/* Returns the index of a cell that either contains a matching key, or * is the empty slot to receive a new insertion. */ static int findcell(struct HashRec *hr, naRef key, unsigned int hash) { int i, mask = POW2(hr->lgsz+1)-1, step = (2*hash+1) & mask; for(i=HBITS(hr,hash); TAB(hr)[i] != ENT_EMPTY; i=(i+step)&mask) if(TAB(hr)[i] != ENT_DELETED && equal(key, ENTS(hr)[TAB(hr)[i]].key)) break; return i; }
/* Optimized naHash_get for looking up local variables (OP_LOCAL is by * far the most common opcode and deserves some special case * optimization). Assumes that the key is an interned symbol * (i.e. the hash code is precomputed, and we only need to test for * pointer identity). */ int naiHash_sym(struct naHash* hash, struct naStr* sym, naRef* out) { HashRec* hr = hash->rec; if(hr) { int* tab = TAB(hr); HashEnt* ents = ENTS(hr); unsigned int hc = sym->hashcode; int cell, mask = POW2(hr->lgsz+1) - 1, step = (2*hc+1) & mask; for(cell=HBITS(hr,hc); tab[cell] != ENT_EMPTY; cell=(cell+step)&mask) if(tab[cell]!=ENT_DELETED && sym==PTR(ents[tab[cell]].key).str) { *out = ents[tab[cell]].val; return 1; } } return 0; }
/* As above, a special naHash_set for setting local variables. * Assumes that the key is interned, and also that it isn't already * present in the hash. */ void naiHash_newsym(struct naHash* hash, naRef* sym, naRef* val) { HashRec* hr = hash->rec; int mask, step, cell, ent; struct naStr *s = PTR(*sym).str; if(!hr || hr->next >= POW2(hr->lgsz)) hr = resize(hash); mask = POW2(hr->lgsz+1) - 1; step = (2*s->hashcode+1) & mask; cell = HBITS(hr, s->hashcode); while(TAB(hr)[cell] != ENT_EMPTY) cell = (cell + step) & mask; ent = hr->next++; if(ent >= NCELLS(hr)) return; /* race protection, don't overrun */ TAB(hr)[cell] = ent; hr->size++; ENTS(hr)[TAB(hr)[cell]].key = *sym; ENTS(hr)[TAB(hr)[cell]].val = *val; }
/* BN_div_no_branch is a special version of BN_div. It does not contain * branches that may leak sensitive information. */ static int BN_div_no_branch(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor, BN_CTX *ctx) { int norm_shift,i,loop; BIGNUM *tmp,wnum,*snum,*sdiv,*res; BN_ULONG *resp,*wnump; BN_ULONG d0,d1; int num_n,div_n; bn_check_top(dv); bn_check_top(rm); /* bn_check_top(num); */ /* 'num' has been checked in BN_div() */ bn_check_top(divisor); if (BN_is_zero(divisor)) { BNerr(BN_F_BN_DIV_NO_BRANCH,BN_R_DIV_BY_ZERO); return(0); } BN_CTX_start(ctx); tmp=BN_CTX_get(ctx); snum=BN_CTX_get(ctx); sdiv=BN_CTX_get(ctx); if (dv == NULL) res=BN_CTX_get(ctx); else res=dv; if (sdiv == NULL || res == NULL) goto err; /* First we normalise the numbers */ norm_shift=BN_BITS2-((BN_num_bits(divisor))%BN_BITS2); if (!(BN_lshift(sdiv,divisor,norm_shift))) goto err; sdiv->neg=0; norm_shift+=BN_BITS2; if (!(BN_lshift(snum,num,norm_shift))) goto err; snum->neg=0; /* Since we don't know whether snum is larger than sdiv, * we pad snum with enough zeroes without changing its * value. */ if (snum->top <= sdiv->top+1) { if (bn_wexpand(snum, sdiv->top + 2) == NULL) goto err; for (i = snum->top; i < sdiv->top + 2; i++) snum->d[i] = 0; snum->top = sdiv->top + 2; } else { if (bn_wexpand(snum, snum->top + 1) == NULL) goto err; snum->d[snum->top] = 0; snum->top ++; } div_n=sdiv->top; num_n=snum->top; loop=num_n-div_n; /* Lets setup a 'window' into snum * This is the part that corresponds to the current * 'area' being divided */ wnum.neg = 0; wnum.d = &(snum->d[loop]); wnum.top = div_n; /* only needed when BN_ucmp messes up the values between top and max */ wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */ /* Get the top 2 words of sdiv */ /* div_n=sdiv->top; */ d0=sdiv->d[div_n-1]; d1=(div_n == 1)?0:sdiv->d[div_n-2]; /* pointer to the 'top' of snum */ wnump= &(snum->d[num_n-1]); /* Setup to 'res' */ res->neg= (num->neg^divisor->neg); if (!bn_wexpand(res,(loop+1))) goto err; res->top=loop-1; resp= &(res->d[loop-1]); /* space for temp */ if (!bn_wexpand(tmp,(div_n+1))) goto err; /* if res->top == 0 then clear the neg value otherwise decrease * the resp pointer */ if (res->top == 0) res->neg = 0; else resp--; for (i=0; i<loop-1; i++, wnump--, resp--) { BN_ULONG q,l0; /* the first part of the loop uses the top two words of * snum and sdiv to calculate a BN_ULONG q such that * | wnum - sdiv * q | < sdiv */ #if defined(BN_DIV3W) && !defined(OPENSSL_NO_ASM) BN_ULONG bn_div_3_words(BN_ULONG*,BN_ULONG,BN_ULONG); q=bn_div_3_words(wnump,d1,d0); #else BN_ULONG n0,n1,rem=0; n0=wnump[0]; n1=wnump[-1]; if (n0 == d0) q=BN_MASK2; else /* n0 < d0 */ { #ifdef BN_LLONG BN_ULLONG t2; #if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words) q=(BN_ULONG)(((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0); #else q=bn_div_words(n0,n1,d0); #ifdef BN_DEBUG_LEVITTE TINYCLR_SSL_FPRINTF(OPENSSL_TYPE__FILE_STDERR,"DEBUG: bn_div_words(0x%08X,0x%08X,0x%08\ X) -> 0x%08X\n", n0, n1, d0, q); #endif #endif #ifndef REMAINDER_IS_ALREADY_CALCULATED /* * rem doesn't have to be BN_ULLONG. The least we * know it's less that d0, isn't it? */ rem=(n1-q*d0)&BN_MASK2; #endif t2=(BN_ULLONG)d1*q; for (;;) { if (t2 <= ((((BN_ULLONG)rem)<<BN_BITS2)|wnump[-2])) break; q--; rem += d0; if (rem < d0) break; /* don't let rem overflow */ t2 -= d1; } #else /* !BN_LLONG */ BN_ULONG t2l,t2h; q=bn_div_words(n0,n1,d0); #ifdef BN_DEBUG_LEVITTE TINYCLR_SSL_FPRINTF(OPENSSL_TYPE__FILE_STDERR,"DEBUG: bn_div_words(0x%08X,0x%08X,0x%08\ X) -> 0x%08X\n", n0, n1, d0, q); #endif #ifndef REMAINDER_IS_ALREADY_CALCULATED rem=(n1-q*d0)&BN_MASK2; #endif #if defined(BN_UMULT_LOHI) BN_UMULT_LOHI(t2l,t2h,d1,q); #elif defined(BN_UMULT_HIGH) t2l = d1 * q; t2h = BN_UMULT_HIGH(d1,q); #else { BN_ULONG ql, qh; t2l=LBITS(d1); t2h=HBITS(d1); ql =LBITS(q); qh =HBITS(q); mul64(t2l,t2h,ql,qh); /* t2=(BN_ULLONG)d1*q; */ } #endif for (;;) { if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) break; q--; rem += d0; if (rem < d0) break; /* don't let rem overflow */ if (t2l < d1) t2h--; t2l -= d1; } #endif /* !BN_LLONG */ } #endif /* !BN_DIV3W */ l0=bn_mul_words(tmp->d,sdiv->d,div_n,q); tmp->d[div_n]=l0; wnum.d--; /* ingore top values of the bignums just sub the two * BN_ULONG arrays with bn_sub_words */ if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n+1)) { /* Note: As we have considered only the leading * two BN_ULONGs in the calculation of q, sdiv * q * might be greater than wnum (but then (q-1) * sdiv * is less or equal than wnum) */ q--; if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) /* we can't have an overflow here (assuming * that q != 0, but if q == 0 then tmp is * zero anyway) */ (*wnump)++; } /* store part of the result */ *resp = q; } bn_correct_top(snum); if (rm != NULL) { /* Keep a copy of the neg flag in num because if rm==num * BN_rshift() will overwrite it. */ int neg = num->neg; BN_rshift(rm,snum,norm_shift); if (!BN_is_zero(rm)) rm->neg = neg; bn_check_top(rm); } bn_correct_top(res); BN_CTX_end(ctx); return(1); err: bn_check_top(rm); BN_CTX_end(ctx); return(0); }
int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor, BN_CTX *ctx) { int norm_shift, i, j, loop; BIGNUM *tmp, wnum, *snum, *sdiv, *res; BN_ULONG *resp, *wnump; BN_ULONG d0, d1; int num_n, div_n; bn_check_top(num); bn_check_top(divisor); if(BN_is_zero(divisor)) { return (0); } if(BN_ucmp(num, divisor) < 0) { if(rm != NULL) { if(BN_copy(rm, num) == NULL) { return (0); } } if(dv != NULL) { BN_zero(dv); } return (1); } BN_CTX_start(ctx); tmp = BN_CTX_get(ctx); snum = BN_CTX_get(ctx); sdiv = BN_CTX_get(ctx); if(dv == NULL) { res = BN_CTX_get(ctx); } else { res = dv; } if(sdiv == NULL || res == NULL) { goto err; } tmp->neg = 0; /* First we normalise the numbers */ norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2); BN_lshift(sdiv, divisor, norm_shift); sdiv->neg = 0; norm_shift += BN_BITS2; BN_lshift(snum, num, norm_shift); snum->neg = 0; div_n = sdiv->top; num_n = snum->top; loop = num_n - div_n; /* Lets setup a 'window' into snum * This is the part that corresponds to the current * 'area' being divided */ BN_init(&wnum); wnum.d = &(snum->d[loop]); wnum.top = div_n; wnum.dmax = snum->dmax + 1; /* a bit of a lie */ /* Get the top 2 words of sdiv */ /* i=sdiv->top; */ d0 = sdiv->d[div_n - 1]; d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2]; /* pointer to the 'top' of snum */ wnump = &(snum->d[num_n - 1]); /* Setup to 'res' */ res->neg = (num->neg ^ divisor->neg); if(!bn_wexpand(res, (loop + 1))) { goto err; } res->top = loop; resp = &(res->d[loop - 1]); /* space for temp */ if(!bn_wexpand(tmp, (div_n + 1))) { goto err; } if(BN_ucmp(&wnum, sdiv) >= 0) { if(!BN_usub(&wnum, &wnum, sdiv)) { goto err; } *resp = 1; res->d[res->top - 1] = 1; } else { res->top--; } resp--; for(i = 0; i < loop - 1; i++) { BN_ULONG q, l0; #if defined(BN_DIV3W) && !defined(NO_ASM) BN_ULONG bn_div_3_words(BN_ULONG *, BN_ULONG, BN_ULONG); q = bn_div_3_words(wnump, d1, d0); #else BN_ULONG n0, n1, rem = 0; n0 = wnump[0]; n1 = wnump[-1]; if(n0 == d0) { q = BN_MASK2; } else /* n0 < d0 */ { #ifdef BN_LLONG BN_ULLONG t2; #if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words) q = (BN_ULONG)(((((BN_ULLONG)n0) << BN_BITS2) | n1) / d0); #else q = bn_div_words(n0, n1, d0); #endif #ifndef REMAINDER_IS_ALREADY_CALCULATED /* * rem doesn't have to be BN_ULLONG. The least we * know it's less that d0, isn't it? */ rem = (n1 - q * d0)&BN_MASK2; #endif t2 = (BN_ULLONG)d1 * q; for(;;) { if(t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | wnump[-2])) { break; } q--; rem += d0; if(rem < d0) { break; } /* don't let rem overflow */ t2 -= d1; } #else /* !BN_LLONG */ BN_ULONG t2l, t2h, ql, qh; q = bn_div_words(n0, n1, d0); #ifndef REMAINDER_IS_ALREADY_CALCULATED rem = (n1 - q * d0)&BN_MASK2; #endif #ifdef BN_UMULT_HIGH t2l = d1 * q; t2h = BN_UMULT_HIGH(d1, q); #else t2l = LBITS(d1); t2h = HBITS(d1); ql = LBITS(q); qh = HBITS(q); mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */ #endif for(;;) { if((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) { break; } q--; rem += d0; if(rem < d0) { break; } /* don't let rem overflow */ if(t2l < d1) { t2h--; } t2l -= d1; } #endif /* !BN_LLONG */ } #endif /* !BN_DIV3W */ l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q); wnum.d--; wnum.top++; tmp->d[div_n] = l0; for(j = div_n + 1; j > 0; j--) if(tmp->d[j - 1]) { break; } tmp->top = j; j = wnum.top; BN_sub(&wnum, &wnum, tmp); snum->top = snum->top + wnum.top - j; if(wnum.neg) { q--; j = wnum.top; BN_add(&wnum, &wnum, sdiv); snum->top += wnum.top - j; } *(resp--) = q; wnump--; } if(rm != NULL) { BN_rshift(rm, snum, norm_shift); rm->neg = num->neg; } BN_CTX_end(ctx); return (1); err: BN_CTX_end(ctx); return (0); }
int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor, BN_CTX *ctx) { int norm_shift,i,loop; BIGNUM *tmp,*snum,*sdiv,*res; #ifdef BN_ALLOC /* pcg */ BIGNUM wnum; #else BN_ULONG *wnum_d; #endif /* !BN_ALLOC */ BN_ULONG *resp,*wnump; BN_ULONG d0,d1; int num_n,div_n; /* Invalid zero-padding would have particularly bad consequences * in the case of 'num', so don't just rely on bn_check_top() for this one * (bn_check_top() works only for BN_DEBUG builds) */ if (num->top > 0 && num->d[num->top - 1] == 0) { BNerr(BN_F_BN_DIV,BN_R_NOT_INITIALIZED); return 0; } bn_check_top(num); if ((BN_get_flags(num, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(divisor, BN_FLG_CONSTTIME) != 0)) { return BN_div_no_branch(dv, rm, num, divisor, ctx); } bn_check_top(dv); bn_check_top(rm); /* bn_check_top(num); */ /* 'num' has been checked already */ bn_check_top(divisor); if (BN_is_zero(divisor)) { BNerr(BN_F_BN_DIV,BN_R_DIV_BY_ZERO); return(0); } if (BN_ucmp(num,divisor) < 0) { if (rm != NULL) { if (BN_copy(rm,num) == NULL) return(0); } if (dv != NULL) BN_zero(dv); return(1); } BN_CTX_start(ctx); tmp=BN_CTX_get(ctx); snum=BN_CTX_get_ext( ctx, BIGNUM_EXT_MUL1 ); /* pcg */ sdiv=BN_CTX_get(ctx); if (dv == NULL) res=BN_CTX_get(ctx); else res=dv; if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) goto err; /* First we normalise the numbers */ norm_shift=BN_BITS2-((BN_num_bits(divisor))%BN_BITS2); if (!(BN_lshift(sdiv,divisor,norm_shift))) goto err; sdiv->neg=0; norm_shift+=BN_BITS2; if (!(BN_lshift(snum,num,norm_shift))) goto err; snum->neg=0; div_n=sdiv->top; num_n=snum->top; loop=num_n-div_n; /* Lets setup a 'window' into snum * This is the part that corresponds to the current * 'area' being divided */ #ifdef BN_ALLOC /* pcg */ wnum.neg = 0; wnum.d = &(snum->d[loop]); wnum.top = div_n; /* only needed when BN_ucmp messes up the values between top and max */ wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */ #else wnum_d = &(snum->d[loop]); #endif /* BN_ALLOC */ /* Get the top 2 words of sdiv */ /* div_n=sdiv->top; */ d0=sdiv->d[div_n-1]; d1=(div_n == 1)?0:sdiv->d[div_n-2]; /* pointer to the 'top' of snum */ wnump= &(snum->d[num_n-1]); /* Setup to 'res' */ res->neg= (num->neg^divisor->neg); if (!bn_wexpand(res,(loop+1))) goto err; res->top=loop; resp= &(res->d[loop-1]); /* space for temp */ if( div_n+1 > BIGNUM_ALLOC_WORDS ) { assert( 0 ); goto err; } if (BN_ucmp_word(wnum_d,div_n,sdiv) >= 0) { /* If BN_DEBUG_RAND is defined BN_ucmp changes (via * bn_pollute) the const bignum arguments => * clean the values between top and max again */ bn_clear_top2max(&wnum); bn_sub_words(wnum_d, wnum_d, sdiv->d, div_n); *resp=1; } else res->top--; /* if res->top == 0 then clear the neg value otherwise decrease * the resp pointer */ if (res->top == 0) res->neg = 0; else resp--; for (i=0; i<loop-1; i++, wnump--, resp--) { BN_ULONG q,l0; /* the first part of the loop uses the top two words of * snum and sdiv to calculate a BN_ULONG q such that * | wnum - sdiv * q | < sdiv */ #if defined(BN_DIV3W) && !defined(OPENSSL_NO_ASM) BN_ULONG bn_div_3_words(BN_ULONG*,BN_ULONG,BN_ULONG); q=bn_div_3_words(wnump,d1,d0); #else BN_ULONG n0,n1,rem=0; n0=wnump[0]; n1=wnump[-1]; if (n0 == d0) q=BN_MASK2; else /* n0 < d0 */ { #ifdef BN_LLONG BN_ULLONG t2; #if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words) q=(BN_ULONG)(((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0); #else q=bn_div_words(n0,n1,d0); #ifdef BN_DEBUG_LEVITTE fprintf(stderr,"DEBUG: bn_div_words(0x%08X,0x%08X,0x%08\ X) -> 0x%08X\n", n0, n1, d0, q); #endif #endif #ifndef REMAINDER_IS_ALREADY_CALCULATED /* * rem doesn't have to be BN_ULLONG. The least we * know it's less that d0, isn't it? */ rem=(n1-q*d0)&BN_MASK2; #endif t2=(BN_ULLONG)d1*q; for (;;) { if (t2 <= ((((BN_ULLONG)rem)<<BN_BITS2)|wnump[-2])) break; q--; rem += d0; if (rem < d0) break; /* don't let rem overflow */ t2 -= d1; } #else /* !BN_LLONG */ BN_ULONG t2l,t2h; #if !defined( BN_UMULT_LOHI ) && !defined( BN_UMULT_HIGH ) /* pcg */ BN_ULONG ql,qh; #endif q=bn_div_words(n0,n1,d0); #ifdef BN_DEBUG_LEVITTE fprintf(stderr,"DEBUG: bn_div_words(0x%08X,0x%08X,0x%08\ X) -> 0x%08X\n", n0, n1, d0, q); #endif #ifndef REMAINDER_IS_ALREADY_CALCULATED rem=(n1-q*d0)&BN_MASK2; #endif #if defined(BN_UMULT_LOHI) BN_UMULT_LOHI(t2l,t2h,d1,q); #elif defined(BN_UMULT_HIGH) t2l = d1 * q; t2h = BN_UMULT_HIGH(d1,q); #else { BN_ULONG ql, qh; t2l=LBITS(d1); t2h=HBITS(d1); ql =LBITS(q); qh =HBITS(q); mul64(t2l,t2h,ql,qh); /* t2=(BN_ULLONG)d1*q; */ } #endif for (;;) { if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) break; q--; rem += d0; if (rem < d0) break; /* don't let rem overflow */ if (t2l < d1) t2h--; t2l -= d1; } #endif /* !BN_LLONG */ } #endif /* !BN_DIV3W */ l0=bn_mul_words(tmp->d,sdiv->d,div_n,q); tmp->d[div_n]=l0; wnum_d--; /* ingore top values of the bignums just sub the two * BN_ULONG arrays with bn_sub_words */ if (bn_sub_words(wnum_d, wnum_d, tmp->d, div_n+1)) { /* Note: As we have considered only the leading * two BN_ULONGs in the calculation of q, sdiv * q * might be greater than wnum (but then (q-1) * sdiv * is less or equal than wnum) */ q--; if (bn_add_words(wnum_d, wnum_d, sdiv->d, div_n)) /* we can't have an overflow here (assuming * that q != 0, but if q == 0 then tmp is * zero anyway) */ (*wnump)++; } /* store part of the result */ *resp = q; } bn_correct_top(snum); if (rm != NULL) { /* Keep a copy of the neg flag in num because if rm==num * BN_rshift() will overwrite it. */ int neg = num->neg; BN_rshift(rm,snum,norm_shift); if (!BN_is_zero(rm)) rm->neg = neg; bn_check_top(rm); } BN_CTX_end_ext( ctx, BIGNUM_EXT_MUL1 ); /* pcg */ return(1); err: bn_check_top(rm); BN_CTX_end_ext( ctx, BIGNUM_EXT_MUL1 ); /* pcg */ return(0); }
int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor, BN_CTX *ctx) { int norm_shift,i,j,loop; BIGNUM *tmp,wnum,*snum,*sdiv,*res; BN_ULONG *resp,*wnump; BN_ULONG d0,d1; int num_n,div_n; bn_check_top(num); bn_check_top(divisor); if (BN_is_zero(divisor)) return(0); if (BN_ucmp(num,divisor) < 0) { if (rm != NULL) { if (BN_copy(rm,num) == NULL) return(0); } if (dv != NULL) BN_zero(dv); return(1); } BN_CTX_start(ctx); tmp=BN_CTX_get(ctx); snum=BN_CTX_get(ctx); sdiv=BN_CTX_get(ctx); if (dv == NULL) res=BN_CTX_get(ctx); else res=dv; if (sdiv==NULL || res == NULL) goto err; tmp->neg=0; /* First we normalise the numbers */ norm_shift=BN_BITS2-((BN_num_bits(divisor))%BN_BITS2); if (!(BN_lshift(sdiv,divisor,norm_shift))) goto err; sdiv->neg=0; norm_shift+=BN_BITS2; if (!(BN_lshift(snum,num,norm_shift))) goto err; snum->neg=0; div_n=sdiv->top; num_n=snum->top; loop=num_n-div_n; /* Lets setup a 'window' into snum * This is the part that corresponds to the current * 'area' being divided */ BN_init(&wnum); wnum.d= &(snum->d[loop]); wnum.top= div_n; wnum.dmax= snum->dmax+1; /* a bit of a lie */ /* Get the top 2 words of sdiv */ /* i=sdiv->top; */ d0=sdiv->d[div_n-1]; d1=(div_n == 1)?0:sdiv->d[div_n-2]; /* pointer to the 'top' of snum */ wnump= &(snum->d[num_n-1]); /* Setup to 'res' */ res->neg= (num->neg^divisor->neg); if (!bn_wexpand(res,(loop+1))) goto err; res->top=loop; resp= &(res->d[loop-1]); /* space for temp */ if (!bn_wexpand(tmp,(div_n+1))) goto err; if (BN_ucmp(&wnum,sdiv) >= 0) { if (!BN_usub(&wnum,&wnum,sdiv)) goto err; *resp=1; res->d[res->top-1]=1; } else res->top--; resp--; for (i=0; i<loop-1; i++) { BN_ULONG q,l0; BN_ULONG n0,n1,rem=0; n0=wnump[0]; n1=wnump[-1]; if (n0 == d0) q=BN_MASK2; else /* n0 < d0 */ { BN_ULONG t2l,t2h,ql,qh; q=bn_div_words(n0,n1,d0); rem=(n1-q*d0)&BN_MASK2; t2l=LBITS(d1); t2h=HBITS(d1); ql =LBITS(q); qh =HBITS(q); mul64(t2l,t2h,ql,qh); /* t2=(BN_ULLONG)d1*q; */ for (;;) { if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) break; q--; rem += d0; if (rem < d0) break; /* don't let rem overflow */ if (t2l < d1) t2h--; t2l -= d1; } } l0=bn_mul_words(tmp->d,sdiv->d,div_n,q); wnum.d--; wnum.top++; tmp->d[div_n]=l0; for (j=div_n+1; j>0; j--) if (tmp->d[j-1]) break; tmp->top=j; j=wnum.top; if (!BN_sub(&wnum,&wnum,tmp)) goto err; snum->top=snum->top+wnum.top-j; if (wnum.neg) { q--; j=wnum.top; if (!BN_add(&wnum,&wnum,sdiv)) goto err; snum->top+=wnum.top-j; } *(resp--)=q; wnump--; } if (rm != NULL) { BN_rshift(rm,snum,norm_shift); rm->neg=num->neg; } BN_CTX_end(ctx); return(1); err: BN_CTX_end(ctx); return(0); }
/*- * BN_div computes dv := num / divisor, rounding towards * zero, and sets up rm such that dv*divisor + rm = num holds. * Thus: * dv->neg == num->neg ^ divisor->neg (unless the result is zero) * rm->neg == num->neg (unless the remainder is zero) * If 'dv' or 'rm' is NULL, the respective value is not returned. */ int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor, BN_CTX *ctx) { int norm_shift, i, loop; BIGNUM *tmp, wnum, *snum, *sdiv, *res; BN_ULONG *resp, *wnump; BN_ULONG d0, d1; int num_n, div_n; int no_branch = 0; /* * Invalid zero-padding would have particularly bad consequences so don't * just rely on bn_check_top() here (bn_check_top() works only for * BN_DEBUG builds) */ if ((num->top > 0 && num->d[num->top - 1] == 0) || (divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) { BNerr(BN_F_BN_DIV, BN_R_NOT_INITIALIZED); return 0; } bn_check_top(num); bn_check_top(divisor); if ((BN_get_flags(num, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(divisor, BN_FLG_CONSTTIME) != 0)) { no_branch = 1; } bn_check_top(dv); bn_check_top(rm); /*- bn_check_top(num); *//* * 'num' has been checked already */ /*- bn_check_top(divisor); *//* * 'divisor' has been checked already */ if (BN_is_zero(divisor)) { BNerr(BN_F_BN_DIV, BN_R_DIV_BY_ZERO); return 0; } if (!no_branch && BN_ucmp(num, divisor) < 0) { if (rm != NULL) { if (BN_copy(rm, num) == NULL) return 0; } if (dv != NULL) BN_zero(dv); return 1; } BN_CTX_start(ctx); res = (dv == NULL) ? BN_CTX_get(ctx) : dv; tmp = BN_CTX_get(ctx); snum = BN_CTX_get(ctx); sdiv = BN_CTX_get(ctx); if (sdiv == NULL) goto err; /* First we normalise the numbers */ norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2); if (!(BN_lshift(sdiv, divisor, norm_shift))) goto err; sdiv->neg = 0; norm_shift += BN_BITS2; if (!(BN_lshift(snum, num, norm_shift))) goto err; snum->neg = 0; if (no_branch) { /* * Since we don't know whether snum is larger than sdiv, we pad snum * with enough zeroes without changing its value. */ if (snum->top <= sdiv->top + 1) { if (bn_wexpand(snum, sdiv->top + 2) == NULL) goto err; for (i = snum->top; i < sdiv->top + 2; i++) snum->d[i] = 0; snum->top = sdiv->top + 2; } else { if (bn_wexpand(snum, snum->top + 1) == NULL) goto err; snum->d[snum->top] = 0; snum->top++; } } div_n = sdiv->top; num_n = snum->top; loop = num_n - div_n; /* * Lets setup a 'window' into snum This is the part that corresponds to * the current 'area' being divided */ wnum.neg = 0; wnum.d = &(snum->d[loop]); wnum.top = div_n; wnum.flags = BN_FLG_STATIC_DATA; /* * only needed when BN_ucmp messes up the values between top and max */ wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */ /* Get the top 2 words of sdiv */ /* div_n=sdiv->top; */ d0 = sdiv->d[div_n - 1]; d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2]; /* pointer to the 'top' of snum */ wnump = &(snum->d[num_n - 1]); /* Setup to 'res' */ if (!bn_wexpand(res, (loop + 1))) goto err; res->neg = (num->neg ^ divisor->neg); res->top = loop - no_branch; resp = &(res->d[loop - 1]); /* space for temp */ if (!bn_wexpand(tmp, (div_n + 1))) goto err; if (!no_branch) { if (BN_ucmp(&wnum, sdiv) >= 0) { /* * If BN_DEBUG_RAND is defined BN_ucmp changes (via bn_pollute) * the const bignum arguments => clean the values between top and * max again */ bn_clear_top2max(&wnum); bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n); *resp = 1; } else res->top--; } /* Increase the resp pointer so that we never create an invalid pointer. */ resp++; /* * if res->top == 0 then clear the neg value otherwise decrease the resp * pointer */ if (res->top == 0) res->neg = 0; else resp--; for (i = 0; i < loop - 1; i++, wnump--) { BN_ULONG q, l0; /* * the first part of the loop uses the top two words of snum and sdiv * to calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv */ # if defined(BN_DIV3W) && !defined(OPENSSL_NO_ASM) BN_ULONG bn_div_3_words(BN_ULONG *, BN_ULONG, BN_ULONG); q = bn_div_3_words(wnump, d1, d0); # else BN_ULONG n0, n1, rem = 0; n0 = wnump[0]; n1 = wnump[-1]; if (n0 == d0) q = BN_MASK2; else { /* n0 < d0 */ # ifdef BN_LLONG BN_ULLONG t2; # if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words) q = (BN_ULONG)(((((BN_ULLONG) n0) << BN_BITS2) | n1) / d0); # else q = bn_div_words(n0, n1, d0); # endif # ifndef REMAINDER_IS_ALREADY_CALCULATED /* * rem doesn't have to be BN_ULLONG. The least we * know it's less that d0, isn't it? */ rem = (n1 - q * d0) & BN_MASK2; # endif t2 = (BN_ULLONG) d1 *q; for (;;) { if (t2 <= ((((BN_ULLONG) rem) << BN_BITS2) | wnump[-2])) break; q--; rem += d0; if (rem < d0) break; /* don't let rem overflow */ t2 -= d1; } # else /* !BN_LLONG */ BN_ULONG t2l, t2h; q = bn_div_words(n0, n1, d0); # ifndef REMAINDER_IS_ALREADY_CALCULATED rem = (n1 - q * d0) & BN_MASK2; # endif # if defined(BN_UMULT_LOHI) BN_UMULT_LOHI(t2l, t2h, d1, q); # elif defined(BN_UMULT_HIGH) t2l = d1 * q; t2h = BN_UMULT_HIGH(d1, q); # else { BN_ULONG ql, qh; t2l = LBITS(d1); t2h = HBITS(d1); ql = LBITS(q); qh = HBITS(q); mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */ } # endif for (;;) { if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) break; q--; rem += d0; if (rem < d0) break; /* don't let rem overflow */ if (t2l < d1) t2h--; t2l -= d1; } # endif /* !BN_LLONG */ } # endif /* !BN_DIV3W */ l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q); tmp->d[div_n] = l0; wnum.d--; /* * ingore top values of the bignums just sub the two BN_ULONG arrays * with bn_sub_words */ if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) { /* * Note: As we have considered only the leading two BN_ULONGs in * the calculation of q, sdiv * q might be greater than wnum (but * then (q-1) * sdiv is less or equal than wnum) */ q--; if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) /* * we can't have an overflow here (assuming that q != 0, but * if q == 0 then tmp is zero anyway) */ (*wnump)++; } /* store part of the result */ resp--; *resp = q; } bn_correct_top(snum); if (rm != NULL) { /* * Keep a copy of the neg flag in num because if rm==num BN_rshift() * will overwrite it. */ int neg = num->neg; BN_rshift(rm, snum, norm_shift); if (!BN_is_zero(rm)) rm->neg = neg; bn_check_top(rm); } if (no_branch) bn_correct_top(res); BN_CTX_end(ctx); return 1; err: bn_check_top(rm); BN_CTX_end(ctx); return 0; }