals[j],"doubt") ) {
			if ( logfile != NULL ) 
				fprintf (lp,"\t'doubt' (Doubt) values\n");
			make_result_row ( DOUBT, basename, outhyps, no_hyps, &result_row[DOUBT], doc );
		}
		if ( !strcmp (outvals[j],"common") ) {
			if ( logfile != NULL ) 
				fprintf (lp,"\t'common' (Commonality) values\n");
			make_result_row ( COMMON, basename, outhyps, no_hyps, &result_row[COMMON], doc );
		}
		if ( !strcmp (outvals[j],"bint") ) {
			if ( logfile != NULL ) 
				fprintf (lp,"\t'bint' (Believe interval) values\n");
			make_result_row ( BINT, basename, outhyps, no_hyps, &result_row[BINT], doc );
		}
		if ( !strcmp (outvals[j],"woc") ) {
			if ( logfile != NULL ) 
				fprintf (lp,"\t'woc' (Weight of conflict) values\n");
			make_result_row ( WOC, basename, outhyps, no_hyps,&result_row[WOC], doc );
		}
		if ( !strcmp (outvals[j],"maxbpa") ) {
			if ( logfile != NULL ) 
				fprintf (lp,"\t'maxbpa' (Maximum BPA) values\n");
			make_result_row ( MAXBPA, basename, outhyps, no_hyps,&result_row[MAXBPA], doc );
		}
		if ( !strcmp (outvals[j],"minbpa") ) {
			if ( logfile != NULL ) 
				fprintf (lp,"\t'minbpa' (Minimum BPA) values\n");
			make_result_row ( MINBPA, basename, outhyps, no_hyps,&result_row[MINBPA], doc );
		}
		if ( !strcmp (outvals[j],"maxsrc") ) {
			if ( logfile != NULL ) 
				fprintf (lp,"\t'maxsrc' (source of highest BPA) values\n");
			make_result_row ( MAXSRC, basename, outhyps, no_hyps,&result_row[MAXSRC], doc );
		}
		if ( !strcmp (outvals[j],"minsrc") ) {
			if ( logfile != NULL ) 
				fprintf (lp,"\t'minsrc' (source of lowest BPA) values\n");
			make_result_row ( MINSRC, basename, outhyps, no_hyps,&result_row[MINSRC], doc );
		}
		j ++;
	}
	
	/* open output maps to store results */
	if ( logfile != NULL ) 
		fprintf (lp,"Opening output maps:\n");
	for (i=0; i<NUMVALS;i++) {
		if (result_row[i].use == YES) {
			if ( i == WOC ) {
				if ( logfile != NULL ) 
					fprintf (lp,"\t%s\n",result_row[i].filename[0]);
				result_row[i].fd[0] = G_open_raster_new (result_row[i].filename[0],DCELL_TYPE);
			} else {
				for (j=0; j < no_hyps; j++) {
					if ( logfile != NULL ) 
						fprintf (lp,"\t%s\n",result_row[i].filename[j]);
					if ((i == MAXSRC) || (i == MINSRC)) {
						result_row[i].fd[j] = G_open_raster_new (result_row[i].filename[j],CELL_TYPE);
					} else {
						result_row[i].fd[j] = G_open_raster_new (result_row[i].filename[j],DCELL_TYPE);
					}
					/* check fd for errors */
					if ( result_row[i].fd[j] < 0 ) {
						G_fatal_error ("Could not create output map for %s\n",
										result_row[i].filename[j]);
					}
				}
			}
		}
	}		
	
	if ( logfile != NULL ) {
		fprintf (lp, "Evidence will be combined for these groups:\n");
		for ( i=0; i < N; i++) {
			fprintf (lp,"\t%s\n",groups[i]);
		}
		fprintf (lp, "Output will be stored in mapset '%s'.\n", G_mapset());
		fprintf (lp,"\nRead output below carefully to detect potential problems:\n");
	}			
			
	/* set start coordinates for reading from raster maps */
    	ReadX = 0;
	ReadY = 0;
	
	ymax = G_window_rows ();
	xmax = G_window_cols ();	
	
	if ( !quiet_flag ) {
		fprintf	(stdout,"Combining RAST evidence: \n");
		fflush (stdout);
	}
	
	/* allocate all file pointers */
	/* open raster maps for this group */
	/* 0 is the NULL hypothesis, so we start at 1 */
	no_sets = (Uint) pow((float) 2, (float) NO_SINGLETONS);
	for (l=0; l<N; l++) {
		for ( m = 1; m < no_sets; m ++ ) {
			file_pointers[l].fp[m] = G_open_cell_old ( file_pointers[l].filename[m], G_find_cell ( file_pointers[l].filename[m],"") );
			if ( file_pointers[l].fp[m] < 0 ) {
				G_fatal_error ("Could not open raster map '%s' for reading.\n", file_pointers[l].filename[m] );
			}
		}
	}	
	
	for (y=0; y<ymax; y++) {
		for (x=0; x<xmax; x++) {
			garbage = garbage_init ();
			NULL_SIGNAL = 0;
			
			for (i=0; i<N; i++) {
				samples[i] = get_rast_samples_XML (groups[i],i, norm, &nsets, garbage, doc, file_pointers );	
			}		

			/* get min and max values */
			for (i=0; i<N; i++) {
				if (NULL_SIGNAL == 0) {
					for (k=0; k < nsets; k++) {
						samples[i][k].minbpn = samples[i][k].bpa;
						samples[i][k].maxbpn = samples[i][k].bpa;
						samples[i][k].minbpnev = i + 1;
						samples[i][k].maxbpnev = i + 1;
					}
				}
								
			}
			
			for (i=0; i<N; i++) {
				if (NULL_SIGNAL == 0) {								
					for (j=0; j < N; j++) {
						for (k=0; k < nsets; k++) {
							if (samples[i][k].bpa < samples[j][k].minbpn) {
								samples[j][k].minbpn = samples[i][k].bpa;
								samples[j][k].minbpnev = i + 1;
							}
							if (samples[i][k].bpa > samples[j][k].maxbpn) {
								samples[j][k].maxbpn = samples[i][k].bpa;
								samples[j][k].maxbpnev = i + 1;
							}
						}
					}					
				}
			}
									
			/* initialise: */
			/* set belief and plausibility before first combination of evidence */
			for(i=0;i<N;i++)
			{
				if ( NULL_SIGNAL == 0 ) {
					set_beliefs(samples[i]);					
					set_plausibilities(samples[i]);
				}
			}
			
								
			/* combine evidence and set bel and pl again */
			/* AFTER COMBINE_BPN(), VALUES IN SAMPLES[0] WILL ALL BE ALTERED */
			/* so we must save min and max values for later use */
			min_backup = G_malloc ((unsigned)(nsets * sizeof(double)));			
			max_backup = G_malloc ((unsigned)(nsets * sizeof(double)));			
			minev_backup = G_malloc ((unsigned)(nsets * sizeof(int)));			
			maxev_backup = G_malloc ((unsigned)(nsets * sizeof(int)));
			for (k=0; k < nsets; k++) {
				min_backup[k] = samples[0][k].minbpn;
				max_backup[k] = samples[0][k].maxbpn;
				minev_backup[k] = samples[0][k].minbpnev;
				maxev_backup[k] = samples[0][k].maxbpnev;
			}

			/* now, do the combination! */
			for(i=0;i<N-1;i++)
			{
				if ( NULL_SIGNAL == 0 ) {
					woc = combine_bpn(samples[0], samples[i+1], garbage, RAST_MODE );					
					set_beliefs(samples[0]);					
					set_plausibilities(samples[0]);
				}
			}
			
			/* restore min and max values */
			for (k=0; k < nsets; k++) {
				samples[0][k].minbpn = min_backup[k];
				samples[0][k].maxbpn = max_backup[k];
				samples[0][k].minbpnev = minev_backup[k];
				samples[0][k].maxbpnev = maxev_backup[k];
			}			
			G_free (min_backup);
			G_free (max_backup);
			G_free (minev_backup);
			G_free (maxev_backup);
			
			/* all other metrics can be derived from bel and pl, no need */
			/* to combine evidence again! */
			if ( NULL_SIGNAL == 0 ) {
				set_commonalities(samples[0]);
				set_doubts(samples[0]);
				set_bint(samples[0]);
			}
			
									
			if ( NULL_SIGNAL == 1 ) {
				for (i=0; i<NUMVALS;i++) {
					if (result_row[i].use == YES) {
						if ( i == WOC) {
								write_row_null (result_row[i].row[0], ReadX);							
						} else {
							if ((i == MAXSRC)||(i == MINSRC)) {
								for (j=0; j < no_hyps; j++) {
									write_crow_null (result_row[i].crow[j], ReadX);
								}
					
							} else {							
								for (j=0; j < no_hyps; j++) {
									write_row_null (result_row[i].row[j], ReadX);							
								}
							}
						}
					}
				}				
			} else {
				for (i=0; i<NUMVALS;i++) {
					if (result_row[i].use == YES) {			
						if ( i == WOC ) {
							write_row_val (result_row[i].row[0], ReadX, samples[0], result_row[i].hyp_idx[0], i, woc);
						} else {
							if (( i == MAXSRC ) || ( i == MINSRC )) {
								for (j=0; j < no_hyps; j++) {
									write_crow_val (result_row[i].crow[j], ReadX, samples[0], result_row[i].hyp_idx[j], i);
								}
							} else {
								for (j=0; j < no_hyps; j++) {
									write_row_val (result_row[i].row[j], ReadX, samples[0], result_row[i].hyp_idx[j], i, woc);							
								}
							}
						}
					}
				}
			}
			ReadX ++;
			garbage_free ( garbage );									
			for (i=0; i<N; i++) {
				free_sample (samples[i]);				
			}					
		}
		ReadY ++; /* go to next row */
		ReadX = 0;				
		/* save this row to the result file */
		for (i=0; i<NUMVALS;i++) {
			if (result_row[i].use == YES) {			
				if ( i == WOC ) {
					write_row_file ( result_row[i].row[0],result_row[i].fd[0]);
				} else {
					if ( ( i == MAXSRC ) || ( i == MINSRC ) ) {
						for (j=0; j<no_hyps; j++) {
							write_crow_file ( result_row[i].crow[j],result_row[i].fd[j]);
						}
					} else {
						for (j=0; j<no_hyps; j++) {
							write_row_file ( result_row[i].row[j],result_row[i].fd[j]);
						}
					}
				}
			}
		}
		if ( !quiet_flag ) {
			G_percent (ReadY,ymax,1);
			fflush (stdout);		
		}
	}
	if ( !quiet_flag ) {
		fprintf (stdout,"\n");
		fflush (stdout);
	}
	for (i=0; i<NUMVALS;i++) {
		if (result_row[i].use == YES) {
			if ( i == WOC ) {
				G_close_cell (result_row[i].fd[0]);
			} else {				
				for (j=0; j<no_hyps; j++) {				
					G_close_cell (result_row[i].fd[j]);
				}
			}
		}
	}			
	
	
	/* close raster maps */
	/* 0 is the NULL hypothesis, so we start at 1 */
	for (l=0; l<N; l++) {
		for ( m = 1; m < no_sets; m ++ ) {
			G_close_cell (file_pointers[l].fp[m]);
		}
	}
	
	/* create a categories structure for output maps */
	/* DCELL maps */
	G_init_cats (3, "Value ranges", &cats);
	cmin = 0;
	cmax = 0.333333;
	G_set_d_raster_cat (&cmin, &cmax, "low", &cats);
	cmin = 0.333334;
	cmax = 0.666666;
	G_set_d_raster_cat (&cmin, &cmax, "medium", &cats);
	cmin = 0.666667;
	cmax = 1;
	G_set_d_raster_cat (&cmin, &cmax, "high", &cats);	

	/* CELL maps */
	G_init_cats (N+1, "Source of evidence", &icats);
	G_set_cat (0,"no data",&icats);
	for (i=1; i<=N; i++) {
		G_set_cat (i,groups[i-1],&icats);
	}

	/* write all color tables, categories information and history metadata */
	for (i=0; i<NUMVALS;i++) {
		if (result_row[i].use == YES) {
			if ( i == WOC ) {
				error = G_write_colors (result_row[i].filename[0], G_mapset(), result_row[i].colors[0]);
				if (error == -1) {
					G_warning ("Could not create color table for map '%s'.\n",result_row[i].filename[j]);
				}
			} else {
				if (( i == MAXSRC ) || ( i == MINSRC )) {					
					for (j=0; j<no_hyps; j++) {
						G_write_cats (result_row[i].filename[j], &icats);
					}
				} else {				
					for (j=0; j<no_hyps; j++) {
						error = G_write_colors (result_row[i].filename[j], G_mapset(), result_row[i].colors[j]);
						if (error == -1) {
							G_warning ("Could not create color table for map '%s'.\n",result_row[i].filename[j]);
						}
						G_write_raster_cats (result_row[i].filename[j], &cats);
					}
				}				
			}
		}
	}					
	G_free (samples);
	for ( i=0; i < no_hyps; i ++ ) {
		G_free ( outhyps[i]);
	}
	G_free (outhyps);
}
Ejemplo n.º 7
0
int main(int argc, char *argv[])
{
    /* Global variable & function declarations */
    char Cellmap_orig[50];
    FILE *realfp, *imagfp;	/* the input and output file descriptors */
    int outputfd, maskfd;	/* the input and output file descriptors */
    char *realmapset, *imagmapset;	/* the input mapset names */
    struct Cell_head orig_wind, realhead;
    CELL *cell_row, *maskbuf = NULL;

    int i, j;			/* Loop control variables */
    int or, oc;			/* Original dimensions of image */
    int rows, cols;		/* Smallest powers of 2 >= number of rows & columns */
    long totsize;		/* Total number of data points */
    int halfrows, halfcols;
    double *data[2];		/* Data structure containing real & complex values of FFT */
    struct Option *op1, *op2, *op3;
    struct GModule *module;

    G_gisinit(argv[0]);

    /* Set description */
    module = G_define_module();
    module->keywords = _("imagery, FFT");
    module->description =
	_("Inverse Fast Fourier Transform (IFFT) for image processing.");

    /* define options */
    op1 = G_define_standard_option(G_OPT_R_INPUT);
    op1->key = "real_image";
    op1->description = _("Name of input raster map (image fft, real part)");

    op2 = G_define_standard_option(G_OPT_R_INPUT);
    op2->key = "imaginary_image";
    op2->description = _("Name of input raster map (image fft, imaginary part");

    op3 = G_define_standard_option(G_OPT_R_OUTPUT);
    op3->key = "output_image";
    op3->description = _("Name for output raster map");

    /*call parser */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    strcpy(Cellmap_real, op1->answer);
    strcpy(Cellmap_imag, op2->answer);
    strcpy(Cellmap_orig, op3->answer);

    /* open input raster map */
    if ((realmapset = G_find_cell(Cellmap_real, "")) == NULL)
	G_fatal_error(_("Raster map <%s> not found"),
		      Cellmap_real);

    if ((realfp =
	 G_fopen_old_misc("cell_misc", "fftreal", Cellmap_real,
			  realmapset)) == NULL)
	G_fatal_error(_("Unable to open real-image in the 'cell_misc' directory. "
			"Raster map probably wasn't created by i.fft"));

    if ((imagmapset = G_find_cell(Cellmap_imag, "")) == NULL)
	G_fatal_error(_("Raster map <%s> not found"),
		      Cellmap_imag);

    if ((imagfp =
	 G_fopen_old_misc("cell_misc", "fftimag", Cellmap_imag,
			  imagmapset)) == NULL)
	G_fatal_error(_("Unable to open imaginary-image in the 'cell_misc' directory. "
			"Raster map probably wasn't created by i.fft"));

    /* check command line args for validity */
    if (G_legal_filename(Cellmap_orig) < 0)
	G_fatal_error(_("<%s> is an illegal file name"),
		      Cellmap_orig);

    /* get and compare the original window data */
    get_orig_window(&orig_wind, realmapset, imagmapset);

    or = orig_wind.rows;
    oc = orig_wind.cols;
    G_get_cellhd(Cellmap_real, realmapset, &realhead);
    G_set_window(&realhead);	/* set the window to the whole cell map */

    /* get the rows and columns in the current window */
    rows = G_window_rows();
    cols = G_window_cols();
    totsize = rows * cols;
    halfrows = rows / 2;
    halfcols = cols / 2;

    G_verbose_message(_("Power 2 values: %d rows %d columns"), rows, cols);

    /* Allocate appropriate memory for the structure containing
       the real and complex components of the FFT.  DATA[0] will
       contain the real, and DATA[1] the complex component.
     */
    data[0] = (double *)G_malloc((rows * cols) * sizeof(double));
    data[1] = (double *)G_malloc((rows * cols) * sizeof(double));

    /* Initialize real & complex components to zero */
    G_message(_("Reading raster maps..."));
    {
	fread((char *)data[0], sizeof(double), totsize, realfp);
	fread((char *)data[1], sizeof(double), totsize, imagfp);
    }

    /* Read in cell map values */
    G_message(_("Masking raster maps..."));
    maskfd = G_maskfd();
    if (maskfd >= 0)
	maskbuf = G_allocate_cell_buf();

    if (maskfd >= 0) {
	for (i = 0; i < rows; i++) {
	    double *data0, *data1;

	    data0 = data[0] + i * cols;
	    data1 = data[1] + i * cols;
	    G_get_map_row(maskfd, maskbuf, i);
	    for (j = 0; j < cols; j++, data0++, data1++) {
		if (maskbuf[j] == (CELL) 0) {
		    *(data0) = 0.0;
		    *(data1) = 0.0;
		}
	    }
	}
    }

    G_message(_("Rotating data..."));
    /* rotate the data array for standard display */
    for (i = 0; i < rows; i++) {
	double temp;

	for (j = 0; j < halfcols; j++) {
	    temp = *(data[0] + i * cols + j);
	    *(data[0] + i * cols + j) = *(data[0] + i * cols + j + halfcols);
	    *(data[0] + i * cols + j + halfcols) = temp;
	    temp = *(data[1] + i * cols + j);
	    *(data[1] + i * cols + j) = *(data[1] + i * cols + j + halfcols);
	    *(data[1] + i * cols + j + halfcols) = temp;
	}
    }
    for (i = 0; i < halfrows; i++) {
	double temp;

	for (j = 0; j < cols; j++) {
	    temp = *(data[0] + i * cols + j);
	    *(data[0] + i * cols + j) =
		*(data[0] + (i + halfrows) * cols + j);
	    *(data[0] + (i + halfrows) * cols + j) = temp;
	    temp = *(data[1] + i * cols + j);
	    *(data[1] + i * cols + j) =
		*(data[1] + (i + halfrows) * cols + j);
	    *(data[1] + (i + halfrows) * cols + j) = temp;
	}
    }


    /* close input cell maps and release the row buffers */
    fclose(realfp);
    fclose(imagfp);
    if (maskfd >= 0) {
	G_close_cell(maskfd);
	G_free(maskbuf);
    }

    /* perform inverse FFT */
    G_message(_("Starting Inverse FFT..."));
    fft(1, data, totsize, cols, rows);

    /* set up a window for the transform cell map */
    G_set_window(&orig_wind);

    /* open the output cell map and allocate a cell row buffer */
    if ((outputfd = G_open_cell_new(Cellmap_orig)) < 0)
	G_fatal_error(_("Unable to create raster map <%s>"),
		      Cellmap_orig);

    cell_row = G_allocate_cell_buf();

    /* Write out result to a new cell map */
    G_message(_("Writing data..."));
    for (i = 0; i < or; i++) {
	for (j = 0; j < oc; j++) {
	    *(cell_row + j) = (CELL) (*(data[0] + i * cols + j) + 0.5);
	}
	G_put_raster_row(outputfd, cell_row, CELL_TYPE);

	G_percent(i+1, or, 2);
    }
    G_close_cell(outputfd);

    G_free(cell_row);
    {
	struct Colors colors;
	struct Range range;
	CELL min, max;

	/* make a real component color table */
	G_read_range(Cellmap_orig, G_mapset(), &range);
	G_get_range_min_max(&range, &min, &max);
	G_make_grey_scale_colors(&colors, min, max);
	G_write_colors(Cellmap_orig, G_mapset(), &colors);
    }

    /* Release memory resources */
    G_free(data[0]);
    G_free(data[1]);

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}
Ejemplo n.º 8
0
int IL_resample_output_2d(struct interp_params *params, double zmin, double zmax,	/* min,max input z-values */
			  double zminac, double zmaxac,	/* min,max interpolated values */
			  double c1min, double c1max, double c2min, double c2max, double gmin, double gmax, double ertot,	/* total interplating func. error */
			  char *input,	/* input file name */
			  double *dnorm, struct Cell_head *outhd,	/* Region with desired resolution */
			  struct Cell_head *winhd,	/* Current region */
			  char *smooth, int n_points)

/*
 * Creates output files as well as history files  and color tables for
 * them.
 */
{
    FCELL *cell1;		/* cell buffer */
    int cf1 = 0, cf2 = 0, cf3 = 0, cf4 = 0, cf5 = 0, cf6 = 0;	/* cell file descriptors */
    int nrows, ncols;		/* current region rows and columns */
    int i;			/* loop counter */
    char *mapset;
    float dat1, dat2;
    struct Colors colors, colors2;
    double value1, value2;
    struct History hist, hist1, hist2, hist3, hist4, hist5;
    struct _Color_Rule_ *rule;
    char *maps, *type;
    int cond1, cond2;

    cond2 = ((params->pcurv != NULL) ||
	     (params->tcurv != NULL) || (params->mcurv != NULL));
    cond1 = ((params->slope != NULL) || (params->aspect != NULL) || cond2);

    /* change region to output cell file region */
    fprintf(stderr,
	    "Temporarily changing the region to desired resolution...\n");
    if (G_set_window(outhd) < 0) {
	fprintf(stderr, "Cannot set region to output region!\n");
	return -1;
    }
    mapset = G_mapset();

    cell1 = G_allocate_f_raster_buf();

    if (params->elev != NULL) {
	cf1 = G_open_fp_cell_new(params->elev);
	if (cf1 < 0) {
	    fprintf(stderr, "unable to create raster map %s\n", params->elev);
	    return -1;
	}
    }

    if (params->slope != NULL) {
	cf2 = G_open_fp_cell_new(params->slope);
	if (cf2 < 0) {
	    fprintf(stderr, "unable to create raster map %s\n",
		    params->slope);
	    return -1;
	}
    }

    if (params->aspect != NULL) {
	cf3 = G_open_fp_cell_new(params->aspect);
	if (cf3 < 0) {
	    fprintf(stderr, "unable to create raster map %s\n",
		    params->aspect);
	    return -1;
	}
    }

    if (params->pcurv != NULL) {
	cf4 = G_open_fp_cell_new(params->pcurv);
	if (cf4 < 0) {
	    fprintf(stderr, "unable to create raster map %s\n",
		    params->pcurv);
	    return -1;
	}
    }

    if (params->tcurv != NULL) {
	cf5 = G_open_fp_cell_new(params->tcurv);
	if (cf5 < 0) {
	    fprintf(stderr, "unable to create raster map %s\n",
		    params->tcurv);
	    return -1;
	}
    }

    if (params->mcurv != NULL) {
	cf6 = G_open_fp_cell_new(params->mcurv);
	if (cf6 < 0) {
	    fprintf(stderr, "unable to create raster map %s\n",
		    params->mcurv);
	    return -1;
	}
    }

    nrows = outhd->rows;
    if (nrows != params->nsizr) {
	fprintf(stderr, "first change your rows number(%d) to %d!\n",
		nrows, params->nsizr);
	return -1;
    }

    ncols = outhd->cols;
    if (ncols != params->nsizc) {
	fprintf(stderr, "first change your rows number(%d) to %d!\n",
		ncols, params->nsizc);
	return -1;
    }

    if (params->elev != NULL) {
	fseek(params->Tmp_fd_z, 0L, 0);	/* seek to the beginning */
	for (i = 0; i < params->nsizr; i++) {
	    /* seek to the right row */
	    if (fseek(params->Tmp_fd_z, (long)
		      ((params->nsizr - 1 -
			i) * params->nsizc * sizeof(FCELL)), 0) == -1) {
		fprintf(stderr, "cannot fseek to the right spot\n");
		return -1;
	    }
	    fread(cell1, sizeof(FCELL), params->nsizc, params->Tmp_fd_z);
	    if (G_put_f_raster_row(cf1, cell1) < 0) {
		fprintf(stderr, "cannot write file\n");
		return -1;
	    }
	}
    }

    if (params->slope != NULL) {
	fseek(params->Tmp_fd_dx, 0L, 0);	/* seek to the beginning */
	for (i = 0; i < params->nsizr; i++) {
	    /* seek to the right row */
	    if (fseek(params->Tmp_fd_dx, (long)
		      ((params->nsizr - 1 -
			i) * params->nsizc * sizeof(FCELL)), 0) == -1) {
		fprintf(stderr, "cannot fseek to the right spot\n");
		return -1;
	    }
	    fread(cell1, sizeof(FCELL), params->nsizc, params->Tmp_fd_dx);
	    /*
	     * for (ii==0;ii<params->nsizc;ii++) { fprintf(stderr,"ii=%d ",ii);
	     * fprintf(stderr,"%f ",cell1[ii]); }
	     * fprintf(stderr,"params->nsizc=%d \n",params->nsizc);
	     */
	    if (G_put_f_raster_row(cf2, cell1) < 0) {
		fprintf(stderr, "cannot write file\n");
		return -1;
	    }
	}
    }

    if (params->aspect != NULL) {
	fseek(params->Tmp_fd_dy, 0L, 0);	/* seek to the beginning */
	for (i = 0; i < params->nsizr; i++) {
	    /* seek to the right row */
	    if (fseek(params->Tmp_fd_dy, (long)
		      ((params->nsizr - 1 -
			i) * params->nsizc * sizeof(FCELL)), 0) == -1) {
		fprintf(stderr, "cannot fseek to the right spot\n");
		return -1;
	    }
	    fread(cell1, sizeof(FCELL), params->nsizc, params->Tmp_fd_dy);
	    if (G_put_f_raster_row(cf3, cell1) < 0) {
		fprintf(stderr, "cannot write file\n");
		return -1;
	    }
	}
    }

    if (params->pcurv != NULL) {
	fseek(params->Tmp_fd_xx, 0L, 0);	/* seek to the beginning */
	for (i = 0; i < params->nsizr; i++) {
	    /* seek to the right row */
	    if (fseek(params->Tmp_fd_xx, (long)
		      ((params->nsizr - 1 -
			i) * params->nsizc * sizeof(FCELL)), 0) == -1) {
		fprintf(stderr, "cannot fseek to the right spot\n");
		return -1;
	    }
	    fread(cell1, sizeof(FCELL), params->nsizc, params->Tmp_fd_xx);
	    if (G_put_f_raster_row(cf4, cell1) < 0) {
		fprintf(stderr, "cannot write file\n");
		return -1;
	    }
	}
    }

    if (params->tcurv != NULL) {
	fseek(params->Tmp_fd_yy, 0L, 0);	/* seek to the beginning */
	for (i = 0; i < params->nsizr; i++) {
	    /* seek to the right row */
	    if (fseek(params->Tmp_fd_yy, (long)
		      ((params->nsizr - 1 -
			i) * params->nsizc * sizeof(FCELL)), 0) == -1) {
		fprintf(stderr, "cannot fseek to the right spot\n");
		return -1;
	    }
	    fread(cell1, sizeof(FCELL), params->nsizc, params->Tmp_fd_yy);
	    if (G_put_f_raster_row(cf5, cell1) < 0) {
		fprintf(stderr, "cannot write file\n");
		return -1;
	    }
	}
    }

    if (params->mcurv != NULL) {
	fseek(params->Tmp_fd_xy, 0L, 0);	/* seek to the beginning */
	for (i = 0; i < params->nsizr; i++) {
	    /* seek to the right row */
	    if (fseek(params->Tmp_fd_xy, (long)
		      ((params->nsizr - 1 -
			i) * params->nsizc * sizeof(FCELL)), 0) == -1) {
		fprintf(stderr, "cannot fseek to the right spot\n");
		return -1;
	    }
	    fread(cell1, sizeof(FCELL), params->nsizc, params->Tmp_fd_xy);
	    if (G_put_f_raster_row(cf6, cell1) < 0) {
		fprintf(stderr, "cannot write file\n");
		return -1;
	    }
	}
    }

    if (cf1)
	G_close_cell(cf1);
    if (cf2)
	G_close_cell(cf2);
    if (cf3)
	G_close_cell(cf3);
    if (cf4)
	G_close_cell(cf4);
    if (cf5)
	G_close_cell(cf5);
    if (cf6)
	G_close_cell(cf6);

    /* write colormaps and history for output cell files */
    /* colortable for elevations */
    maps = G_find_file("cell", input, "");

    if (params->elev != NULL) {
	if (maps == NULL) {
	    fprintf(stderr, "file [%s] not found\n", input);
	    return -1;
	}
	G_init_colors(&colors2);
	/*
	 * G_mark_colors_as_fp(&colors2);
	 */

	if (G_read_colors(input, maps, &colors) >= 0) {
	    if (colors.modular.rules) {
		rule = colors.modular.rules;

		while (rule->next)
		    rule = rule->next;

		for (; rule; rule = rule->prev) {
		    value1 = rule->low.value * params->zmult;
		    value2 = rule->high.value * params->zmult;
		    G_add_modular_d_raster_color_rule(&value1, rule->low.red,
						      rule->low.grn,
						      rule->low.blu, &value2,
						      rule->high.red,
						      rule->high.grn,
						      rule->high.blu,
						      &colors2);
		}
	    }

	    if (colors.fixed.rules) {
		rule = colors.fixed.rules;

		while (rule->next)
		    rule = rule->next;

		for (; rule; rule = rule->prev) {
		    value1 = rule->low.value * params->zmult;
		    value2 = rule->high.value * params->zmult;
		    G_add_d_raster_color_rule(&value1, rule->low.red,
					      rule->low.grn, rule->low.blu,
					      &value2, rule->high.red,
					      rule->high.grn, rule->high.blu,
					      &colors2);
		}
	    }

	    maps = NULL;
	    maps = G_find_file("cell", params->elev, "");
	    if (maps == NULL) {
		fprintf(stderr, "file [%s] not found\n", params->elev);
		return -1;
	    }

	    if (G_write_colors(params->elev, maps, &colors2) < 0) {
		fprintf(stderr, "Cannot write color table\n");
		return -1;
	    }
	    G_quantize_fp_map_range(params->elev, mapset,
				    zminac - 0.5, zmaxac + 0.5,
				    (CELL) (zminac - 0.5),
				    (CELL) (zmaxac + 0.5));
	}
	else
	    fprintf(stderr,
		    "No color table for input file -- will not create color table\n");
    }

    /* colortable for slopes */
    if (cond1 & (!params->deriv)) {
	G_init_colors(&colors);
	G_add_color_rule(0, 255, 255, 255, 2, 255, 255, 0, &colors);
	G_add_color_rule(2, 255, 255, 0, 5, 0, 255, 0, &colors);
	G_add_color_rule(5, 0, 255, 0, 10, 0, 255, 255, &colors);
	G_add_color_rule(10, 0, 255, 255, 15, 0, 0, 255, &colors);
	G_add_color_rule(15, 0, 0, 255, 30, 255, 0, 255, &colors);
	G_add_color_rule(30, 255, 0, 255, 50, 255, 0, 0, &colors);
	G_add_color_rule(50, 255, 0, 0, 90, 0, 0, 0, &colors);

	if (params->slope != NULL) {
	    maps = NULL;
	    maps = G_find_file("cell", params->slope, "");
	    if (maps == NULL) {
		fprintf(stderr, "file [%s] not found\n", params->slope);
		return -1;
	    }
	    G_write_colors(params->slope, maps, &colors);
	    G_quantize_fp_map_range(params->slope, mapset, 0., 90., 0, 90);

	    type = "raster";
	    G_short_history(params->slope, type, &hist1);
	    if (params->elev != NULL)
		sprintf(hist1.edhist[0], "The elevation map is %s",
			params->elev);

	    sprintf(hist1.datsrc_1, "raster map %s", input);
	    hist1.edlinecnt = 1;

	    G_write_history(params->slope, &hist1);
	}

	/* colortable for aspect */
	G_init_colors(&colors);
	G_add_color_rule(0, 255, 255, 255, 0, 255, 255, 255, &colors);
	G_add_color_rule(1, 255, 255, 0, 90, 0, 255, 0, &colors);
	G_add_color_rule(90, 0, 255, 0, 180, 0, 255, 255, &colors);
	G_add_color_rule(180, 0, 255, 255, 270, 255, 0, 0, &colors);
	G_add_color_rule(270, 255, 0, 0, 360, 255, 255, 0, &colors);

	if (params->aspect != NULL) {
	    maps = NULL;
	    maps = G_find_file("cell", params->aspect, "");
	    if (maps == NULL) {
		fprintf(stderr, "file [%s] not found\n", params->aspect);
		return -1;
	    }
	    G_write_colors(params->aspect, maps, &colors);
	    G_quantize_fp_map_range(params->aspect, mapset, 0., 360., 0, 360);

	    type = "raster";
	    G_short_history(params->aspect, type, &hist2);
	    if (params->elev != NULL)
		sprintf(hist2.edhist[0], "The elevation map is %s",
			params->elev);

	    sprintf(hist2.datsrc_1, "raster map %s", input);
	    hist2.edlinecnt = 1;

	    G_write_history(params->aspect, &hist2);
	}

	/* colortable for curvatures */
	if (cond2) {
	    G_init_colors(&colors);

	    dat1 = (FCELL) amin1(c1min, c2min);
	    dat2 = (FCELL) - 0.01;

	    G_add_f_raster_color_rule(&dat1, 50, 0, 155,
				      &dat2, 0, 0, 255, &colors);
	    dat1 = dat2;
	    dat2 = (FCELL) - 0.001;
	    G_add_f_raster_color_rule(&dat1, 0, 0, 255,
				      &dat2, 0, 127, 255, &colors);
	    dat1 = dat2;
	    dat2 = (FCELL) - 0.00001;
	    G_add_f_raster_color_rule(&dat1, 0, 127, 255,
				      &dat2, 0, 255, 255, &colors);
	    dat1 = dat2;
	    dat2 = (FCELL) 0.00;
	    G_add_f_raster_color_rule(&dat1, 0, 255, 255,
				      &dat2, 200, 255, 200, &colors);
	    dat1 = dat2;
	    dat2 = (FCELL) 0.00001;
	    G_add_f_raster_color_rule(&dat1, 200, 255, 200,
				      &dat2, 255, 255, 0, &colors);
	    dat1 = dat2;
	    dat2 = (FCELL) 0.001;
	    G_add_f_raster_color_rule(&dat1, 255, 255, 0,
				      &dat2, 255, 127, 0, &colors);
	    dat1 = dat2;
	    dat2 = (FCELL) 0.01;
	    G_add_f_raster_color_rule(&dat1, 255, 127, 0,
				      &dat2, 255, 0, 0, &colors);
	    dat1 = dat2;
	    dat2 = (FCELL) amax1(c1max, c2max);
	    G_add_f_raster_color_rule(&dat1, 255, 0, 0,
				      &dat2, 155, 0, 20, &colors);
	    maps = NULL;
	    if (params->pcurv != NULL) {
		maps = G_find_file("cell", params->pcurv, "");
		if (maps == NULL) {
		    fprintf(stderr, "file [%s] not found\n", params->pcurv);
		    return -1;
		}
		G_write_colors(params->pcurv, maps, &colors);

		fprintf(stderr, "color map written\n");

		G_quantize_fp_map_range(params->pcurv, mapset,
					dat1, dat2,
					(CELL) (dat1 * MULT),
					(CELL) (dat2 * MULT));
		type = "raster";
		G_short_history(params->pcurv, type, &hist3);
		if (params->elev != NULL)
		    sprintf(hist3.edhist[0], "The elevation map is %s",
			    params->elev);

		sprintf(hist3.datsrc_1, "raster map %s", input);
		hist3.edlinecnt = 1;

		G_write_history(params->pcurv, &hist3);
	    }

	    if (params->tcurv != NULL) {
		maps = NULL;
		maps = G_find_file("cell", params->tcurv, "");
		if (maps == NULL) {
		    fprintf(stderr, "file [%s] not found\n", params->tcurv);
		    return -1;
		}
		G_write_colors(params->tcurv, maps, &colors);
		G_quantize_fp_map_range(params->tcurv, mapset,
					dat1, dat2, (CELL) (dat1 * MULT),
					(CELL) (dat2 * MULT));

		type = "raster";
		G_short_history(params->tcurv, type, &hist4);
		if (params->elev != NULL)
		    sprintf(hist4.edhist[0], "The elevation map is %s",
			    params->elev);

		sprintf(hist4.datsrc_1, "raster map %s", input);
		hist4.edlinecnt = 1;

		G_write_history(params->tcurv, &hist4);
	    }

	    if (params->mcurv != NULL) {
		maps = NULL;
		maps = G_find_file("cell", params->mcurv, "");
		if (maps == NULL) {
		    fprintf(stderr, "file [%s] not found\n", params->mcurv);
		    return -1;
		}
		G_write_colors(params->mcurv, maps, &colors);
		G_quantize_fp_map_range(params->mcurv, mapset,
					dat1, dat2,
					(CELL) (dat1 * MULT),
					(CELL) (dat2 * MULT));

		type = "raster";
		G_short_history(params->mcurv, type, &hist5);
		if (params->elev != NULL)
		    sprintf(hist5.edhist[0], "The elevation map is %s",
			    params->elev);

		sprintf(hist5.datsrc_1, "raster map %s", input);
		hist5.edlinecnt = 1;

		G_write_history(params->mcurv, &hist5);
	    }
	}
    }

    if (params->elev != NULL) {
	maps = G_find_file("cell", params->elev, "");
	if (maps == NULL) {
	    fprintf(stderr, "file [%s] not found \n", params->elev);
	    return -1;
	}
	G_short_history(params->elev, "raster", &hist);

	if (smooth != NULL)
	    sprintf(hist.edhist[0], "tension=%f, smoothing=%s",
		    params->fi * 1000. / (*dnorm), smooth);
	else
	    sprintf(hist.edhist[0], "tension=%f",
		    params->fi * 1000. / (*dnorm));
	sprintf(hist.edhist[1], "dnorm=%f, zmult=%f", *dnorm, params->zmult);
	sprintf(hist.edhist[2], "KMAX=%d, KMIN=%d, errtotal=%f", params->kmax,
		params->kmin, sqrt(ertot / n_points));
	sprintf(hist.edhist[3], "zmin_data=%f, zmax_data=%f", zmin, zmax);
	sprintf(hist.edhist[4], "zmin_int=%f, zmax_int=%f", zminac, zmaxac);

	sprintf(hist.datsrc_1, "raster map %s", input);

	hist.edlinecnt = 5;

	G_write_history(params->elev, &hist);
    }

    /* change region to initial region */
    fprintf(stderr, "Changing the region back to initial...\n");
    if (G_set_window(winhd) < 0) {
	fprintf(stderr, "Cannot set region to back to initial region!\n");
	return -1;
    }

    return 1;
}