Ejemplo n.º 1
0
/**
  * @brief  Initializes the SPI according to the specified parameters 
  *         in the SPI_InitTypeDef and create the associated handle.
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi)
{
  /* Check the SPI handle allocation */
  if(hspi == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
  assert_param(IS_SPI_MODE(hspi->Init.Mode));
  assert_param(IS_SPI_DIRECTION_MODE(hspi->Init.Direction));
  assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize));
  assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity));
  assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase));
  assert_param(IS_SPI_NSS(hspi->Init.NSS));
  assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler));
  assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit));
  assert_param(IS_SPI_TIMODE(hspi->Init.TIMode));
  assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation));
  assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial));

  if(hspi->State == HAL_SPI_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    hspi->Lock = HAL_UNLOCKED;

    /* Init the low level hardware : GPIO, CLOCK, NVIC... */
    HAL_SPI_MspInit(hspi);
  }
  
  hspi->State = HAL_SPI_STATE_BUSY;

  /* Disble the selected SPI peripheral */
  __HAL_SPI_DISABLE(hspi);

  /*----------------------- SPIx CR1 & CR2 Configuration ---------------------*/
  /* Configure : SPI Mode, Communication Mode, Data size, Clock polarity and phase, NSS management,
  Communication speed, First bit and CRC calculation state */
  hspi->Instance->CR1 = (hspi->Init.Mode | hspi->Init.Direction | hspi->Init.DataSize |
                         hspi->Init.CLKPolarity | hspi->Init.CLKPhase | (hspi->Init.NSS & SPI_CR1_SSM) |
                         hspi->Init.BaudRatePrescaler | hspi->Init.FirstBit  | hspi->Init.CRCCalculation);

  /* Configure : NSS management */
  hspi->Instance->CR2 = (((hspi->Init.NSS >> 16) & SPI_CR2_SSOE) | hspi->Init.TIMode);

  /*---------------------------- SPIx CRCPOLY Configuration ------------------*/
  /* Configure : CRC Polynomial */
  hspi->Instance->CRCPR = hspi->Init.CRCPolynomial;

#if defined (STM32L100xC) || defined (STM32L151xC) || defined (STM32L152xC) || defined (STM32L162xC) || defined (STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined (STM32L151xE) || defined (STM32L151xDX) || defined (STM32L152xE) || defined (STM32L152xDX) || defined (STM32L162xE) || defined (STM32L162xDX)
  /* Activate the SPI mode (Make sure that I2SMOD bit in I2SCFGR register is reset) */
  CLEAR_BIT(hspi->Instance->I2SCFGR, SPI_I2SCFGR_I2SMOD);
#endif

  hspi->ErrorCode = HAL_SPI_ERROR_NONE;
  hspi->State = HAL_SPI_STATE_READY;
  
  return HAL_OK;
}
Ejemplo n.º 2
0
/**
  * @brief  Configures the data size for the selected SPI.
  * @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @param SPI_DataSize: specifies the SPI data size.
  *   This parameter can be one of the following values:
  * @arg SPI_DataSize_16b: Set data frame format to 16bit
  * @arg SPI_DataSize_8b: Set data frame format to 8bit
  * @retval : None
  */
void SPI_DataSizeConfig(SPI_TypeDef* SPIx, uint16_t SPI_DataSize)
{
  /* Check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));
  assert_param(IS_SPI_DATASIZE(SPI_DataSize));
  /* Clear DFF bit */
  SPIx->CR1 &= (uint16_t)~SPI_DataSize_16b;
  /* Set new DFF bit value */
  SPIx->CR1 |= SPI_DataSize;
}
Ejemplo n.º 3
0
/*******************************************************************************
* 函数名称: SPI_DataSizeConfig
* 功能描述: 为选定的SPI接口配置数据大小.
* 输入参数: (1)SPIx :x为1,2或3用于选定SPI外设。
*           (2)SPI_DataSize: SPI数据大小。
*                    这个参数可以是下面的值之一:
*                       - SPI_DataSize_16b: 设置数据大小为16位
*                       - SPI_DataSize_8b: 设置数据大小为8位
* 输出参数: 无
* 返回参数: 无
*******************************************************************************/
void SPI_DataSizeConfig(SPI_TypeDef* SPIx, u16 SPI_DataSize)
{
  /* Check the parameters [检查参数]*/
  assert_param(IS_SPI_ALL_PERIPH(SPIx));
  assert_param(IS_SPI_DATASIZE(SPI_DataSize));

  /* Clear DFF bit [清除DFF位]*/
  SPIx->CR1 &= (u16)~SPI_DataSize_16b;
  /* Set new DFF bit value [设置DFF位的新值]*/
  SPIx->CR1 |= SPI_DataSize;
}
/*******************************************************************************
* Function Name  : SPI_DataSizeConfig
* Description    : Configures the data size for the selected SPI.
* Input          : - SPIx: where x can be 1 or 2 to select the SPI peripheral.
*                  - SPI_DataSize: specifies the SPI data size.
*                    This parameter can be one of the following values:
*                       - SPI_DataSize_16b: Set data frame format to 16bit
*                       - SPI_DataSize_8b: Set data frame format to 8bit
* Output         : None
* Return         : None
*******************************************************************************/
void SPI_DataSizeConfig(SPI_TypeDef* SPIx, u16 SPI_DataSize)
{
  /* Check the parameters */
  assert(IS_SPI_DATASIZE(SPI_DataSize));

  if (SPI_DataSize != SPI_DataSize_8b)
  {
    /* Set data frame format to 16bit */
    SPIx->CR1 |= SPI_DataSize_16b;
  }
  else
  {
    /* Set data frame format to 8bit */
    SPIx->CR1 &= SPI_DataSize_8b;
  }
}
Ejemplo n.º 5
0
/*******************************************************************************
* 函数名称: SPI_Init
* 功能描述: 根据SPI_InitStruct.中的特定参数初始化SPIx外设.
* 输入参数: (1)SPIx :x为1,2或3用于选定SPI外设。
*           (2)SPI_InitStruct:指向一个包含特定SPI外设配置信息的SPI_InitTypeDef结构体的指针。
* 输出参数: 无
* 返回参数: 无
******************************************************************************/
void SPI_Init(SPI_TypeDef* SPIx, SPI_InitTypeDef* SPI_InitStruct)
{
  u16 tmpreg = 0;
  
  /* Check the parameters [检查参数]*/
  assert_param(IS_SPI_ALL_PERIPH(SPIx));   
  
  /* Check the SPI parameters [检查SPI的参数]*/
  assert_param(IS_SPI_DIRECTION_MODE(SPI_InitStruct->SPI_Direction));
  assert_param(IS_SPI_MODE(SPI_InitStruct->SPI_Mode));
  assert_param(IS_SPI_DATASIZE(SPI_InitStruct->SPI_DataSize));
  assert_param(IS_SPI_CPOL(SPI_InitStruct->SPI_CPOL));
  assert_param(IS_SPI_CPHA(SPI_InitStruct->SPI_CPHA));
  assert_param(IS_SPI_NSS(SPI_InitStruct->SPI_NSS));
  assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_InitStruct->SPI_BaudRatePrescaler));
  assert_param(IS_SPI_FIRST_BIT(SPI_InitStruct->SPI_FirstBit));
  assert_param(IS_SPI_CRC_POLYNOMIAL(SPI_InitStruct->SPI_CRCPolynomial));

/*---------------------------- SPIx CR1 Configuration [SPIx CR1配置]*/
  /* Get the SPIx CR1 value [取得SPIx CR1的值]*/
  tmpreg = SPIx->CR1;
  /* Clear BIDIMode, BIDIOE, RxONLY, SSM, SSI, LSBFirst, BR, MSTR, CPOL and CPHA bits 
  清BIDIMode, BIDIOE, RxONLY, SSM, SSI, LSBFirst, BR, MSTR, CPOL 和CPHA 位*/
  tmpreg &= CR1_CLEAR_Mask;
  /* Configure SPIx[配置SPIx]: direction[方向], NSS management[NSS管理], first transmitted bit[第一个发送位], BaudRate prescaler[波特率预分频]
     master/salve mode[主/从模式], CPOL and CPHA */
  /* Set BIDImode, BIDIOE and RxONLY bits according to SPI_Direction value [依照SPI_Direction的值置位BIDImode, BIDIOE和RxONLY]*/
  /* Set SSM, SSI and MSTR bits according to SPI_Mode and SPI_NSS values [依照SPI_Mode 和SPI_NSS的值置位SSM, SSI 和 MSTR]*/
  /* Set LSBFirst bit according to SPI_FirstBit value [依照SPI_FirstBit的值置位LSBFirst]*/
  /* Set BR bits according to SPI_BaudRatePrescaler value [依照SPI_BaudRatePrescaler的值置位BR]*/
  /* Set CPOL bit according to SPI_CPOL value [依照SPI_CPOL的值置位CPOL]*/
  /* Set CPHA bit according to SPI_CPHA value [依照SPI_CPHA的值置位CPHA]*/
  tmpreg |= (u16)((u32)SPI_InitStruct->SPI_Direction | SPI_InitStruct->SPI_Mode |
                  SPI_InitStruct->SPI_DataSize | SPI_InitStruct->SPI_CPOL |  
                  SPI_InitStruct->SPI_CPHA | SPI_InitStruct->SPI_NSS |  
                  SPI_InitStruct->SPI_BaudRatePrescaler | SPI_InitStruct->SPI_FirstBit);
  /* Write to SPIx CR1 [写SPIx CR1]*/
  SPIx->CR1 = tmpreg;
  
  /* Activate the SPI mode (Reset I2SMOD bit in I2SCFGR register) */
  SPIx->I2SCFGR &= SPI_Mode_Select;     

/*---------------------------- SPIx CRCPOLY Configuration --------------------*/
  /* Write to SPIx CRCPOLY [写SPIx CRCPOLY]*/
  SPIx->CRCPR = SPI_InitStruct->SPI_CRCPolynomial;
}
Ejemplo n.º 6
0
/**
  * @brief  Initializes the SPIx peripheral according to the specified 
  *         parameters in the SPI_InitStruct.
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @param  SPI_InitStruct: pointer to a SPI_InitTypeDef structure that
  *         contains the configuration information for the specified SPI peripheral.
  * @retval None
  */
void SPI_Init(SPI_TypeDef* SPIx, SPI_InitTypeDef* SPI_InitStruct)
{
  uint16_t tmpreg = 0;
  
  /* check the parameters */
  assert_param(IS_SPI_ALL_PERIPH(SPIx));   
  
  /* Check the SPI parameters */
  assert_param(IS_SPI_DIRECTION_MODE(SPI_InitStruct->SPI_Direction));
  assert_param(IS_SPI_MODE(SPI_InitStruct->SPI_Mode));
  assert_param(IS_SPI_DATASIZE(SPI_InitStruct->SPI_DataSize));
  assert_param(IS_SPI_CPOL(SPI_InitStruct->SPI_CPOL));
  assert_param(IS_SPI_CPHA(SPI_InitStruct->SPI_CPHA));
  assert_param(IS_SPI_NSS(SPI_InitStruct->SPI_NSS));
  assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_InitStruct->SPI_BaudRatePrescaler));
  assert_param(IS_SPI_FIRST_BIT(SPI_InitStruct->SPI_FirstBit));
  assert_param(IS_SPI_CRC_POLYNOMIAL(SPI_InitStruct->SPI_CRCPolynomial));

/*---------------------------- SPIx CR1 Configuration ------------------------*/
  /* Get the SPIx CR1 value */
  tmpreg = SPIx->CR1;
  /* Clear BIDIMode, BIDIOE, RxONLY, SSM, SSI, LSBFirst, BR, MSTR, CPOL and CPHA bits */
  tmpreg &= CR1_CLEAR_Mask;
  /* Configure SPIx: direction, NSS management, first transmitted bit, BaudRate prescaler
     master/salve mode, CPOL and CPHA */
  /* Set BIDImode, BIDIOE and RxONLY bits according to SPI_Direction value */
  /* Set SSM, SSI and MSTR bits according to SPI_Mode and SPI_NSS values */
  /* Set LSBFirst bit according to SPI_FirstBit value */
  /* Set BR bits according to SPI_BaudRatePrescaler value */
  /* Set CPOL bit according to SPI_CPOL value */
  /* Set CPHA bit according to SPI_CPHA value */
  tmpreg |= (uint16_t)((uint32_t)SPI_InitStruct->SPI_Direction | SPI_InitStruct->SPI_Mode |
                  SPI_InitStruct->SPI_DataSize | SPI_InitStruct->SPI_CPOL |  
                  SPI_InitStruct->SPI_CPHA | SPI_InitStruct->SPI_NSS |  
                  SPI_InitStruct->SPI_BaudRatePrescaler | SPI_InitStruct->SPI_FirstBit);
  /* Write to SPIx CR1 */
  SPIx->CR1 = tmpreg;
  
  /* Activate the SPI mode (Reset I2SMOD bit in I2SCFGR register) */
  SPIx->I2SCFGR &= SPI_Mode_Select;		

/*---------------------------- SPIx CRCPOLY Configuration --------------------*/
  /* Write to SPIx CRCPOLY */
  SPIx->CRCPR = SPI_InitStruct->SPI_CRCPolynomial;
}
/**
  * @brief  Initializes the SPI according to the specified parameters 
  *         in the SPI_InitTypeDef and create the associated handle.
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
  *                the configuration information for SPI module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi)
{
  /* Check the SPI handle allocation */
  if(hspi == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
  assert_param(IS_SPI_MODE(hspi->Init.Mode));
  assert_param(IS_SPI_DIRECTION_MODE(hspi->Init.Direction));
  assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize));
  assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity));
  assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase));
  assert_param(IS_SPI_NSS(hspi->Init.NSS));
  assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler));
  assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit));
  assert_param(IS_SPI_TIMODE(hspi->Init.TIMode));
  assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation));
  assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial));

  if(hspi->State == HAL_SPI_STATE_RESET)
  {
    /* Init the low level hardware : GPIO, CLOCK, NVIC... */
    HAL_SPI_MspInit(hspi);
  }
  
  hspi->State = HAL_SPI_STATE_BUSY;

  /* Disble the selected SPI peripheral */
  __HAL_SPI_DISABLE(hspi);

  /*----------------------- SPIx CR1 & CR2 Configuration ---------------------*/
  /* Configure : SPI Mode, Communication Mode, Data size, Clock polarity and phase, NSS management,
  Communication speed, First bit and CRC calculation state */
  WRITE_REG(hspi->Instance->CR1, (hspi->Init.Mode | hspi->Init.Direction | hspi->Init.DataSize |
                                  hspi->Init.CLKPolarity | hspi->Init.CLKPhase | (hspi->Init.NSS & SPI_CR1_SSM) |
                                  hspi->Init.BaudRatePrescaler | hspi->Init.FirstBit  | hspi->Init.CRCCalculation) );

  /* Configure : NSS management */
  WRITE_REG(hspi->Instance->CR2, (((hspi->Init.NSS >> 16) & SPI_CR2_SSOE) | hspi->Init.TIMode));

  /*---------------------------- SPIx CRCPOLY Configuration ------------------*/
  /* Configure : CRC Polynomial */
  WRITE_REG(hspi->Instance->CRCPR, hspi->Init.CRCPolynomial);

#if defined (STM32F101x6) || defined (STM32F101xB) || defined (STM32F101xE) || defined (STM32F101xG) || defined (STM32F102x6) || defined (STM32F102xB) || defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F103xE) || defined (STM32F103xG) || defined (STM32F105xC) || defined (STM32F107xC)
  /* Activate the SPI mode (Make sure that I2SMOD bit in I2SCFGR register is reset) */
  CLEAR_BIT(hspi->Instance->I2SCFGR, SPI_I2SCFGR_I2SMOD);
#endif

#if defined (STM32F101xE) || defined (STM32F103xE)
  /* Check RevisionID value for identifying if Device is Rev Z (0x0001) in order to enable workaround for
     CRC errors wrongly detected */
  /* Pb is that ES_STM32F10xxCDE also identify an issue in Debug registers access while not in Debug mode.
     Revision ID information is only available in Debug mode, so Workaround could not be implemented
     to distinguish Rev Z devices (issue present) from more recent version (issue fixed).
     So, in case of Revison Z F101 or F103 devices, below variable should be assigned to 1 */
  uCRCErrorWorkaroundCheck = 0;
#else
  uCRCErrorWorkaroundCheck = 0;
#endif

  hspi->ErrorCode = HAL_SPI_ERROR_NONE;
  hspi->State = HAL_SPI_STATE_READY;
  
  return HAL_OK;
}